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We characterize the spaces sα(∆), s◦α(∆), and s(c)α (∆) and we deal with some sets
generalizing the well-known sets w0(λ), w∞(λ), w(λ), c0(λ), c∞(λ), and c(λ).
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1. Notations and preliminary results. For a given infinite matrix A =
(anm)n,m≥1, the operators An, for any integer n≥ 1, are defined by

An(X)=
∞∑
m=1

anmxm, (1.1)

where X = (xn)n≥1 is the series intervening in the second member being con-

vergent. So, we are led to the study of the infinite linear system

An(X)= bn, n= 1,2, . . . , (1.2)

where B=(bn)n≥1 is a one-column matrix andX the unknown, see [2, 3, 5, 6, 7, 9].

Equation (1.2) can be written in the form AX = B, where AX = (An(X))n≥1. In

this paper, we will also consider A as an operator from a sequence space into

another sequence space.

A Banach space E of complex sequences with the norm ‖‖E is a BK space if

each projection Pn : X → PnX is continuous. A BK space E is said to have AK

(see [8]) if for every B = (bn)n≥1, B =∑∞
n=1bmem, that is,

∥∥∥∥∥∥
∞∑

m=N+1

bmem

∥∥∥∥∥∥
E

�→ 0 (n �→∞). (1.3)

We shall write s, c, c0, and l∞ for the sets of all complex, convergent sequences,

sequences convergent to zero, and bounded sequences, respectively. We shall

write cs and l1 for the sets of convergent and absolutely convergent series,

respectively. We will use the set

U+∗ = {(un)n≥1 ∈ s |un > 0 ∀n}. (1.4)
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Using Wilansky’s notations [12], we define, for any sequence α = (αn)n≥1 ∈
U+∗ and for any set of sequences E, the set

α∗E =
{
(xn)n≥1 ∈ s |

(
xn
αn

)
n
∈ E

}
. (1.5)

Writing

α∗E =


s◦α if E = c0,

s(c)α if E = c,
sα if E = l∞,

(1.6)

we have for instance

α∗c0 = s◦α =
{(
xn
)
n≥1 ∈ s | xn = o

(
αn
)
n �→∞}. (1.7)

Each of the spaces α∗E, where E ∈ {c0,c,l∞}, is a BK space normed by

‖X‖sα = sup
n≥1

(∣∣xn∣∣
αn

)
, (1.8)

and s◦α has AK.

Now, let α= (αn)n≥1 and β= (βn)n≥1 ∈U+∗. We shall write Sα,β for the set

of infinite matrices A= (anm)n,m≥1 such that

(
anmαm

)
m≥1 ∈ l1 ∀n≥ 1,

∞∑
m=1

∣∣anm∣∣αm =O(βn) (n �→∞). (1.9)

The set Sα,β is a Banach space with the norm

‖A‖Sα,β = sup
n≥1

 ∞∑
m=1

∣∣anm∣∣αmβn
. (1.10)

Let E and F be any subsets of s. When A maps E into F , we write A ∈ (E,F),
see [10]. So, for every X ∈ E, AX ∈ F (AX ∈ F will mean that for each n ≥ 1,

the series defined by yn =
∑∞
m=1anmxm is convergent and (yn)n≥1 ∈ F ). It has

been proved in [8] that A ∈ (sα,sβ) if and only if A ∈ Sα,β. So, we can write

(sα,sβ)= Sα,β.

When sα = sβ, we obtain the unital Banach algebra Sα,β = Sα, (see [2, 3, 9])

normed by ‖A‖Sα = ‖A‖Sα,α .

We also have A ∈ (sα,sα) if and only if A ∈ Sα. If ‖I−A‖Sα < 1, we say that

A ∈ Γα. The set Sα being a unital algebra, we have the useful result: if A ∈ Γα,

A is bijective from sα into itself.
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If α= (rn)n≥1, then Γα, Sα, sα, s◦α, and s(c)α are replaced by Γr , Sr , sr , s◦r , and

s(c)r , respectively, (see [2, 3, 5, 6, 7, 8, 9]). When r = 1, we obtain s1 = l∞, s◦1 = c0,

and s(c)1 = c, and putting e = (1,1, . . .), we have S1 = Se. It is well known, see

[10], that

(
s1,s1

)= (c0,s1
)= (c,s1

)= S1. (1.11)

We write en = (0, . . . ,1, . . .) (where 1 is in the nth position).

For any subset E of s, we put

AE = {Y ∈ s | ∃X ∈ E Y =AX}. (1.12)

If F is a subset of s, we denote

F(A)= FA = {X ∈ s | Y =AX ∈ F}. (1.13)

We can see that F(A)=A−1F .

