ON SOME BK SPACES

BRUNO DE MALAFOSSE

Received 25 April 2002

We characterize the spaces $s_{\alpha}(\Delta)$, $s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$ and we deal with some sets generalizing the well-known sets $w_0(\lambda)$, $w_{\infty}(\lambda)$, $w(\lambda)$, $c_0(\lambda)$, $c_{\infty}(\lambda)$, and $c(\lambda)$.

2000 Mathematics Subject Classification: 46A45, 40C05.

1. Notations and preliminary results. For a given infinite matrix $A = (a_{nm})_{n,m\geq 1}$, the operators A_n , for any integer $n\geq 1$, are defined by

$$A_n(X) = \sum_{m=1}^{\infty} a_{nm} x_m, \tag{1.1}$$

where $X = (x_n)_{n \ge 1}$ is the series intervening in the second member being convergent. So, we are led to the study of the infinite linear system

$$A_n(X) = b_n, \quad n = 1, 2, ...,$$
 (1.2)

where $B = (b_n)_{n \ge 1}$ is a one-column matrix and X the unknown, see [2, 3, 5, 6, 7, 9]. Equation (1.2) can be written in the form AX = B, where $AX = (A_n(X))_{n \ge 1}$. In this paper, we will also consider A as an operator from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $\|\cdot\|_E$ is a BK space if each projection $P_n: X \to P_n X$ is continuous. A BK space E is said to have AK (see [8]) if for every $B = (b_n)_{n \ge 1}$, $B = \sum_{n=1}^{\infty} b_m e_m$, that is,

$$\left\| \sum_{m=N+1}^{\infty} b_m e_m \right\|_F \longrightarrow 0 \quad (n \longrightarrow \infty). \tag{1.3}$$

We shall write s, c, c_0 , and l_∞ for the sets of all complex, convergent sequences, sequences convergent to zero, and bounded sequences, respectively. We shall write cs and l_1 for the sets of convergent and absolutely convergent series, respectively. We will use the set

$$U^{+*} = \{ (u_n)_{n>1} \in s \mid u_n > 0 \ \forall n \}. \tag{1.4}$$

Using Wilansky's notations [12], we define, for any sequence $\alpha = (\alpha_n)_{n \ge 1} \in U^{+*}$ and for any set of sequences E, the set

$$\alpha * E = \left\{ (x_n)_{n \ge 1} \in \mathcal{S} \mid \left(\frac{x_n}{\alpha_n}\right)_n \in E \right\}. \tag{1.5}$$

Writing

$$\alpha * E = \begin{cases} s_{\alpha}^{\circ} & \text{if } E = c_{0}, \\ s_{\alpha}^{(c)} & \text{if } E = c, \\ s_{\alpha} & \text{if } E = l_{\infty}, \end{cases}$$
 (1.6)

we have for instance

$$\alpha * c_0 = s_\alpha^\circ = \{ (x_n)_{n>1} \in s \mid x_n = o(\alpha_n) \ n \longrightarrow \infty \}. \tag{1.7}$$

Each of the spaces $\alpha * E$, where $E \in \{c_0, c, l_\infty\}$, is a BK space normed by

$$||X||_{s_{\alpha}} = \sup_{n \ge 1} \left(\frac{|x_n|}{\alpha_n} \right), \tag{1.8}$$

and s_{α}° has AK.

Now, let $\alpha = (\alpha_n)_{n \ge 1}$ and $\beta = (\beta_n)_{n \ge 1} \in U^{+*}$. We shall write $S_{\alpha,\beta}$ for the set of infinite matrices $A = (a_{nm})_{n,m \ge 1}$ such that

$$(a_{nm}\alpha_m)_{m\geq 1} \in l^1 \quad \forall n \geq 1, \qquad \sum_{m=1}^{\infty} |a_{nm}| \alpha_m = O(\beta_n) \quad (n \to \infty).$$
 (1.9)

The set $S_{\alpha,\beta}$ is a Banach space with the norm

$$||A||_{\mathcal{S}_{\alpha,\beta}} = \sup_{n \ge 1} \left(\sum_{m=1}^{\infty} |a_{nm}| \frac{\alpha_m}{\beta_n} \right). \tag{1.10}$$

Let E and F be any subsets of s. When A maps E into F, we write $A \in (E,F)$, see [10]. So, for every $X \in E$, $AX \in F$ ($AX \in F$ will mean that for each $n \ge 1$, the series defined by $y_n = \sum_{m=1}^{\infty} a_{nm} x_m$ is convergent and $(y_n)_{n\ge 1} \in F$). It has been proved in [8] that $A \in (s_\alpha, s_\beta)$ if and only if $A \in S_{\alpha,\beta}$. So, we can write $(s_\alpha, s_\beta) = S_{\alpha,\beta}$.

When $s_{\alpha} = s_{\beta}$, we obtain the unital Banach algebra $S_{\alpha,\beta} = S_{\alpha}$, (see [2, 3, 9]) normed by $||A||_{S_{\alpha}} = ||A||_{S_{\alpha,\alpha}}$.

We also have $A \in (s_{\alpha}, s_{\alpha})$ if and only if $A \in S_{\alpha}$. If $||I - A||_{S_{\alpha}} < 1$, we say that $A \in \Gamma_{\alpha}$. The set S_{α} being a unital algebra, we have the useful result: if $A \in \Gamma_{\alpha}$, A is bijective from s_{α} into itself.

If $\alpha = (r^n)_{n \ge 1}$, then Γ_α , S_α , s_α , s_α , and $s_\alpha^{(c)}$ are replaced by Γ_r , S_r , s_r , s_r , and $s_r^{(c)}$, respectively, (see [2, 3, 5, 6, 7, 8, 9]). When r = 1, we obtain $s_1 = l_\infty$, $s_1^c = c_0$, and $s_1^{(c)} = c$, and putting e = (1, 1, ...), we have $S_1 = S_e$. It is well known, see [10], that

$$(s_1, s_1) = (c_0, s_1) = (c, s_1) = S_1.$$
 (1.11)

We write $e_n = (0,...,1,...)$ (where 1 is in the nth position). For any subset E of s, we put

$$AE = \{ Y \in \mathcal{S} \mid \exists X \in E \mid Y = AX \}. \tag{1.12}$$

If F is a subset of s, we denote

$$F(A) = F_A = \{ X \in S \mid Y = AX \in F \}. \tag{1.13}$$

We can see that $F(A) = A^{-1}F$.

- **2. Sets** $s_{\alpha}(\Delta)$, $s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$. In this section, we will give necessary and sufficient conditions permitting us to write the sets $s_{\alpha}(\Delta)$, $s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$ by means of the spaces s_{ξ} , s_{ξ}° , or $s_{\xi}^{(c)}$. For this, we need to study the sequence $C(\alpha)\alpha$.
- **2.1. Properties of the sequence** $C(\alpha)\alpha$. Here, we will deal with the operators represented by $C(\lambda)$ and $\Delta(\lambda)$, see [2, 5, 7, 8, 9].

Let

$$U = \{ (u_n)_{n \ge 1} \in s \mid u_n \ne 0 \ \forall n \}.$$
 (2.1)

We define $C(\lambda) = (c_{nm})_{n,m\geq 1}$, for $\lambda = (\lambda_n)_{n\geq 1} \in U$, by

$$c_{nm} = \begin{cases} \frac{1}{\lambda_n} & \text{if } m \le n, \\ 0 & \text{otherwise.} \end{cases}$$
 (2.2)

It can be proved that the matrix $\Delta(\lambda) = (c'_{nm})_{n,m\geq 1}$, with

$$c'_{nm} = \begin{cases} \lambda_n & \text{if } m = n, \\ -\lambda_{n-1} & \text{if } m = n-1, \ n \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$
 (2.3)

is the inverse of $C(\lambda)$, see [8]. If $\lambda = e$, we get the well-known operator of first difference represented by $\Delta(e) = \Delta$ and it is usually written $\Sigma = C(e)$. Note that $\Delta = \Sigma^{-1}$, and Δ and Σ belong to any given space S_R with R > 1.

