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In the framework of geometrized first-order jet approach, we study the Synge-
Beil generalized Lagrange jet structure, derive the canonic nonlinear and Cartan
connections, and infer the Einstein-Maxwell equations with sources; the classical
ansatz is emphasized as a particular case. The Lorentz-type equations are de-
scribed and the attached Riemann-Jacobi structures for two certain uniparametric
cases are presented.
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1. Preliminaries. Let (T ,hαβ) and (M,γij) be two �∞ pseudo-Riemannian

manifolds of dimensions m and n, respectively. We denote by ζ = (E = j1(T ,
M),π,T ×M) the first-order jet bundle of mappings ϕ : T →M , with the local

coordinates

(
tα,xi,yA

)
(α,i,A)∈I∗ ≡

(
yµ
)
µ∈I . (1.1)

Throughout the paper, we consider the sets

I = Ih∪Iv , Ih = Ih1∪Ih2 , Ih1 = 1,m, Ih2 =m+1,m+n,
Iv =m+n+1,N, I∗ = Ih1×Ih2×Iv , N =m+n+mn;

(1.2)

the indices will implicitly take the values

α,β, . . .∈ Ih1 , i,j, . . .∈ Ih2 , A,B, . . .∈ Iv , λ,µ, . . .∈ I. (1.3)

For A = m+n+n(i−m− 1)+α, we will denote A ≡
(
i
α

)
and yA ≡ x(iα) =

∂xi/∂tα.

We endow E with the sub-Riemannian Synge-Beil metric (see [9])

g̃AB ≡ g̃( iα)(jβ) = h
αβ(t)gij(t,x,y), (1.4)

where

gij(t,x,y)= γij(x)+εUi(t,x,y)Uj(t,x,y), ∀i,j ∈ Ih2 , ε ∈ {±1}, (1.5)
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and Ui(t,x,y) is a distinguished 1-form on E (see [1]). We call (E,g̃) the Synge-

Beil (SB) jet model. The inverse of gij is gij = γij−εΘUiUj , where Ui = γijUj ,
Θ= (1+U∗)−1, and the star index denotes transvection with Ui.

We remark the important particular Synge-Beil uniparametric (SBU) auto-

nomous normalized case, wherem= 1, s = t1 = t, andh11 = 1, for which we can

use the Finsler-Lagrange tangent space notations from [5]. Shifting the indices

left by one unit (hence, Ih2 = 1,n, Iv = n+1,2n), we have yA ≡ y(i1) not= yi. In

this case, considering

Ui =
[
k
(
1−n−2(x,y)

)]1/2yi, k > 0, (1.6)

we encounter three important extensively studied cases.

(I) The Synge classical framework (see [10]), obtained for ε = 1 and k = 1,

where yi = γijyj , n(x,y) is the refraction index of relativistic optics (see

[7, 9]), and the direction y =X(x) is provided by a vector field X ∈�(M).
(II) If the potentials Ui in (1.5) are 0-homogeneous relative to y , in the limit

case n→∞ with ε = 1, k∈�(M), we have

gij(x,y)= γij(x)+k·Ui(x,y)Uj(x,y), (1.7)

and we may consider the Finsler fundamental function F =√L, where

L= gij(x,y)yiyj. (1.8)

This is the relativistic Beil-type metric (see [3, 4]) with the two intensively stud-

ied subcases

Ui ∈
{(
γjkvjvk

)−1/2vi,
(
sj(x)vj

)−1vi
}
, (1.9)

where s ∈�∗(M), and v ∈X∗(TM) is 0-homogeneous in y .