2. Sets sα(∆), s◦α(∆), and s(c)α (∆). In this section, we will give necessary and

sufficient conditions permitting us to write the sets sα(∆), s◦α(∆), and s(c)α (∆)
by means of the spaces sξ , s◦ξ , or s(c)ξ . For this, we need to study the sequence

C(α)α.

2.1. Properties of the sequence C(α)α. Here, we will deal with the opera-

tors represented by C(λ) and ∆(λ), see [2, 5, 7, 8, 9].

Let

U = {(un)n≥1 ∈ s |un ≠ 0 ∀n}. (2.1)

We define C(λ)= (cnm)n,m≥1, for λ= (λn)n≥1 ∈U , by

cnm =


1
λn

if m≤n,
0 otherwise.

(2.2)

It can be proved that the matrix ∆(λ)= (c′nm)n,m≥1, with

c′nm =


λn if m=n,
−λn−1 if m=n−1, n≥ 2,

0 otherwise,

(2.3)

is the inverse of C(λ), see [8]. If λ= e, we get the well-known operator of first

difference represented by ∆(e)=∆ and it is usually written Σ= C(e). Note that

∆= Σ−1, and ∆ and Σ belong to any given space SR with R > 1.
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We use the following sets:

Ĉ =
α∈U+∗ | C(α)α=

 1
αn

 n∑
k=1

αk


n≥1

∈ c
,

Ĉ1 =
{
α∈U+∗ | C(α)α∈ s1 = l∞

}
,

Γ =
α∈U+∗ | lim

n→∞

(
αn−1

αn

)
< 1

.
(2.4)

Note that ∆ ∈ Γα implies α ∈ Γ . It can be easily seen that α ∈ Γ if and only if

there is an integer q ≥ 1 such that

γq(α)= sup
n≥q+1

(
αn−1

αn

)
< 1. (2.5)

See [7].

In order to express the following results, we will denote by [C(α)α]n (in-

stead of [C(α)]n(α)) thenth coordinate of C(α)α. We get the following propo-

sition.

Proposition 2.1. Let α∈U+∗. Then

(i) αn−1/αn→ 0 if and only if [C(α)α]n→ 1;

(ii) (a) α∈ Ĉ implies that (αn−1/αn)n≥1 ∈ c,

(b) [C(α)α]n→ l implies that αn−1/αn→ 1−1/l;
(iii) if α∈ Ĉ1, there are K > 0 and γ > 1 such that

αn ≥Kγn ∀n; (2.6)

(iv) the condition α∈ Γ implies that α∈ Ĉ1 and there exists a real b > 0 such

that

[
C(α)α

]
n ≤

1
1−χ +bχ

n for n≥ q+1, χ = γq(α)∈ ]0,1[. (2.7)

Proof. (i) Assume that αn−1/αn→ 0. Then there is an integer N such that

n≥N+1 �⇒ αn−1

αn
≤ 1

2
. (2.8)

So, there exists a real K > 0 such that αn ≥K2n for all n and

αk
αn

= αk
αk+1

··· αn−1

αn
≤
(

1
2

)n−k
for N ≤ k≤n−1. (2.9)
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Then

1
αn

n−1∑
k=1

αk

= 1
αn

N−1∑
k=1

αk

+n−1∑
k=N

αk
αn

≤ 1
K2n

N−1∑
k=1

αk

+n−1∑
k=N

(
1
2

)n−k
;

(2.10)

and since

n−1∑
k=N

(
1
2

)n−k
= 1−

(
1
2

)n−N
�→ 1 (n �→∞), (2.11)

we deduce that

1
αn

n−1∑
k=1

αk

=O(1), ([
C(α)α

]
n
)∈ l∞. (2.12)

Using the identity

[
C(α)α

]
n =

α1+···+αn−1

αn−1

αn−1

αn
+1

= [C(α)α]n−1

(
αn−1

αn

)
+1,

(2.13)

we get [C(α)α]n→ 1. This proves the necessity.

Conversely, if [C(α)α]n→ 1, then

αn−1

αn
=
[
C(α)α

]
n−1[

C(α)α
]
n−1

�→ 0. (2.14)

Assertion (ii) is a direct consequence of identity (2.14).

(iii) We put Σn =
∑n
k=1αk. Then for a real M > 1,

[
C(α)α

]
n =

Σn
Σn−Σn−1

≤M ∀n. (2.15)

So, Σn ≥ (M/(M−1))Σn−1 and Σn ≥ (M/(M−1))n−1α1 for all n. Therefore,

from

α1

αn

(
M

M−1

)n−1

≤ [C(α)α]n = Σn
αn

≤M, (2.16)

we conclude that αn ≥Kγn for all n, with K = (M−1)α1/M2 and γ =M/(M−
1) > 1.