We use the following sets:

$$\widehat{C} = \left\{ \alpha \in U^{+*} \mid C(\alpha)\alpha = \left(\frac{1}{\alpha_n} \left(\sum_{k=1}^n \alpha_k \right) \right)_{n \ge 1} \in c \right\},
\widehat{C}_1 = \left\{ \alpha \in U^{+*} \mid C(\alpha)\alpha \in s_1 = l_\infty \right\},
\Gamma = \left\{ \alpha \in U^{+*} \mid \overline{\lim}_{n \to \infty} \left(\frac{\alpha_{n-1}}{\alpha_n} \right) < 1 \right\}.$$
(2.4)

Note that $\Delta \in \Gamma_{\alpha}$ implies $\alpha \in \Gamma$. It can be easily seen that $\alpha \in \Gamma$ if and only if there is an integer $q \ge 1$ such that

$$y_q(\alpha) = \sup_{n \ge q+1} \left(\frac{\alpha_{n-1}}{\alpha_n} \right) < 1.$$
 (2.5)

See [7].

In order to express the following results, we will denote by $[C(\alpha)\alpha]_n$ (instead of $[C(\alpha)]_n(\alpha)$) the nth coordinate of $C(\alpha)\alpha$. We get the following proposition.

PROPOSITION 2.1. Let $\alpha \in U^{+*}$. Then

- (i) $\alpha_{n-1}/\alpha_n \to 0$ if and only if $[C(\alpha)\alpha]_n \to 1$;
- (ii) (a) $\alpha \in \hat{C}$ implies that $(\alpha_{n-1}/\alpha_n)_{n\geq 1} \in C$,
 - (b) $[C(\alpha)\alpha]_n \to l$ implies that $\alpha_{n-1}/\alpha_n \to 1-1/l$;
- (iii) if $\alpha \in \widehat{C}_1$, there are K > 0 and $\gamma > 1$ such that

$$\alpha_n \ge K \gamma^n \quad \forall n;$$
 (2.6)

(iv) the condition $\alpha \in \Gamma$ implies that $\alpha \in \widehat{C_1}$ and there exists a real b > 0 such that

$$[C(\alpha)\alpha]_n \le \frac{1}{1-\chi} + b\chi^n \quad \text{for } n \ge q+1, \ \chi = \gamma_q(\alpha) \in]0,1[. \tag{2.7}$$

PROOF. (i) Assume that $\alpha_{n-1}/\alpha_n \to 0$. Then there is an integer N such that

$$n \ge N + 1 \Longrightarrow \frac{\alpha_{n-1}}{\alpha_n} \le \frac{1}{2}.$$
 (2.8)

So, there exists a real K > 0 such that $\alpha_n \ge K2^n$ for all n and

$$\frac{\alpha_k}{\alpha_n} = \frac{\alpha_k}{\alpha_{k+1}} \cdots \frac{\alpha_{n-1}}{\alpha_n} \le \left(\frac{1}{2}\right)^{n-k} \quad \text{for } N \le k \le n-1.$$
 (2.9)

Then

$$\frac{1}{\alpha_{n}} \left(\sum_{k=1}^{n-1} \alpha_{k} \right) = \frac{1}{\alpha_{n}} \left(\sum_{k=1}^{N-1} \alpha_{k} \right) + \sum_{k=N}^{n-1} \frac{\alpha_{k}}{\alpha_{n}} \\
\leq \frac{1}{K2^{n}} \left(\sum_{k=1}^{N-1} \alpha_{k} \right) + \sum_{k=N}^{n-1} \left(\frac{1}{2} \right)^{n-k};$$
(2.10)

and since

$$\sum_{k=N}^{n-1} \left(\frac{1}{2}\right)^{n-k} = 1 - \left(\frac{1}{2}\right)^{n-N} \longrightarrow 1 \quad (n \longrightarrow \infty), \tag{2.11}$$

we deduce that

$$\frac{1}{\alpha_n} \left(\sum_{k=1}^{n-1} \alpha_k \right) = O(1), \qquad \left(\left[C(\alpha) \alpha \right]_n \right) \in l_{\infty}. \tag{2.12}$$

Using the identity

$$[C(\alpha)\alpha]_n = \frac{\alpha_1 + \dots + \alpha_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_n} + 1$$

$$= [C(\alpha)\alpha]_{n-1} \left(\frac{\alpha_{n-1}}{\alpha_n}\right) + 1,$$
(2.13)

we get $[C(\alpha)\alpha]_n \to 1$. This proves the necessity.

Conversely, if $[C(\alpha)\alpha]_n \to 1$, then

$$\frac{\alpha_{n-1}}{\alpha_n} = \frac{\left[C(\alpha)\alpha\right]_n - 1}{\left[C(\alpha)\alpha\right]_{n-1}} \longrightarrow 0. \tag{2.14}$$

Assertion (ii) is a direct consequence of identity (2.14).

(iii) We put $\Sigma_n = \sum_{k=1}^n \alpha_k$. Then for a real M > 1,

$$[C(\alpha)\alpha]_n = \frac{\sum_n}{\sum_n - \sum_{n-1}} \le M \quad \forall n.$$
 (2.15)

So, $\Sigma_n \ge (M/(M-1))\Sigma_{n-1}$ and $\Sigma_n \ge (M/(M-1))^{n-1}\alpha_1$ for all n. Therefore, from

$$\frac{\alpha_1}{\alpha_n} \left(\frac{M}{M-1} \right)^{n-1} \le \left[C(\alpha) \alpha \right]_n = \frac{\Sigma_n}{\alpha_n} \le M, \tag{2.16}$$

we conclude that $\alpha_n \ge K \gamma^n$ for all n, with $K = (M-1)\alpha_1/M^2$ and $\gamma = M/(M-1) > 1$.

(iv) If $\alpha \in \Gamma$, then there is an integer $q \ge 1$ for which

$$k \ge q + 1 \Longrightarrow \frac{\alpha_{k-1}}{\alpha_k} \le \chi < 1 \quad \text{with } \chi = \gamma_q(\alpha).$$
 (2.17)

So, there is a real M' > 0 for which

$$\alpha_n \ge \frac{M'}{\chi^n} \quad \forall n \ge q+1.$$
 (2.18)

Writing $\sigma_{nq} = 1/\alpha_n(\sum_{k=1}^q \alpha_k)$ and $d_n = [C(\alpha)\alpha]_n - \sigma_{nq}$, we get

$$d_{n} = \frac{1}{\alpha_{n}} \left(\sum_{k=q+1}^{n} \alpha_{k} \right) = 1 + \sum_{j=q+1}^{n-1} \left(\prod_{k=1}^{n-j} \frac{\alpha_{n-k}}{\alpha_{n-k+1}} \right)$$

$$\leq \sum_{j=q+1}^{n} \chi^{n-j} \leq \frac{1}{1-\chi}.$$
(2.19)

And using (2.18), we get

$$\sigma_{nq} \le \frac{1}{M'} \chi^n \left(\sum_{k=1}^q \alpha_k \right).$$
 (2.20)

So

$$[C(\alpha)\alpha]_n \le a + b\chi^n \tag{2.21}$$

with
$$a = 1/(1-\chi)$$
 and $b = (1/M')(\sum_{k=1}^{q} \alpha_k)$.

