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SYNGE-BEIL AND RIEMANN-JACOBI JET STRUCTURES
WITH APPLICATIONS TO PHYSICS
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In the framework of geometrized first-order jet approach, we study the Synge-
Beil generalized Lagrange jet structure, derive the canonic nonlinear and Cartan
connections, and infer the Einstein-Maxwell equations with sources; the classical
ansatz is emphasized as a particular case. The Lorentz-type equations are de-
scribed and the attached Riemann-Jacobi structures for two certain uniparametric
cases are presented.
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1. Preliminaries. Let (T,hqg) and (M,y;;) be two €* pseudo-Riemannian
manifolds of dimensions m and n, respectively. We denote by € = (E = j(T,
M), t, T x M) the first-order jet bundle of mappings @ : T — M, with the local
coordinates

(tuyxisyA)(o(,i,A)ej* = (") yer- (1.1)

Throughout the paper, we consider the sets

I1=1,Ul,, Ih:Ih1U1h2, Ih1:1,m, IhZ:m+1,m+n,
(1.2)
I, =m+n+1,N, Iy =1y, XIn, X1y, N=m+n+mn,;
the indices will implicitly take the values
&, B,... €1Iny, i,j,... € In,, A,B,...€1,, AUy... €1, (1.3)

ForA=m+n+n(i—-m-1)+ « we will denote A = (&) and y4 = x(;) =
oxt/ote.
We endow E with the sub-Riemannian Synge-Beil metric (see [9])
JaB Eé(;)(é‘) =h*(t)gi(t,x,y), (1.4)

where

gij(t,x,y) =yij(x)+eUi(t,x,y)U;(t,x,y), Vi, jely, e€{xl}, (1.5)
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and U;(t,x,y) is a distinguished 1-form on E (see [1]). We call (E, g) the Synge-
Beil (SB) jet model. The inverse of g;; is gi/ = y¥ — e@U'U/, where U = y'Uj,
® = (1+U,)" !, and the star index denotes transvection with U".

We remark the important particular Synge-Beil uniparametric (SBU) auto-
nomous normalized case, where m = 1,s = t1 = t,and hy; = 1, for which we can
use the Finsler-Lagrange tangent space notations from [5]. Shifting the indices
left by one unit (hence, I, = 1,1, I, = n+1,2n), we have y4 = (1) i In
this case, considering

Ui =[k(1-n2(x,v)]"*yi, k>0, (1.6)

we encounter three important extensively studied cases.

(I) The Synge classical framework (see [10]), obtained for € = 1 and k = 1,
where y; = yi; y4, n(x,y) is the refraction index of relativistic optics (see
[7, 9]), and the direction y = X(x) is provided by a vector field X € ¥(M).

(I1) If the potentials U; in (1.5) are 0-homogeneous relative to y, in the limit
case n — oo with e =1, k € (M), we have

gij(x,y) =yij(x)+k-Ui(x,y)U;(x,y), (1.7)
and we may consider the Finsler fundamental function F = /L, where
L=gij(x,y)y'y. (1.8)

This is the relativistic Beil-type metric (see [3, 4]) with the two intensively stud-
ied subcases

P (sj0vh) g, (1.9)

Ui € {(yxvivt)
where s € ¥* (M), and v € X*(TM) is 0-homogeneous in y.
(IlT) The generalized Lagrange model of relativistic optics studied by Miron
and Kawaguchi (see [6, 7]) is obtained as limit case n — co with e = 1, k = 1/c?
(c = speed of light), where the metric is

gij(x,¥) =yij(x)+c vy, Vi, j€Eln,. (1.10)

Considering the general SB-jet case (1.5), we can fix a priori on E a nonlinear
connection N = {Nﬁ‘}uelh,Aezv of coefficients

Y
op

®) @ _ |t
Yy, N ik y . (1.11)

(&)
Ng™ = - J
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However, an open question (see [9]) addresses the physical significance of
choosing an alternative target-nonlinear connection coefficients provided by
the spray attached to the Lagrangian

L=gapy*y", (1.12)
given by N]}‘;) = N}‘l‘) +(/2)g™* 04 (UkU;).