(III) The generalized Lagrange model of relativistic optics studied by Miron

and Kawaguchi (see [6, 7]) is obtained as limit case n→∞ with ε = 1, k= 1/c2

(c = speed of light), where the metric is

gij(x,y)= γij(x)+c−2 ·yiyj, ∀i,j ∈ Ih2 . (1.10)

Considering the general SB-jet case (1.5), we can fix a priori on E a nonlinear

connection N = {NAµ }µ∈Ih,A∈Iv of coefficients

N(
i
α)
β =−

∣∣∣∣∣
γ
αβ

∣∣∣∣∣y(
i
γ), N(

i
α)
j =

∣∣∣∣∣
i
jk

∣∣∣∣∣y(
k
α). (1.11)
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However, an open question (see [9]) addresses the physical significance of

choosing an alternative target-nonlinear connection coefficients provided by

the spray attached to the Lagrangian

L= g̃AByAyB, (1.12)

given by Ñ(
i
α)
j =N(

i
α)
j +(ε/2)gik∂α(UkUj).

The fixed nonlinear connection leads to a splitting TE = HE ⊕VE, where

VE = Kerπ∗, and to the associated local adapted basis of vector fields [1, 9]

�=
{
δα ≡ ∂α−NAαδA, δi ≡ ∂i−NAi δA, δA ≡ ∂̇A =

∂
∂yA

}
(α,i,A)∈I∗

≡ {δµ}µ∈I ,
(1.13)

where ∂α = ∂/∂tα, ∂i = ∂/∂xi, of dual basis

�∗ =
{
δα ≡ dtα, δi ≡ dxi,
δAδyA = dyA+NAαdtα+NAi dxi

}
(α,i,A)∈I∗

≡ {δµ}µ∈I .
(1.14)

For N fixed, a linear connection ∇ = {Lλµν}λ,µ,ν∈I in E has the adapted coeffi-

cients provided by δλ(∇δν δµ) = Lλµν for all λ,µ,ν ∈ I; these split into 33 = 27

distinct subsets according to the three index subsets Ih1 , Ih2 , and Iv .

We endow E with the metric

G = hαβ(t)dtα⊗dtβ︸ ︷︷ ︸
h

+gij(t,x,y)dxi⊗dxj︸ ︷︷ ︸
g

+ g̃AB(t,x,y)δyA⊗δyB︸ ︷︷ ︸
g̃

(1.15)

with gij given in (1.5). The Cartan linear connection has the four essential sets

of coefficients

Lαβγ =
∣∣∣∣∣
α
βγ

∣∣∣∣∣ , Lijk =
∣∣∣∣∣
i
jk

∣∣∣∣∣+Ũijk,

Lijα =
[
ε
(
UiUj

)
;α−ΘUiUm

(
UmUj

)
;α

]
2

,

LijA ≡ Lij(kα) = γ
imU(jα)km−U(jα)kmΘU

iUm

(1.16)

with

Ũijk = γimUjkm−εΘ
(
γjk∗−Ujk∗

)
Ui,

Uijm = ε
[
δ{j
(
UmUi}

)−δm(UiUj)]
2

,

U(iα)jm =
ε
[
δ({jα)

(
UmUi}

)−δ(mα)
(
UiUj

)]
2

,

γijm = |ij;m| =
(
∂{jγmi}−∂mγij

)
2

,

(1.17)
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where we denote by α and k the natural covariant derivatives on (T ,hαβ) and

(M,γij), respectively, by
∣∣ α
βγ
∣∣ and

∣∣ i
jk
∣∣ the Christoffel symbols of the metrics

h and γ, respectively, and τ[i···j] = τi···j−τj···i, τ{i···j} = τi···j+τj···i.
The torsion and the curvature of ∇ adapted coefficients are given by

δλ
(
�
(
δν,δµ

))= Tλµν, δλ
(
�
(
δν,δµ

)
δρ
)= Rλρµν , ∀λ,µ,ν,ρ ∈ I. (1.18)

In the Cartan connection case, the essential associated torsion coefficients are

(see [9])

T iαj =−Lijα, T(
i
α)

β(kγ)
=−δγαLijβ, T(

i
α)

j(kγ)
=−δγαŨijk, T ijA = LijA,

T(
i
α)
(jβ)(kγ)

= δα[βLij( kγ]), T(
i
α)