Remark 2.2. Note that $\alpha \in \widehat{C}_1$ does not imply that $\alpha \in \Gamma$.

2.2. New properties of the operator represented by Δ . Throughout this paper, we will denote by D_{ξ} the infinite diagonal matrix $(\xi_n \delta_{nm})_{n,m\geq 1}$ for any given sequence $\xi = (\xi_n)_{n\geq 1}$. Now, we require some lemmas.

LEMMA 2.3. The condition $\Delta \in (s_{\alpha}^{\circ}, s_{\alpha}^{\circ})$ is equivalent to $\Delta_{\alpha} = D_{1/\alpha} \Delta D_{\alpha} \in (c_0, c_0)$ and $\Delta \in (s_{\alpha}^{(c)}, s_{\alpha}^{(c)})$ implies $\Delta_{\alpha} = D_{1/\alpha} \Delta D_{\alpha} \in (c, c)$.

PROOF. First, D_{α} is bijective from c_0 into s_{α}° . In fact, the equation $D_{\alpha}X = B$, for every $B = (b_n)_n \in s_{\alpha}^{\circ}$, admits a unique solution $X = D_{1/\alpha}B = (b_n/\alpha_n)_n \in c_0$. Suppose now that $\Delta \in (s_{\alpha}^{\circ}, s_{\alpha}^{\circ})$. Then for every $X \in c_0$, we get successively $X' = D_{\alpha}X \in s_{\alpha}^{\circ}$, $\Delta X' \in s_{\alpha}^{\circ}$, and $\Delta_{\alpha} = D_{1/\alpha}\Delta D_{\alpha} \in (c_0, c_0)$. Conversely, assume that $\Delta_{\alpha} \in (c_0, c_0)$ and let $X \in s_{\alpha}^{\circ}$. Then $X = D_{\alpha}X'$ with $X' \in c_0$. So, $\Delta X \in D_{\alpha}c_0 = s_{\alpha}^{\circ}$ and $\Delta \in (s_{\alpha}^{\circ}, s_{\alpha}^{\circ})$. By a similar reasoning, we get $\Delta \in (s_{\alpha}^{(c)}, s_{\alpha}^{(c)}) \Rightarrow \Delta_{\alpha} \in (c, c)$.

We need to recall here the following well-known results given in [12].

LEMMA 2.4. The condition $A \in (c,c)$ is equivalent to the following conditions:

- (i) $A \in S_1$;
- (ii) $(a_{nm})_{n\geq 1} \in c$ for each $m \geq 1$;
- (iii) $(\sum_{m=1}^{\infty} a_{nm})_{n\geq 1} \in c$.

If for any given sequence $X = (x_n)_n \in c$, with $\lim_n x_n = l$, $A_n(X)$ is convergent for all n and $\lim_n A_n(X) = l$, it is written that

$$\lim X = A - \lim X,\tag{2.22}$$

and *A* is called a Toeplitz matrix. We also have the next result.

LEMMA 2.5. The operator $A \in (c,c)$ is a Toeplitz matrix if and only if

- (i) $A \in S_1$;
- (ii) $\lim_n a_{nm} = 0$ for each $m \ge 1$;
- (iii) $\lim_{n} (\sum_{m=1}^{\infty} a_{nm}) = 1$.

Now, we can assert the following theorem.

THEOREM 2.6. We have successively

- (i) $s_{\alpha}(\Delta) = s_{\alpha}$ if and only if $\alpha \in \widehat{C}_1$;
- (ii) $s^{\circ}_{\alpha}(\Delta) = s^{\circ}_{\alpha}$ if and only if $\alpha \in \widehat{C}_1$;
- (iii) $s_{\alpha}^{(c)}(\Delta) = s_{\alpha}^{(c)}$ if and only if $\alpha \in \hat{C}$;
- (iv) $\Delta_{\alpha} = D_{1/\alpha} \Delta D_{\alpha}$ is bijective from c into itself with $\lim X = \Delta_{\alpha} \lim X$ if and only if

$$\frac{\alpha_{n-1}}{\alpha_n} \to 0. \tag{2.23}$$

PROOF. (i) We have $s_{\alpha}(\Delta) = s_{\alpha}$ if and only if $\Delta, \Sigma \in (s_{\alpha}, s_{\alpha})$. This means that $\Delta, \Sigma \in S_{\alpha}$, that is,

$$\|\Delta\|_{S_{\alpha}} = \sup_{n \ge 1} \left(1 + \frac{\alpha_{n-1}}{\alpha_n} \right) < \infty, \qquad \|\Sigma\|_{S_{\alpha}} = \sup_{n \ge 1} \left[C(\alpha) \alpha \right]_n < \infty. \tag{2.24}$$

Since $0 < \alpha_{n-1}/\alpha_n \le [C(\alpha)\alpha]_n$, we deduce that $\Delta, \Sigma \in S_\alpha$ if and only if $\|\Sigma\|_{S_\alpha} < \infty$, that is, $\alpha \in \widehat{C}_1$.

(ii) From Lemma 2.3, if $s^{\circ}_{\alpha}(\Delta) = s^{\circ}_{\alpha}$, then $\Delta_{\alpha} = D_{1/\alpha}\Delta D_{\alpha} \in (c_0, c_0)$. So, $\Delta_{\alpha} \in (c_0, l_{\infty}) = S_1$ and since $\Delta_{\alpha} = (d_{nm})_{n,m \geq 1}$ with

$$d_{nm} = \begin{cases} 1 & \text{if } m = n, \\ -\frac{\alpha_{n-1}}{\alpha_n} & \text{if } m = n-1, \\ 0 & \text{otherwise,} \end{cases}$$
 (2.25)

we deduce that $\alpha_{n-1}/\alpha_n=O(1), n\to\infty$. Further, $s^\circ_\alpha(\Delta)=s^\circ_\alpha$ implies $\Sigma_\alpha=D_{1/\alpha}\Sigma D_\alpha\in(c_0,c_0)$ and $\Sigma_\alpha\in(c_0,l_\infty)=S_1$. Since $\Sigma_\alpha=(\sigma_{nm})_{n,m\geq 1}$ with

$$\sigma_{nm} = \begin{cases} \frac{\alpha_m}{\alpha_n} & \text{if } m \le n, \\ 0 & \text{if } m > n, \end{cases}$$
 (2.26)

we deduce that

$$\sup_{n\geq 1} \left(\frac{1}{\alpha_n} \left(\sum_{k=1}^n \alpha_k \right) \right) < \infty, \tag{2.27}$$

that is, $\alpha \in \widehat{C}_1$. Conversely, assume that $\alpha \in \widehat{C}_1$. First, $\Delta \in (s_\alpha^\circ, s_\alpha^\circ)$. Indeed, from the inequality

$$\frac{\alpha_{n-1}}{\alpha_n} \le \sup_{n>1} \left(\left[C(\alpha) \alpha \right]_n \right) < \infty, \tag{2.28}$$

we deduce that for every $X \in S_{\alpha}^{\circ}$, $x_n/\alpha_n = o(1)$,

$$\frac{x_n - x_{n-1}}{\alpha_n} = \frac{x_n}{\alpha_n} - \frac{x_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_n} = o(1)$$
 (2.29)

and $\Delta X \in s_{\alpha}^{\circ}$. Further, take $B = (b_n)_{n \geq 1} \in s_{\alpha}^{\circ}$. Then there exists $\nu = (\nu_n)_{n \geq 1} \in c_0$ such that $b_n = \alpha_n \nu_n$. We must prove that the equation $\Delta X = B$ admits a unique solution in the space s_{α}° . First, we obtain

$$X = \Sigma B = \left(\sum_{k=1}^{n} \alpha_k \nu_k\right)_{n \ge 1}.$$
 (2.30)