The fixed nonlinear connection leads to a splitting TE = HE @ VE, where
VE =Kerm,, and to the associated local adapted basis of vector fields [1, 9]

. D
B = {60( = 80(—N§6A, 51' = 6i—NiA6A, 5,4 = 6A = ay—A}(a,i,A)g* = {6H}uEI=
(1.13)
where 0, = 0/0t%, 0; = 9/0x", of dual basis
B = 5% =dt*, 5 = dx’,
(1.14)

AsA A _ g0 A A gra A g _ (su
§48yA = dy* + NAdt™ + NAdx }(a’i’A)eu = {6"} et
For N fixed, a linear connection V = {Li‘,v};\,u,vg in E has the adapted coeffi-
cients provided by 6*(Vs,6,) = LY, for all A,u,v € I; these split into 3% = 27
distinct subsets according to the three index subsets Iy, In,, and I, .

We endow E with the metric

G =hop(t)dt®edtl +gij(t,x,y)dx ®@dx’ + Gap(t,x,y)0y* @ 5y* (1.15)
n 7 J

with g;; given in (1.5). The Cartan linear connection has the four essential sets
of coefficients

x ; i oy
Lgy = By’ ik = ik + U
L [£(UU)) . —OUU™ (UnU;),, | (1.16)
Jjo 2 ’
L;A EL;(‘,;) = ylmU(g()km—U(g()km@UlUm

with
Jix = ¥™Ujkm = €0 (y i = Ujies) U,
e[61j(UnUiy) — 6m (Ui U;) |
2 ’
5[5(g)(UmUi}) — 5 (my (UiU;) ] (1.17)
U(;)J’m - > ’

Uijm

(01jYmiy — OmYij)

Yijm = lij;m| = > ,
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where we denote by « and k the natural covariant derivatives on (T, hyg) and
(M, yij), respectively, by | g | and | j; | the Christoffel symbols of the metrics
h and y, respectively, and T(;...j) = Ti...j = Tjoooiy Tiiveej} = Tiveoj + Tjenni

The torsion and the curvature of V adapted coefficients are given by

SMT(8v,6,)) =Th,, 8 (R(5y,6,)6,) =R)

ouvi YA, v,p L (1.18)
In the Cartan connection case, the essential associated torsion coefficients are
(see [9])

i (%) (&) i '
T&j = L;ou TB( )_ 6 J/S’ T( ) _5)’ ka T}A ZL;'Al

() i (4) ;
Tive =3’ Licky Thy = =Pl (®, (1.19)

. i i
T4 = oy @, T o0,

where pgﬁy and p}kl are the curvature components of the metrics h and y
respectively. The nonholonomy coefficients wﬁv given by [64,6,] = 6 A, for
all p,v €I, are related to torsion via Tﬁ‘v = Lf‘uv] + ‘quv for all A, u,v e I, and
the essential curvature N-tensor fields (for explicit expressions, see [9]) are

= 8Ly, ALy Ly + Ly 07y (1.20)

ulv
Denoting by |«, |, |A, and |A the covariant derivations given by Vs, for u €
In, ,In,,Iv, and I, respectively, the Ricci identities for X € ¥ (E) and 0 € &£*(E)
are

Xl[u\v Rt)}quU TU Xla'

(1.21)
QA\[MIV]:R)\WQU"" ungo', VA u,vel

The adapted components of the Ricci tensor field are given by Ry, = R}\’uv and
the scalar of curvature is R = G”"R/‘\’W =Rp+Ry+ Ry, where

Ry =h*pYy.  Ry=(y7—e0U'U’)(pky+UL,),

» (1.22)
Ry = g""Ras,

and U}kl = U;[kll] +Umj[kU 1 +L (”‘)ppkly( 98

2. Einstein-Maxwell equations. Denoting by E, = Ryy +(1/2)RGyy the Ein-
stein N-tensor field, the Einstein equations with sources