βγ =−ρδαβγy(
i
δ),

T(
i
α)

jk = ρijkly(
l
α), T(

i
α)

βj = 0,

(1.19)

where ρδαβγ and ρijkl are the curvature components of the metrics h and γ
respectively. The nonholonomy coefficients ωλ

µν given by [δµ,δν]=ωA
µνδA, for

all µ,ν ∈ I, are related to torsion via Tλµν = Lλ[µν]+ωλ
µν , for all λ,µ,ν ∈ I, and

the essential curvature N-tensor fields (for explicit expressions, see [9]) are

Rλµνπ = δ[πLλµ]ν+Lσµ[νLλσπ]+Lλµσωσ
νπ . (1.20)

Denoting by |α, |i, |A, and |λ the covariant derivations given by ∇δµ , for µ ∈
Ih1 , Ih2 , Iv , and I, respectively, the Ricci identities for X ∈ �(E) and θ ∈ �∗(E)
are

Xλ|[µ|ν] = RλσµνXσ −TσµνXλ|σ ,
θλ|[µ|ν] = Rσλµνθσ +Tσµνθλ|σ , ∀λ,µ,ν ∈ I. (1.21)

The adapted components of the Ricci tensor field are given by Rλµ = Rνλµν and

the scalar of curvature is R ≡GµνRνλµν = Rh+Rg+Rv , where

Rh = hαβργαβγ, Rg =
(
γij−εΘUiUj)(ρkijk+Ukijk

)
,

Rv = g̃ABRAB,
(1.22)

and Uijkl = Ũij[k|l]+Ũmj[kŨiml]+Lij(mα)ρ
m
pkly(

p
α).

2. Einstein-Maxwell equations. Denoting by Eµν = Rµν+(1/2)RGµν the Ein-

stein N-tensor field, the Einstein equations with sources
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Eµν = κ�µν , µ,ν ∈ I, (2.1)

split

Rαβ− 1
2
Rhαβ = κ�αβ,

Rij− 1
2
Rgij = κ�ij ,

RAB− 1
2
RgAB = κ�AB,

0=�αi, 0=�αA,

Riα = κ�iα, RAα = κ�Aα,

RiA = κ�iA, RAi = κ�Ai,

(2.2)

where � = �µνδµ⊗δν ∈ �0
2(E) is the energy-momentum tensor field and κ is

the cosmological constant. They satisfy the conservation laws

Eµν|µ = κ�
µ
ν|µ, ∀µ ∈ I = Ih1∪Ih2∪Iv , (2.3)

where the indices are raised by means of the metric G in (1.15).

We note that for Ui ≡ 0, the Einstein equations reduce to the classical ones

on (T ×M,h+g). Also, if one considers the extended electromagnetic 2-form

F = FAµδyA∧δyµ, (2.4)

then the Lagrangian density �= (L+FλµFλµ)
√

deth with L given in (1.12) pro-

vides by the Hilbert-Palatini variation the Einstein equations of the form (2.1)

with the energy-momentum tensor field

Tµν = FµρFρµ − 1
4
GµνFρπFρπ , µ,ν ∈ I. (2.5)

In the extended potential Miron-Tatoiu approach [8], the electromagnetic ten-

sor field F has the essential components

FAβ ≡ F(iα)β =
1
2

(
hαγgiky(

k
[γ)
)
|β],

FAj ≡ F(iα)j =
1
2
d([iα)j] =

(
γ[ikŨkmj]+εU[iŨkmj]Uk

)
hαβy(

m
β),

FAB ≡ F(iα)(jβ) =
1
2
g̃([iα)Cy

C
|(j]β)

= 1
2
U(mβ)[ji]h

αγy(
m
γ ),

(2.6)

derived from the deflection tensor fields (detailed in [9])

dAµ = δA∇δµ�, µ ∈ I, A∈ Iv , (2.7)

where � = yAδA is the Liouville field, by lowering the indices and anti-

symmetrization; where the raising/lowering of the indices are assumed to be
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performed via the metric G. The extended electromagnetic tensor field (2.6)

satisfies the following theorem.