In order to show that $X=(x_n)_{n\geq 1}\in s_\alpha^\circ$, we will consider any given $\varepsilon>0$. From Proposition 2.1(iii), the condition $\alpha\in\widehat{C_1}$ implies that $\alpha_n\to\infty$. So, there exists an integer N such that

$$S_{n} = \frac{1}{\alpha_{n}} \left| \sum_{k=1}^{N} \alpha_{k} \nu_{k} \right| \leq \frac{\varepsilon}{2} \quad \text{for } n \geq N,$$

$$\sup_{n \geq N+1} \left(\left| \nu_{k} \right| \right) \leq \frac{\varepsilon}{2 \sup_{n \geq 1} \left(\left[C(\alpha) \alpha \right]_{n} \right)}.$$
(2.31)

Writing $R_n = 1/\alpha_n |\sum_{k=N+1}^n \alpha_k v_k|$, we conclude that

$$R_n \le \left(\sup_{N+1 \le k \le n} (|\nu_k|)\right) [C(\alpha)\alpha]_n \le \frac{\varepsilon}{2}. \tag{2.32}$$

Finally, we obtain

$$\frac{|x_n|}{|\alpha_n|} = \left| \frac{1}{\alpha_n} \left(\sum_{k=1}^N \alpha_k \nu_k \right) + \frac{1}{\alpha_n} \left(\sum_{k=N+1}^n \alpha_k \nu_k \right) \right| \\
\leq S_n + R_n \leq \varepsilon \quad \text{for } n \geq N, \tag{2.33}$$

and $X \in s_{\alpha}^{0}$.

(iii) As above, $s_{\alpha}^{(c)}(\Delta) = s_{\alpha}^{(c)}$ if and only if $\Delta_{\alpha}, \Sigma_{\alpha} \in (c,c)$; and from Lemma 2.4, we have $\Delta_{\alpha} \in (c,c)$ if and only if $(\alpha_{n-1}/\alpha_n)_n \in c$. In fact, we have $\Delta_{\alpha} \in S_1$ and $\sum_{m=1}^n d_{nm} = 1 + \alpha_{n-1}/\alpha_n$ tends to a limit as $n \to \infty$. Afterwards, $\Sigma_{\alpha} \in (c,c)$ is equivalent to

- (a) $\Sigma_{\alpha} \in S_1$, that is, $\alpha \in \widehat{C_1}$;
- (b) $\lim_{n} (\alpha_m / \alpha_n) = 0$ for all $m \ge 1$;
- (c) $\alpha \in \hat{C}$.

From Proposition 2.1(iii), (c) implies that α_n tends to infinity, so (c) implies (a) and (b). Finally, from Proposition 2.1(ii), we conclude that $\alpha \in \hat{C}$ implies $(\alpha_{n-1}/\alpha_n)_n \in c$. This completes the proof of (iii).

(iv) From Lemma 2.5, it can be easily verified that $\Delta_{\alpha} \in (c,c)$ and $\lim X = \Delta_{\alpha} - \lim X$ if and only if $\alpha_{n-1}/\alpha_n \to 0$. We conclude, using (iii), since $\alpha_{n-1}/\alpha_n = o(1)$ implies that $\alpha \in \hat{C}$.

REMARK 2.7. In Theorem 2.6(iv), we see that $\Sigma_{\alpha} \in (c,c)$ and $\lim X = \Sigma_{\alpha} - \lim X$ if and only if $\alpha_{n-1}/\alpha_n \to 0$. In fact, we must have for each $m \ge 1$, $\sigma_{nm} = \alpha_m/\alpha_n = o(1)$ $(n \to \infty)$ and

$$\lim_{n} \left(\sum_{m=1}^{n} \sigma_{nm} \right) = \lim_{n} \left(1 + \sum_{m=1}^{n-1} \frac{\alpha_m}{\alpha_n} \right) = 1, \tag{2.34}$$

and from Proposition 2.1(i), the previous property is satisfied if and only if $\alpha_{n-1}/\alpha_n \to 0$.

REMARK 2.8. It can be seen that the condition $(\alpha_{n-1}/\alpha_n)_n \in c$ does not imply that $\alpha \in \widehat{C}_1$. It is enough to consider $C(e)e = (n)_n \notin c_0$.

The next corollary is a direct consequence of the previous results.

COROLLARY 2.9. Consider the following properties:

- (i) $\alpha \in \hat{C}$;
- (ii) $s_{\alpha}^{(c)}(\Delta) = s_{\alpha}^{(c)}$;
- (iii) $\alpha \in \Gamma$;
- (iv) $\alpha \in \widehat{C}_1$;
- (v) $s_{\alpha}(\Delta) = s_{\alpha}$;
- (vi) $s_{\alpha}^{\circ}(\Delta) = s_{\alpha}^{\circ}$.

Then $(i)\Leftrightarrow (ii)\Rightarrow (iii)\Rightarrow (iv)\Leftrightarrow (v)\Leftrightarrow (vi)$.

We obtain from the precedent the following corollary.

COROLLARY 2.10. (i) $(s_{\alpha} - s_{\alpha}^{\circ})(\Delta) = s_{\alpha} - s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C}_{1}$, (ii) $(s_{\alpha}^{(c)} - s_{\alpha}^{\circ})(\Delta) = s_{\alpha}^{(c)} - s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C}$, (iii) $\alpha \in \widehat{C}$ implies $(s_{\alpha} - s_{\alpha}^{(c)})(\Delta) = s_{\alpha} - s_{\alpha}^{(c)}$.

PROOF. (i) If Δ is bijective from $s_{\alpha} - s_{\alpha}^{\circ}$ into itself, then for every $B \in s_{\alpha} - s_{\alpha}^{\circ}$, we have $X = \Sigma B \in s_{\alpha} - s_{\alpha}^{\circ}$. Since $\alpha \in s_{\alpha} - s_{\alpha}^{\circ}$, we conclude that $\Sigma \alpha \in s_{\alpha}$, that is, $C(\alpha) \alpha \in l_{\infty}$. Conversely, from Theorem 2.6(i) and (ii), it can be easily seen that Δ is bijective from s_{α} to s_{α} and from s_{α}° to s_{α}° , since $\alpha \in \widehat{C}_{1}$. So, Δ is bijective from $s_{\alpha} - s_{\alpha}^{\circ}$ to $s_{\alpha} - s_{\alpha}^{\circ}$.

(ii) Suppose that Δ is bijective from $s_{\alpha}^{(c)} - s_{\alpha}^{\circ}$ into itself. Reasoning as above, we have $\alpha \in s_{\alpha}^{(c)} - s_{\alpha}^{\circ}$ and $\Sigma \alpha \in s_{\alpha}^{(c)}$, so $D_{1/\alpha}\Sigma \alpha = C(\alpha)\alpha \in c$. Conversely, using Theorem 2.6(i) and (iii), we see that Δ is bijective from $s_{\alpha}^{(c)}$ to $s_{\alpha}^{(c)}$ and from s_{α}° to s_{α}° since $\alpha \in \hat{C}$ and $\hat{C} \subset \widehat{C}_1$. So, $(s_{\alpha}^{(c)} - s_{\alpha}^{\circ})(\Delta) = s_{\alpha}^{(c)} - s_{\alpha}^{\circ}$.