SYNGE-BEIL AND RIEMANN-JACOBI JET STRUCTURES 1697

Epv =KIT v, M,V EIL (2.1)
split
1
Rup— ERhag = KT up,
1
R;i; ERgij = kT j,
1
Rap— ERgAB = KT A, (2.2)
0 = Jo—o(l') 0 = JO_O(A)
Rix = KT ix, Raa = KT aq,
Ria = kT ia, Rai = KT 4i,

where J = 7,61 ®6Y € ETS(E) is the energy-momentum tensor field and k is
the cosmological constant. They satisfy the conservation laws
Ey, =KTy,, VYUEI=Iy Uly,Ul,, (2.3)

where the indices are raised by means of the metric G in (1.15).
We note that for U; = 0, the Einstein equations reduce to the classical ones
on (TxM,h+g). Also, if one considers the extended electromagnetic 2-form

F =Fau6yA ASyH, (2.4)

then the Lagrangian density & = (L + FMFy,)+/deth with L given in (1.12) pro-
vides by the Hilbert-Palatini variation the Einstein equations of the form (2.1)
with the energy-momentum tensor field

1
Ty = FupFfl — 2 G F " For, v el (2.5)

In the extended potential Miron-Tatoiu approach [8], the electromagnetic ten-
sor field F has the essential components

1 k

Fag=F(iy, = E(h“’giky([y))w,
1 - - m

Eaj = F(iy = 5d 1y, = (vl + €U0y, U hfo @), 2.6)

N SN | oy, (F)
B =E0 i =290 = 2Vpuah™y
derived from the deflection tensor fields (detailed in [9])

dy =6%Vs, 6, pel, Acl, (2.7)

where € = y4§,4 is the Liouville field, by lowering the indices and anti-
symmetrization; where the raising/lowering of the indices are assumed to be
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performed via the metric G. The extended electromagnetic tensor field (2.6)
satisfies the following theorem.

THEOREM 2.1. The 2-formF is subject to the two sets of the Maxwell extended
equations with sources

S Flypy = 5.5, 10nr iy
apy (@B ~ 2upy y
Fiyig = %[d([&)ﬁlﬂ + (y(’x')Lm[iB)U] ~d iy, L],
Fg = 3 L4 Y2y
(A iy omy + Lo iem v g ) LS5,

(2.8)

1 (L
SFom= 381w Ly e,
SlE@ad gl =0 Fogw =0

G5 Fpaic = -4, GPCFpic=—-4mJi,  GMEnpu=4mJa, (2.9

where we denoted by J = J,0% € ¥*(E) the adapted dual electric current and
by S the cyclic summation of the corresponding indices below.

The last Maxwell equations in (2.8) were first derived in [9]. Note that in the
SBU case with U; = 0, the equations above provide in particular the classical
Maxwell equations with sources

S Fijre =0, yVFig; = —41J (2.10)
ij
3. Extended Lorentz equations. The extended Lorentz equations associated

to the SB model are G,,(VV*/ds) = FAy 4 [2]; denoting Fi\‘ = GHVF,,y, for all
u € I; they can be rewritten as

VUH
—— =Fhv4 1
ds AV, (3.1)
where
V=VHo,,
dt® dxt syA  dy? dth dxi) (3.2)
u = (£ = AT AT
V" er = < ds’ ds’ ds as VB gs TN g (i A)els
is the covariant velocity along the trajectory of the moving test-particle
c:JCR—E, c(s) = (t(s),x(s),y(s)), Vsel]. (3.3)

We have denoted VVH/ds = 6VH/ds + L’v‘pﬂf"ﬂf", for all u € I, and will fur-
ther use the dot notation for expressing the s-derivation. The explicit Lorentz
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equations were described in [2]. In the SBU case with U; dependent on x only,
the electromagnetic tensors (2.6) have the components

F¥=0, Fi= gijF(;f)j - gifg[klﬁylnj]y(’f‘), FE=o, (3.4)
and the Lorentz equations (3.1) reduce to [2]

t*+

X | .5
ifiv =0,
ﬁy’
(3.5)

Xt | D X%k = gligpatl, (M@, 4=,

jk
and hence are characterized by constant vertical adapted velocity vector field.