1788 BRUNO DE MALAFOSSE

(iv) If α∈ Γ , then there is an integer q ≥ 1 for which

k≥ q+1 �⇒ αk−1

αk
≤ χ < 1 with χ = γq(α). (2.17)

So, there is a real M′ > 0 for which

αn ≥ M
′

χn
∀n≥ q+1. (2.18)

Writing σnq = 1/αn(
∑q
k=1αk) and dn = [C(α)α]n−σnq, we get

dn = 1
αn

 n∑
k=q+1

αk

= 1+
n−1∑
j=q+1

n−j∏
k=1

αn−k
αn−k+1


≤

n∑
j=q+1

χn−j ≤ 1
1−χ .

(2.19)

And using (2.18), we get

σnq ≤ 1
M′χ

n

 q∑
k=1

αk

. (2.20)

So

[
C(α)α

]
n ≤ a+bχn (2.21)

with a= 1/(1−χ) and b = (1/M′)(
∑q
k=1αk).

Remark 2.2. Note that α∈ Ĉ1 does not imply that α∈ Γ .
2.2. New properties of the operator represented by ∆. Throughout this

paper, we will denote by Dξ the infinite diagonal matrix (ξnδnm)n,m≥1 for any

given sequence ξ = (ξn)n≥1. Now, we require some lemmas.

Lemma 2.3. The condition ∆ ∈ (s◦α,s◦α) is equivalent to ∆α = D1/α∆Dα ∈
(c0,c0) and ∆∈ (s(c)α ,s(c)α ) implies ∆α =D1/α∆Dα ∈ (c,c).

Proof. First, Dα is bijective from c0 into s◦α. In fact, the equation DαX = B,

for every B = (bn)n ∈ s◦α, admits a unique solution X =D1/αB = (bn/αn)n ∈ c0.

Suppose now that ∆∈ (s◦α,s◦α). Then for every X ∈ c0, we get successively X′ =
DαX ∈ s◦α, ∆X′ ∈ s◦α, and ∆α = D1/α∆Dα ∈ (c0,c0). Conversely, assume that

∆α ∈ (c0,c0) and let X ∈ s◦α. Then X =DαX′ with X′ ∈ c0. So, ∆X ∈Dαc0 = s◦α
and ∆ ∈ (s◦α,s◦α). By a similar reasoning, we get ∆ ∈ (s(c)α ,s(c)α ) ⇒ ∆α ∈ (c,c).

We need to recall here the following well-known results given in [12].
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Lemma 2.4. The conditionA∈ (c,c) is equivalent to the following conditions:

(i) A∈ S1;

(ii) (anm)n≥1 ∈ c for each m≥ 1;

(iii) (
∑∞
m=1anm)n≥1 ∈ c.

If for any given sequence X = (xn)n ∈ c, with limnxn = l, An(X) is conver-

gent for all n and limnAn(X)= l, it is written that

limX =A− limX, (2.22)

and A is called a Toeplitz matrix. We also have the next result.

Lemma 2.5. The operator A∈ (c,c) is a Toeplitz matrix if and only if

(i) A∈ S1;

(ii) limnanm = 0 for each m≥ 1;

(iii) limn(
∑∞
m=1anm)= 1.

Now, we can assert the following theorem.

Theorem 2.6. We have successively

(i) sα(∆)= sα if and only if α∈ Ĉ1;

(ii) s◦α(∆)= s◦α if and only if α∈ Ĉ1;

(iii) s(c)α (∆)= s(c)α if and only if α∈ Ĉ ;

(iv) ∆α =D1/α∆Dα is bijective from c into itself with limX =∆α−limX if and

only if

αn−1

αn
�→ 0. (2.23)

Proof. (i) We have sα(∆)= sα if and only if ∆, Σ∈ (sα,sα). This means that

∆, Σ∈ Sα, that is,

‖∆‖Sα = sup
n≥1

(
1+ αn−1

αn

)
<∞, ‖Σ‖Sα = sup

n≥1

[
C(α)α

]
n <∞. (2.24)

Since 0<αn−1/αn ≤ [C(α)α]n, we deduce that ∆, Σ∈ Sα if and only if ‖Σ‖Sα <
∞, that is, α∈ Ĉ1.