Similarly, (iii) comes from the fact that Δ is bijective from $s_{\alpha}^{(c)}$ into itself and from s_{α} into itself, since $\alpha \in \hat{C}$.

REMARK 2.11. Assume that $\lim_{n\to\infty} [C(\alpha)\alpha]_n = l$. Then

$$\frac{x_n}{\alpha_n} \to L \text{ implies } \frac{x_n - x_{n-1}}{\alpha_n} \to \frac{L}{l}.$$
 (2.35)

Indeed, from Proposition 2.1(ii) (b), $\alpha_{n-1}/\alpha_n \rightarrow 1-(1/l)$ and

$$\frac{x_n - x_{n-1}}{\alpha_n} = \frac{x_n}{\alpha_n} - \frac{x_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_n} \longrightarrow L - L\left(1 - \frac{1}{l}\right) = \frac{L}{l}.$$
 (2.36)

3. Generalization to the sets $s_r(\Delta^h)$ **and** $s_\alpha(\Delta^h)$ **for** h **real.** In this section, we consider the operator Δ^h , where h is a real, and give among other things a necessary and sufficient condition to have $s_\alpha(\Delta^h) = s_\alpha$.

First, recall that we can associate to any power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$, defined in the open disk |z| < R, the upper triangular infinite matrix $A = \varphi(f) \in \bigcup_{0 < r < R} S_r$ defined by

$$\varphi(f) = \begin{pmatrix} a_0 & a_1 & a_2 & \cdot \\ & a_0 & a_1 & \cdot \\ 0 & & a_0 & \cdot \\ & & & \cdot \end{pmatrix}$$
(3.1)

(see [3, 4, 5]). Practically, we will write $\varphi[f(z)]$ instead of $\varphi(f)$. We have the following lemma.

LEMMA 3.1. (i) The map φ : $f \to A$ is an isomorphism from the algebra of the power series defined in |z| < R into the algebra of the corresponding matrices \bar{A} .

(ii) Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, with $a_0 \neq 0$, and assume that $1/f(z) = \sum_{k=0}^{\infty} a_k' z^k$ admits R' > 0 as radius of convergence. Then

$$\varphi\left(\frac{1}{f}\right) = \left[\varphi(f)\right]^{-1} \in \bigcup_{0 < r < R'} S_r. \tag{3.2}$$

Now, for $h \in R - N$, we define (see [13])

and putting $\Delta^+ = \Delta^t$, we get for any $h \in R$,

$$\left(\Delta^{+}\right)^{h} = \varphi\left[\left(1-z\right)^{h}\right] = \varphi\left[\sum_{k=0}^{\infty} \binom{-h+k-1}{k} z^{k}\right] \quad \text{for } |z| < 1. \tag{3.4}$$

Then if $\Delta^h = (\tau_{nm})_{n,m}$,

$$\tau_{nm} = \begin{cases} \begin{pmatrix} -h+n-m-1 \\ n-m \end{pmatrix} & \text{if } m \le n, \\ 0 & \text{if } m > n. \end{cases}$$
 (3.5)

Using the isomorphism φ , we get the following proposition.

PROPOSITION 3.2 (see [5]). (i) The operator represented by Δ is bijective from s_r into itself for every r > 1, and Δ^+ is bijective from s_r into itself for all r, 0 < r < 1.

- (ii) The operator Δ^+ is surjective and not injective from s_r into itself for all r > 1.
 - (iii) For all $r \neq 1$ and for every integer $\mu \geq 1$, $(\Delta^+)^h s_r = s_r$.
 - (iv) We have successively
 - (α) if h is a real greater than 0 and $h \notin N$, then Δ^h maps s_r into itself when $r \ge 1$, but not for 0 < r < 1; if -1 < h < 0, then Δ^h maps s_r into itself when r > 1, but not for r = 1;
 - (β) if h > 0 and $h \notin N$, then $(\Delta^+)^h$ maps s_r into itself when $0 < r \le 1$, but not if r > 1; if -1 < h < 0, then $(\Delta^+)^h$ maps s_r into itself for 0 < r < 1, but not for r = 1.
 - (v) Let h be any given integer ≥ 1 , Then

$$A \in (s_{r}(\Delta^{h}), s_{r}) \iff \sup_{n \ge 1} \left(\sum_{m=1}^{\infty} |a_{nm}| r^{m-n} \right) < \infty \quad \forall r > 1,$$

$$A \in (s_{r}(\Delta^{+})^{h}, s_{r}) \iff \sup_{n \ge 1} \left(\sum_{m=1}^{\infty} |a_{nm}| r^{m-n} \right) < \infty \quad \forall r \in]0,1[.$$

$$(3.6)$$

(vi) For every integer $h \ge 1$,

$$s_1 \subset s_1(\Delta^h) \subset s_{(n^h)_{n\geq 1}} \subset \bigcap_{r>1} s_r. \tag{3.7}$$

(vii) If h > 0 and $h \notin N$, then q is the greatest integer strictly less than (h+1). For all r > 1,

$$\operatorname{Ker}\left(\left(\Delta^{+}\right)^{h}\right) \bigcap s_{r} = \operatorname{span}\left(V_{1}, V_{2}, \dots, V_{q}\right),\tag{3.8}$$

where

$$V_{1} = e^{t}, V_{2} = (A_{1}^{1}, A_{2}^{1}, \dots)^{t},$$

$$V_{3} = (0, A_{2}^{2}, A_{3}^{2}, \dots)^{t}, \dots, V_{q} = (0, 0, \dots, A_{q-1}^{q-1}, A_{q}^{q-1}, \dots, A_{n}^{q-1}, \dots)^{t};$$

$$(3.9)$$

 $A_i^j = i!/(i-j)!$, with $0 \le j \le i$, being the number of permutations of i things taken j at a time.

We give here an extension of the previous results, where s_r is replaced by s_α .

PROPOSITION 3.3. Let h be a real greater than 0. The condition $s_{\alpha}(\Delta^h) = s_{\alpha}$ is equivalent to

$$\gamma_n(h) = \frac{1}{\alpha_n} \left[\sum_{k=1}^{n-1} \binom{h+n-k-1}{n-k} \alpha_k \right] = O(1) \quad (n \to \infty).$$
 (3.10)

PROOF. The operator Δ^h is bijective from s_α into itself if and only if Δ^h , $\Sigma^h \in (s_\alpha, s_\alpha)$. We have $\Delta^h \in (s_\alpha, s_\alpha)$ if and only if

$$D_{1/\alpha}\Delta^h D_\alpha \in S_1, \tag{3.11}$$

and using (3.5), we deduce that $\Delta^h \in (s_\alpha, s_\alpha)$ if and only if

$$\frac{1}{\alpha_n} \sum_{k=1}^{n} \left| \begin{pmatrix} -h+n-k-1 \\ n-k \end{pmatrix} \right| \alpha_k = O(1).$$
 (3.12)

Further, $(\Sigma^t)^h = \varphi[(1-z)^{-h}]$, where

$$\varphi(z) = 1 + \sum_{n=1}^{\infty} {n+n-1 \choose n} z^n \text{ with } |z| < 1.$$
 (3.13)

So, $D_{1/\alpha}\Sigma^h D_\alpha \in S_1$ if and only if (3.10) holds. Finally, since h > 0, we have

$$\left| \begin{pmatrix} -h+n-k-1 \\ n-k \end{pmatrix} \right| \le \begin{pmatrix} h+n-k-1 \\ n-k \end{pmatrix} \quad \text{for } k=1,2,\dots,n-1, \tag{3.14}$$

and we conclude since (3.10) implies (3.12).