4. Riemann-Jacobi structure and energy-dependent Lagrangians. We fur-
ther consider in the SBU framework two particular cases.
(I) The Miron-Kawaguchi generalized Lagrange case, for g given by

9ij(x,y) = yij(x) +k-yiy; 4.1)

with k € %(M), where the Lagrangian (1.12) becomes L = yo(1 + kyo) and
the null index denotes transvection with y. In this case, the Legendre trans-
formation is given locally by (x,y) € TM — (x,p) € T*M, p; = 0L/oy" =
2yi(1+2kyo), i = 1,n, and is a local diffeomorphism on the set

D={(x,y)|y#0, 1+2kyo #0} C TM. (4.2)
The associated Hamiltonian is

; OL
— Al
H_yayi

—L=yo(1+3kyo) 4.3)

and the local Riemann-Jacobi structure (TU,g) provided by the directional
variables U’ = y is defined by the scaled metric

“ 1 3
Jij = (H+ §U*)5ij=§(yo+2k3’§)5ij, (4.4)

where Uy, = §;;U'U/.
(I) The flat local Lagrange space with potential energy-dependence en-

dowed with Riemann-Jacobi generalized Lagrange metric, with the square-type

Lagrangian (see [11])

1

g 1
—51"(J’i—Ui)(3’j—Uj)=§y0+Uo+f, (4.5)

L=
2

where f = (1/2)U, and the indices are raised/lowered by means of the Kro-
necker flat Euclidean metric. Here, the Hamiltonian is H = (1/2)y, — f and
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the Legendre transformation provides momenta as potential shifts of direc-
tion p; = y; — U;. For obtaining the h-paths associated to the Kern nonlinear
connection [5, Theorem 7.4.1, page 113], we apply for g;; = §;j, a =c =1/2,
and b = 1 the following lemma.

LEMMA 4.1. Let (M,y;j) be a (pseudo-)Riemannian space. Then
(a) the spray and the Kern nonlinear connection of the Lagrangian

12

L" =ayy+bUy+cUy, a,b,ceR, (4.6)

with U; € ¥* (M), for raising/lowering performed using the metric y;;
and Uy = U;U, are, respectively, given by
YU (9oL - y*—08;L")

4

Gi(x,y)=

a 1 . . .
= Eé’éo + 2 by (¥ U701k ya1j — Yk0aU) + y*0rU"] @.7)

- Cyia(UjUkaank + ZUJ'aaU‘i)},
where yjk are the Christoffel symbols of y;; and

. 0G! . b . .
Ni(x,y) = 397 = ayjo+ Z[Ym(a[j)’a]k')’jk'auUk) +0,U']; (4.8)

(b) the Euler-Lagrange equations associated to L'" are the spray equations

il +2Gi(X,5C) =0, yi = )'ci, i=1,n, (4.9)

and the h-paths are given by

X'+NH(x, %)% =0,  y'=x', i=1n, (4.10)
with the spray and nonlinear connection determined above.
Then the Kern spray for g;; = (1/2) - (Hess, L);; = ;; is

o SW(op; Uk, + Urd; UK
Gi= (91 ’j} ] ), (4.11)

and denoting Qjx = 0(; Uy, this is rewritten as G' = 6%/ (Qjo + 0;.f). The asso-
ciated nonlinear connection is then N ; =(1/ 4)Q§., and its autoparallel curves
(the h-paths) satisfy

X' = %Q;fcj. (4.12)

Then we have the following theorem.
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THEOREM 4.2. The h-paths described by (4.12) are as well:

(a) the extended Lorentz curves (see [2]) particularized to the almost Riemann
Lagrange special (ARLS) jet case associated to the flat metric 6;; and to
the potential U; [2;

(b) the solutions of the Lorentz-Udriste force law (see [11]) of the Riemann-
Jacobi-Lagrange structure (M = R", gij,4Nj), where g is the Riemann-
Jacobi metric

gij=(H+f)6ij = %51'1'; (4.13)

(c) the stationary curves (see [5]) of the reduced Lagrangian L' = (1/2)yo +
Up.

PROOF. For (a) and (b), the Riemann-Jacobi and the flat metrics have null
Christoffel symbols; for (c), we apply the lemma for g;; = 6ij, a=1/2, b =1,
and ¢ = 0. O
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