Theorem 2.1. The 2-form F is subject to the two sets of the Maxwell extended

equations with sources

S
αβγ
F(iα)β|γ =

1
2
S
αβγ
hαεgiky

(k[ε)
|β]|γ,

F(iα)j|β =
1
2

[
d([iα)β|j]+

(
y(mα)L

m
[iβ

)
|j]−d(iα)mL

m
jβ

]
,

F(iα)(jβ)|γ
= 1

2

[
d([iα)γ|(j]β)

+y(mα)∂([jβ)L
m
i]γ

−
(
d([iα)(mε )+L

k
[i(mε )y(kα)

)
Lmj]δδ

γ
β

]
,

S
ijk
F(iα)j|k =−

1
2
S
ijk

[
d(iα)(mβ)+L

p
i(mβ)

y(pα)
]
ρmjkly

(lβ),

S
ijk

[
F(iα)j|(kβ)+F(iα)(jβ)|k

]
= 0, F(iα)(jβ)|(kγ)

≡ 0,

(2.8)

g̃BCFBα|C =−4πJα, g̃BCFBi|C =−4πJi, GλµFAλ|µ = 4πJA, (2.9)

where we denoted by J = Jµδµ ∈ �∗(E) the adapted dual electric current and

by S the cyclic summation of the corresponding indices below.

The last Maxwell equations in (2.8) were first derived in [9]. Note that in the

SBU case with Ui ≡ 0, the equations above provide in particular the classical

Maxwell equations with sources

S
ijk
Fij;k = 0, γijFik;j =−4πJk. (2.10)

3. Extended Lorentz equations. The extended Lorentz equations associated

to the SB model are Gνρ(∇�ρ/ds) = FAν�A [2]; denoting FµA = GµνFAν , for all

µ ∈ I; they can be rewritten as

∇�µ

ds
= FµA�A, (3.1)

where

�=�µδµ,

{
�µ}

µ∈I ≡
(
dtα

ds
,
dxi

ds
,
δyA

ds
= dy

A

ds
+NAβ

dtβ

ds
+NAj

dxj

ds

)
(α,i,A)∈I∗

(3.2)

is the covariant velocity along the trajectory of the moving test-particle

c : J ⊂R �→ E, c(s)= (t(s),x(s),y(s)), ∀s ∈ J. (3.3)

We have denoted ∇�µ/ds = δ�µ/ds + Lµνρ�ν�ρ , for all µ ∈ I, and will fur-

ther use the dot notation for expressing the s-derivation. The explicit Lorentz
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equations were described in [2]. In the SBU case with Ui dependent on x only,

the electromagnetic tensors (2.6) have the components

FαA = 0, FiA ≡ gijF(k1)j = g
ijg[klŨ lmj]y(

m
1 ), FBA = 0, (3.4)

and the Lorentz equations (3.1) reduce to [2]

ẗα+
∣∣∣∣∣
α
βγ

∣∣∣∣∣ ṫβṫγ = 0,

ẍi+
∣∣∣∣∣
i
jk

∣∣∣∣∣ ẋjẋk = gijg[klŨ lmj]y(
m
1 )�(

k
1), �̇A = 0,

(3.5)

and hence are characterized by constant vertical adapted velocity vector field.

4. Riemann-Jacobi structure and energy-dependent Lagrangians. We fur-

ther consider in the SBU framework two particular cases.