We deduce immediately the next result.

COROLLARY 3.4. Let h be an integer greater than or equal to 1. The following properties are equivalent:

- (i) $\alpha \in \widehat{C_1}$;
- (ii) $s_{\alpha}(\Delta) = s_{\alpha}$;
- (iii) $s_{\alpha}(\Delta^h) = s_{\alpha}$;
- (iv) $C(\alpha)(\Sigma^{h-1}\alpha) \in l_{\infty}$.

PROOF. From the proof of Proposition 3.3, $s_{\alpha}(\Delta^h) = s_{\alpha}$ is equivalent to $D_{1/\alpha}\Sigma^h D_{\alpha} = C(\alpha)\Sigma^{h-1}D_{\alpha} \in S_1$, that is, $C(\alpha)(\Sigma^{h-1}\alpha) \in l_{\infty}$. So, (iii) and (iv) are equivalent. It remains to prove that (ii) \Leftrightarrow (iii). If $s_{\alpha}(\Delta) = s_{\alpha}$, Δ and consequently Δ^h are bijective from s_{α} into itself and condition (iii) holds. Conversely, assume that $s_{\alpha}(\Delta^h) = s_{\alpha}$ holds. Then (3.10) holds, and since

$$\binom{h+n-k-1}{n-k} \ge 1$$
 for $k = 1, 2, ..., n-1$, (3.15)

we deduce that

$$[C(\alpha)\alpha]_n \le \gamma_n(h) = O(1), \quad n \longrightarrow \infty.$$
 (3.16)

So, (i) holds and (ii) is satisfied.

- **4. Generalization of well-known sets.** In this section, we see that under some conditions, the spaces $\widetilde{w_{\alpha}}(\lambda)$, $\widetilde{w_{\alpha}^{*}}(\lambda)$, $\widetilde{w_{\alpha}^{*}}(\lambda)$, $\widetilde{c_{\alpha}}(\lambda,\mu)$, $\widetilde{c_{\alpha}^{*}}(\lambda,\mu)$, and $\widetilde{c_{\alpha}^{*}}(\lambda,\mu)$ can be written by means of the sets s_{ξ} or s_{ξ}^{*} .
- **4.1. Sets** $\widetilde{w_{\alpha}}(\lambda)$, $\widetilde{w_{\alpha}}(\lambda)$, and $\widetilde{w_{\alpha}}(\lambda)$. We recall some definitions and properties of some spaces. For every sequence $X = (x_n)_n$, we define $|X| = (|x_n|)_n$ and

$$\widetilde{w_{\alpha}}(\lambda) = \{ X \in s \mid C(\lambda)(|X|) \in s_{\alpha} \},
\widetilde{w_{\alpha}^{\circ}}(\lambda) = \{ X \in s \mid C(\lambda)(|X|) \in s_{\alpha}^{\circ} \},
\widetilde{w_{\alpha}^{*}}(\lambda) = \{ X \in s \mid X - le^{t} \in \widetilde{w_{\alpha}^{\circ}}(\lambda) \text{ for some } l \in C \}.$$
(4.1)

For instance, we see that

$$\widetilde{w_{\alpha}}(\lambda) = \left\{ X = (x_n)_n \in s \mid \sup_{n \ge 1} \left(\frac{1}{|\lambda_n| \alpha_n} \sum_{k=1}^n |x_k| \right) < \infty \right\}. \tag{4.2}$$

If there exist A, B > 0 such that $A < \alpha_n < B$ for all n, we get the wellknown spaces $\widetilde{w_{\alpha}}(\lambda) = w_{\infty}(\lambda)$, $\widetilde{w_{\alpha}^{\circ}}(\lambda) = w_{0}(\lambda)$, and $\widetilde{w_{\alpha}^{*}}(\lambda) = w(\lambda)$ (see [12]). It has been proved that if λ is a strictly increasing sequence of reals tending to infinity, $w_0(\lambda)$ and $w_{\infty}(\lambda)$ are BK spaces and $w_0(\lambda)$ has AK, with respect to the norm

$$||X|| = ||C(\lambda)(|X|)||_{l^{\infty}} = \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n} |x_{k}|\right)$$
 (4.3)

(see [1]).

We have the next result.

THEOREM 4.1. Let α and λ be any sequences of U^{+*} .

- (i) Consider the following properties:

 - (a) $\alpha_{n-1}\lambda_{n-1}/\alpha_n\lambda_n \to 0$; (b) $s_{\alpha}^{(c)}(C(\lambda)) = s_{\alpha\lambda}^{(c)}$;
 - (c) $\alpha\lambda \in \widehat{C}_1$:
 - (d) $\widetilde{w_{\alpha}}(\lambda) = s_{\alpha\lambda}$;
 - (e) $\widetilde{w_{\alpha}^{\circ}}(\lambda) = s_{\alpha\lambda}^{\circ}$;
 - (f) $\widetilde{w_{\alpha}^*}(\lambda) = s_{\alpha\lambda}^{\circ}$.

Then $(a)\Rightarrow(b)$, $(c)\Leftrightarrow(d)$, and $(c)\Rightarrow(e)$ and (f).

(ii) If $\alpha\lambda \in \widehat{C}_1$, $\widetilde{w_{\alpha}}(\lambda)$, $\widetilde{w_{\alpha}^{\circ}}(\lambda)$, and $\widetilde{w_{\alpha}^{*}}(\lambda)$ are BK spaces with respect to the norm

$$||X||_{s_{\alpha\lambda}} = \sup_{n \ge 1} \left(\frac{|x_n|}{\alpha_n \lambda_n} \right), \tag{4.4}$$

and $\widetilde{w_{\alpha}^{\circ}}(\lambda) = \widetilde{w_{\alpha}^{*}}(\lambda)$ has AK.

PROOF. (i) First, we prove that (a) \Rightarrow (b). We have

$$s_{\alpha}^{(c)}(C(\lambda)) = \Delta(\lambda)s_{\alpha}^{(c)} = \Delta D_{\lambda}s_{\alpha}^{(c)} = \Delta s_{\alpha\lambda}^{(c)}, \tag{4.5}$$

and from Proposition 2.1(i) and Theorem 2.6(iii), we get successively $\alpha\lambda \in \hat{C}$, $\Delta s_{\alpha\lambda}^{(c)} = s_{\alpha\lambda}^{(c)}$, and (b) holds.

 $(c) \Leftrightarrow (d)$. Assume that (c) holds. Then

$$\widetilde{w_{\alpha}}(\lambda) = \{ X \mid |X| \in \Delta(\lambda) s_{\alpha} \}. \tag{4.6}$$

Since $\Delta(\lambda) = \Delta D_{\lambda}$, we get $\Delta(\lambda)s_{\alpha} = \Delta s_{\alpha\lambda}$. Now, using (c), we see that Δ is bijective from $s_{\alpha\lambda}$ into itself and $w_{\alpha}(\lambda) = s_{\alpha\lambda}$. Conversely, assume that $w_{\alpha}(\lambda) = s_{\alpha\lambda}$. Then $\alpha\lambda \in s_{\alpha\lambda}$ implies that $C(\lambda)(\alpha\lambda) \in s_{\alpha}$, and since $D_{1/\alpha}C(\lambda)(\alpha\lambda) \in s_1 = l_{\infty}$, we conclude that $C(\alpha\lambda)(\alpha\lambda) \in l_{\infty}$. The proof of (c) \Rightarrow (e) follows on the same lines of the proof of (c) \Rightarrow (d) replacing $s_{\alpha\lambda}$ by $s_{\alpha\lambda}^{\circ}$.

We prove that (c) implies (f). Take $X \in \widetilde{w_{\alpha}^*}(\lambda)$. There is a complex number l such that

$$C(\lambda)(|X - le^t|) \in s_{\alpha}^{\circ}. \tag{4.7}$$

So

$$|X - le^t| \in \Delta(\lambda) s_{\alpha}^{\circ} = \Delta s_{\alpha\lambda}^{\circ}, \tag{4.8}$$

and from Theorem 2.6(ii), $\Delta s_{\alpha\lambda}^{\circ} = s_{\alpha\lambda}^{\circ}$. Now, since (c) holds, we deduce from Proposition 2.1(iii) that $\alpha_n \lambda_n \to \infty$ and $le^t \in s_{\alpha\lambda}^{\circ}$. We conclude that $X \in \widetilde{w_{\alpha}^*}(\lambda)$ if and only if $X \in le^t + s_{\alpha\lambda}^{\circ} = s_{\alpha\lambda}^{\circ}$.

Assertion (ii) is a direct consequence of (i).

4.2. Sets $\widetilde{c_{\alpha}}(\lambda,\mu)$, $\widetilde{c_{\alpha}}(\lambda,\mu)$, and $\widetilde{c_{\alpha}}(\lambda,\mu)$. Let $\alpha = (\alpha_n)_n \in U^{+*}$ be a given sequence, we consider now for $\lambda \in U$, $\mu \in s$ the space

$$\widetilde{c_{\alpha}}(\lambda,\mu) = (w_{\alpha}(\lambda))_{\Delta(\mu)} = \{ X \in s \mid \Delta(\mu)X \in w_{\alpha}(\lambda) \}. \tag{4.9}$$

It is easy to see that

$$\widetilde{c_{\alpha}}(\lambda, \mu) = \{ X \in \mathcal{S} \mid C(\lambda) (|\Delta(\mu)X|) \in \mathcal{S}_{\alpha} \}, \tag{4.10}$$

that is,

$$\widetilde{c_{\alpha}}(\lambda,\mu) = \left\{ X = (x_n)_n \in s \mid \sup_{n \ge 2} \left(\frac{1}{|\lambda_n| \alpha_n} \sum_{k=2}^n |\mu_k x_k - \mu_{k-1} x_{k-1}| \right) < \infty \right\}, \tag{4.11}$$

see [1]. Similarly, we define the following sets:

$$\widetilde{c_{\alpha}^{\circ}}(\lambda,\mu) = \{ X \in s \mid C(\lambda) (|\Delta(\mu)X|) \in s_{\alpha}^{\circ} \},
\widetilde{c_{\alpha}^{\circ}}(\lambda,\mu) = \{ X \in s \mid X - le^{t} \in \widetilde{c_{\alpha}^{\circ}}(\lambda,\mu) \text{ for some } l \in C \}.$$
(4.12)

Recall that if $\lambda = \mu$, it is written that $c_0(\lambda) = (w_0(\lambda))_{\Delta(\lambda)}$,

$$c(\lambda) = \{ X \in s \mid X - le^t \in c_0(\lambda) \text{ for some } l \in C \}, \tag{4.13}$$

and $c_{\infty}(\lambda) = (w_{\infty}(\lambda))_{\Delta(\lambda)}$, see [11]. It can be easily seen that

$$c_0(\lambda) = \widetilde{c_e}(\lambda, \lambda), \qquad c_{\infty}(\lambda) = \widetilde{c_e}(\lambda, \lambda), \qquad c(\lambda) = \widetilde{c_e}(\lambda, \lambda).$$
 (4.14)

These sets of sequences are called strongly convergent to 0, strongly convergent, and strongly bounded. If $\lambda \in U^{+*}$ is a sequence strictly increasing to infinity, $c(\lambda)$ is a Banach space with respect to

$$||X||_{c_{\infty}(\lambda)} = \sup_{n \ge 1} \left(\frac{1}{\lambda_n} \sum_{k=1}^n |\lambda_k x_k - \lambda_{k-1} x_{k-1}| \right)$$
(4.15)

with the convention $x_0 = 0$. Each of the spaces $c_0(\lambda)$, $c(\lambda)$, and $c_\infty(\lambda)$ is a BK space, relatively to the previous norm (see [1]). The set $c_0(\lambda)$ has AK and every $X \in c(\lambda)$ has a unique representation given by

$$X = le^{t} + \sum_{k=1}^{\infty} (x_{k} - l)e_{k}^{t}, \tag{4.16}$$

where $X - le^t \in c_0$. The scalar l is called the strong $c(\lambda)$ -limit of the sequence X.

We obtain the next result.

THEOREM 4.2. Let α , λ , and μ be sequences of U^{+*} .

- (i) Consider the following properties:
 - (a) $\alpha\lambda \in \widehat{C}_1$:
 - (b) $\widetilde{c_{\alpha}}(\lambda,\mu) = s_{\alpha(\lambda/\mu)};$
 - (c) $\widetilde{c_{\alpha}^{\circ}}(\lambda,\mu) = s_{\alpha(\lambda/\mu)}^{\circ}$;
 - (d) $\widetilde{c_{\alpha}^*}(\lambda,\mu) = \{X \in s \mid X le^t \in s_{\alpha(\lambda/\mu)}^{\circ} \text{ for some } l \in C\}.$

Then $(a) \Leftrightarrow (b)$ and $(a) \Rightarrow (c)$ and (d).

(ii) If $\alpha\lambda \in \widehat{C_1}$, then $\widetilde{c_{\alpha}}(\lambda,\mu)$, $\widetilde{c_{\alpha}^{\circ}}(\lambda,\mu)$, and $\widetilde{c_{\alpha}^{*}}(\lambda,\mu)$ are BK spaces with respect to the norm

$$||X||_{\mathcal{S}_{\alpha(\lambda/\mu)}} = \sup_{n \ge 1} \left(\mu_n \frac{|x_n|}{\alpha_n \lambda_n} \right). \tag{4.17}$$

The set $\widetilde{c_{\alpha}^{\circ}}(\lambda,\mu)$ has AK and every $X \in \widetilde{c_{\alpha}^{*}}(\lambda,\mu)$ has a unique representation given by (4.16), where $X - le^t \in s_{\alpha(\lambda/\mu)}^{\circ}$.

PROOF. We show that (a) \Rightarrow (b). Take $X \in c_{\alpha}(\lambda, \mu)$. We have $\Delta(\mu)X \in w_{\alpha}(\lambda)$, which is equivalent to

$$X \in C(\mu) s_{\alpha\lambda} = D_{1/\mu} \Sigma s_{\alpha\lambda}, \tag{4.18}$$

and using Theorem 2.6(i), Δ and consequently Σ are bijective from $s_{\alpha\lambda}$ into itself. So, $\Sigma s_{\alpha\lambda} = s_{\alpha\lambda}$ and $X \in D_{1/\mu}\Sigma s_{\alpha\lambda} = s_{\alpha(\lambda/\mu)}$. We conclude that (b) holds. We prove that (b) implies (a). First, put $\widetilde{\alpha}_{\lambda,\mu} = ((-1)^n (\lambda_n/\mu_n)\alpha_n)_{n\geq 1}$. We have