(I) The Miron-Kawaguchi generalized Lagrange case, for g given by

gij(x,y)= γij(x)+k·yiyj (4.1)

with k ∈ �(M), where the Lagrangian (1.12) becomes L̃ = y0(1+ ky0) and

the null index denotes transvection with y . In this case, the Legendre trans-

formation is given locally by (x,y) ∈ TM → (x,p) ∈ T∗M , pi = ∂L/∂yi =
2yi(1+2ky0), i= 1,n, and is a local diffeomorphism on the set

D = {(x,y) |y �= 0, 1+2ky0 �= 0
}⊂ TM. (4.2)

The associated Hamiltonian is

H ≡yi ∂L
∂yi

−L=y0
(
1+3ky0

)
(4.3)

and the local Riemann-Jacobi structure (TU,ĝ) provided by the directional

variables Ui =yi is defined by the scaled metric

ĝij ≡
(
H+ 1

2
U∗
)
δij = 3

2

(
y0+2ky2

0

)
δij, (4.4)

where U∗ = δijUiUj .
(II) The flat local Lagrange space with potential energy-dependence en-

dowed with Riemann-Jacobi generalized Lagrange metric, with the square-type

Lagrangian (see [11])

L̂= 1
2
δij
(
yi−Ui

)(
yj−Uj

)= 1
2
y0+U0+f , (4.5)

where f = (1/2)U∗ and the indices are raised/lowered by means of the Kro-

necker flat Euclidean metric. Here, the Hamiltonian is H = (1/2)y0 − f and
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the Legendre transformation provides momenta as potential shifts of direc-

tion pi = yi−Ui. For obtaining the h-paths associated to the Kern nonlinear

connection [5, Theorem 7.4.1, page 113], we apply for gij = δij , a = c = 1/2,

and b = 1 the following lemma.

Lemma 4.1. Let (M,γij) be a (pseudo-)Riemannian space. Then

(a) the spray and the Kern nonlinear connection of the Lagrangian

L′′ = ay0+bU0+cU∗, a,b,c ∈R, (4.6)

with Ui ∈ �∗(M), for raising/lowering performed using the metric γij
and U∗ =UiUi, are, respectively, given by

Gi(x,y)≡ γ
ij(∂̇j∂kL′′ ·yk−∂jL′′)

4

= a
2
γi00+

1
4

{
b
[
γia
(
ykUj∂[kγa]j−yk∂aUk

)+yk∂kUi]
−cγia(UjUk∂aγjk+2Uj∂aUj

)}
,

(4.7)

where γijk are the Christoffel symbols of γij and

Nij(x,y)≡
∂Gi

∂yj
= aγij0+

b
4

[
γia
(
∂[jγa]k ·γjk ·∂aUk

)+∂jUi]; (4.8)

(b) the Euler-Lagrange equations associated to L′′ are the spray equations

ẍi+2Gi(x,ẋ)= 0, yi = ẋi, i= 1,n, (4.9)

and the h-paths are given by

ẍi+Nij(x,ẋ)ẋj = 0, yi = ẋi, i= 1,n, (4.10)

with the spray and nonlinear connection determined above.

Then the Kern spray for gij = (1/2)·(Hessy L)ij = δij is

Gi = δ
ij(∂[jUkk]+Uk∂jUk)

4
, (4.11)

and denoting Ωjk = ∂[jUk], this is rewritten as Gi = δij(Ωj0+∂jf ). The asso-

ciated nonlinear connection is then Nij = (1/4)Ωij , and its autoparallel curves

(the h-paths) satisfy

ẍi = 1
4
Ωijẋ

j . (4.12)

Then we have the following theorem.
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Theorem 4.2. The h-paths described by (4.12) are as well:

(a) the extended Lorentz curves (see [2]) particularized to the almost Riemann

Lagrange special (ARLS) jet case associated to the flat metric δij and to

the potential Ui/2;

(b) the solutions of the Lorentz-Udriste force law (see [11]) of the Riemann-

Jacobi-Lagrange structure (M = Rn,ĝij ,4Nij), where ĝ is the Riemann-

Jacobi metric

ĝij = (H+f)δij = y0

2
δij ; (4.13)

(c) the stationary curves (see [5]) of the reduced Lagrangian L̂′ = (1/2)y0+
U0.

Proof. For (a) and (b), the Riemann-Jacobi and the flat metrics have null

Christoffel symbols; for (c), we apply the lemma for gij = δij , a = 1/2, b = 1,

and c = 0.
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