 $\widetilde{\alpha}_{\lambda,\mu} \in s_{\alpha(\lambda/\mu)} = \widetilde{c_{\alpha}}(\lambda,\mu) = s_{\alpha(\lambda/\mu)}$, and since $\Delta(\mu) = \Delta D_{\mu}$ and $D_{\mu}\widetilde{\alpha}_{\lambda,\mu} = ((-1)^n \lambda_n \alpha_n)_{n\geq 1}$, we get $|\Delta(\mu)\widetilde{\alpha}_{\lambda,\mu}| = (\xi_n)_{n\geq 1}$, with

$$\xi_n = \begin{cases} \lambda_1 \alpha_1 & \text{if } n = 1, \\ \lambda_{n-1} \alpha_{n-1} + \lambda_n \alpha_n & \text{if } n \ge 2. \end{cases}$$
 (4.19)

From (b), we deduce that $\Sigma |\Delta(\mu) \widetilde{\alpha}_{\lambda,\mu}| \in s_{\alpha\lambda}$. This means that

$$C'_{n} = \frac{1}{\alpha_{n}\lambda_{n}} \left(\lambda_{1}\alpha_{1} + \sum_{k=2}^{n} \left(\lambda_{k-1}\alpha_{k-1} + \lambda_{k}\alpha_{k} \right) \right) = O(1), \quad n \longrightarrow \infty.$$
 (4.20)

From the inequality

$$[C(\alpha\lambda)(\alpha\lambda)]_n \le C'_n, \tag{4.21}$$

we obtain (a). The proof of (a) \Rightarrow (c) follows on the same lines of the proof of (a) \Rightarrow (b) with s_{α} replaced by s_{α}° .

We show that (a) implies (d). Take $X \in \widetilde{C_{\alpha}^*}(\lambda, \mu)$. There exists $l \in C$ such that

$$\Delta(\mu)(X - le^t) \in \widetilde{w}_{\alpha}^{\circ}(\lambda), \tag{4.22}$$

and from (c) \Rightarrow (e) in Theorem 4.1, we have $\widetilde{w_{\alpha}^{\circ}}(\lambda) = s_{\alpha\lambda}^{\circ}$. So

$$X - le^t \in C(\mu) s_{\alpha\lambda}^{\circ} = D_{1/\mu} \Sigma s_{\alpha\lambda}^{\circ}, \tag{4.23}$$

and from Theorem 2.6(ii), $\Sigma s_{\alpha\lambda}^{\circ} = s_{\alpha\lambda}^{\circ}$, and $D_{1/\mu}\Sigma s_{\alpha\lambda}^{\circ} = s_{\alpha(\lambda/\mu)}^{\circ}$, we conclude that $X \in \widetilde{c_{\alpha}^{*}}(\lambda,\mu)$ if and only if $X \in le^{t} + s_{\alpha(\lambda/\mu)}^{\circ}$ for some $l \in C$.

Assertion (ii) is a direct consequence of (i) and of the fact that for every $X \in \widetilde{c_{\alpha}^*}(\lambda)$, we have

$$\left\| X - le^t - \sum_{k=1}^N (x_k - l)e_k^t \right\|_{\mathcal{S}_{\alpha(\lambda/\mu)}} = \sup_{n \ge N+1} \left(\mu_n \frac{|x_n - l|}{\alpha_n \lambda_n} \right) = o(1), \quad N \longrightarrow \infty.$$

$$(4.24)$$

We deduce immediately the following corollary.

COROLLARY 4.3. Assume that α , λ , $\mu \in U^{+*}$.

(i) If $\alpha\lambda \in \widehat{C}_1$ and $\mu \in l_{\infty}$, then

$$\widetilde{c_{\alpha}^{*}}(\lambda,\mu) = s_{\alpha(\lambda/\mu)}^{\circ}. \tag{4.25}$$

(ii) Then

$$\lambda \in \Gamma \Longrightarrow \lambda \in \widehat{C}_1 \Longrightarrow c_0(\lambda) = s_{\lambda}^{\circ}, \qquad c_{\infty}(\lambda) = s_{\lambda}.$$
 (4.26)

PROOF. (i) Since $\mu \in l_{\infty}$, we deduce, using Proposition 2.1(iii), that there are K > 0 and $\gamma > 1$ such that

$$\frac{\alpha_n \lambda_n}{\mu_n} \ge K \gamma^n \quad \forall n. \tag{4.27}$$

So, $le^t \in s^{\circ}_{\alpha(\lambda/\mu)}$ and (4.25) holds. (ii) comes from Theorem 4.2 since $\Gamma \subset \widehat{C}_1$.

EXAMPLE 4.4. We denote by \tilde{e} the base of the natural system of logarithms. From the well-known Stirling formula, we have

$$\frac{n^{n+1/2}}{n!} \sim \tilde{e}^n \frac{1}{\sqrt{2\pi}},\tag{4.28}$$

so $s_{(n^{n+(1/2)}/n!)_n} = s_{\widetilde{e}}$. Further, $\lambda = (n^n/n!)_n \in \Gamma$ since

$$\frac{\lambda_{n-1}}{\lambda_n} = \widetilde{e}^{-(n-1)\ln(1+1/(n-1))} \longrightarrow \frac{1}{\widetilde{e}} < 1. \tag{4.29}$$

We conclude that

$$\widetilde{C_e^{\circ}}\left(\left(\frac{n^n}{n!}\right)_n, \left(\frac{1}{\sqrt{n}}\right)_n\right) = s_{\widetilde{e}}^{\circ}, \qquad \widetilde{C_e}\left(\left(\frac{n^n}{n!}\right)_n, \left(\frac{1}{\sqrt{n}}\right)_n\right) = s_{\widetilde{e}}. \tag{4.30}$$

REFERENCES

- [1] A. M. Al-Jarrah and E. Malkowsky, *BK spaces, bases and linear operators*, Rend. Circ. Mat. Palermo (2) Suppl. (1998), no. 52, 177–191.
- [2] B. de Malafosse, *Some properties of the Cesàro operator in the space* s_r , Comm. Fac. Sci. Univ. Ankara Ser. A₁ Math. Statist. **48** (1999), no. 1-2, 53–71.
- [3] ______, Bases in sequence spaces and expansion of a function in a series of power series, Mat. Vesnik **52** (2000), no. 3-4, 99-112.
- [4] ______, Application of the sum of operators in the commutative case to the infinite matrix theory, Soochow J. Math. 27 (2001), no. 4, 405-421.
- [5] ______, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), no. 2, 283–299.
- [6] _____, Recent results in the infinite matrix theory, and application to Hill equation, Demonstratio Math. 35 (2002), no. 1, 11-26.
- [7] ______, Variation of an element in the matrix of the first difference operator and matrix transformations, Novi Sad J. Math. 32 (2002), no. 1, 141-158.
- [8] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 2, 277–294.
- [9] R. Labbas and B. de Malafosse, *On some Banach algebra of infinite matrices and applications*, Demonstratio Math. **31** (1998), no. 1, 153–168.

- [10] I. J. Maddox, *Infinite Matrices of Operators*, Lecture Notes in Mathematics, vol. 786, Springer-Verlag, Berlin, 1980.
- [11] F. Móricz, On Λ -strong convergence of numerical sequences and Fourier series, Acta Math. Hungar. 54 (1989), no. 3-4, 319-327.
- [12] A. Wilansky, *Summability Through Functional Analysis*, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing, Amsterdam, 1984.
- [13] K. Zeller and W. Beekmann, *Theorie der Limitierungsverfahren*, Zweite, erweiterte und verbesserte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 15, Springer-Verlag, Berlin, 1970 (German).

Bruno de Malafosse: Laboratoire de Mathematiques Appliquées Havrais, Institut Universitaire de Technologie Le Havre, Université du Havre, BP 4006, 76610 Le Havre, France *E-mail address*: bdemalaf@europost.org