(ii) From Lemma 2.3, if s◦α(∆) = s◦α, then ∆α = D1/α∆Dα ∈ (c0,c0). So, ∆α ∈
(c0, l∞)= S1 and since ∆α = (dnm)n,m≥1 with

dnm =


1 if m=n,
−αn−1

αn
if m=n−1,

0 otherwise,

(2.25)
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we deduce that αn−1/αn = O(1), n → ∞. Further, s◦α(∆) = s◦α implies Σα =
D1/αΣDα ∈ (c0,c0) and Σα ∈ (c0, l∞)= S1. Since Σα = (σnm)n,m≥1 with

σnm =

αm
αn

if m≤n,
0 if m>n,

(2.26)

we deduce that

sup
n≥1

 1
αn

 n∑
k=1

αk

<∞, (2.27)

that is,α∈ Ĉ1. Conversely, assume thatα∈ Ĉ1. First,∆∈ (s◦α,s◦α). Indeed, from

the inequality

αn−1

αn
≤ sup

n≥1

([
C(α)α

]
n
)
<∞, (2.28)

we deduce that for every X ∈ s◦α, xn/αn = o(1),

xn−xn−1

αn
= xn
αn

− xn−1

αn−1

αn−1

αn
= o(1) (2.29)

and∆X ∈ s◦α. Further, take B = (bn)n≥1 ∈ s◦α. Then there exists ν = (νn)n≥1 ∈ c0

such that bn =αnνn. We must prove that the equation ∆X = B admits a unique

solution in the space s◦α. First, we obtain

X = ΣB =
 n∑
k=1

αkνk


n≥1

. (2.30)

In order to show that X = (xn)n≥1 ∈ s◦α, we will consider any given ε > 0. From

Proposition 2.1(iii), the condition α∈ Ĉ1 implies that αn →∞. So, there exists

an integer N such that

Sn = 1
αn

∣∣∣∣∣∣
N∑
k=1

αkνk

∣∣∣∣∣∣≤ ε2 for n≥N,

sup
n≥N+1

(∣∣νk∣∣)≤ ε
2supn≥1

([
C(α)α

]
n
) .

(2.31)

Writing Rn = 1/αn|
∑n
k=N+1αkνk|, we conclude that

Rn ≤
(

sup
N+1≤k≤n

(∣∣νk∣∣)
)[
C(α)α

]
n ≤

ε
2
. (2.32)
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Finally, we obtain

∣∣xn∣∣
αn

=
∣∣∣∣∣∣ 1
αn

 N∑
k=1

αkνk

+ 1
αn

 n∑
k=N+1

αkνk

∣∣∣∣∣∣
≤ Sn+Rn ≤ ε for n≥N,

(2.33)

and X ∈ s0
α.

(iii) As above, s(c)α (∆)= s(c)α if and only if∆α,Σα ∈ (c,c); and from Lemma 2.4,

we have ∆α ∈ (c,c) if and only if (αn−1/αn)n ∈ c. In fact, we have ∆α ∈ S1 and∑n
m=1dnm = 1+αn−1/αn tends to a limit as n→∞. Afterwards, Σα ∈ (c,c) is

equivalent to

(a) Σα ∈ S1, that is, α∈ Ĉ1;

(b) limn(αm/αn)= 0 for all m≥ 1;

(c) α∈ Ĉ .

From Proposition 2.1(iii), (c) implies that αn tends to infinity, so (c) implies

(a) and (b). Finally, from Proposition 2.1(ii), we conclude that α ∈ Ĉ implies

(αn−1/αn)n ∈ c. This completes the proof of (iii).

(iv) From Lemma 2.5, it can be easily verified that ∆α ∈ (c,c) and limX =
∆α−limX if and only if αn−1/αn→ 0. We conclude, using (iii), since αn−1/αn =
o(1) implies that α∈ Ĉ .

Remark 2.7. In Theorem 2.6(iv), we see that Σα ∈ (c,c) and limX = Σα−
limX if and only if αn−1/αn→ 0. In fact, we must have for each m≥ 1, σnm =
αm/αn = o(1) (n→∞) and

lim
n

 n∑
m=1

σnm

= lim
n

1+
n−1∑
m=1

αm
αn

= 1, (2.34)

and from Proposition 2.1(i), the previous property is satisfied if and only if

αn−1/αn→ 0.

Remark 2.8. It can be seen that the condition (αn−1/αn)n ∈ c does not

imply that α∈ Ĉ1. It is enough to consider C(e)e= (n)n ∉ c0.

The next corollary is a direct consequence of the previous results.

Corollary 2.9. Consider the following properties:

(i) α∈ Ĉ ;

(ii) s(c)α (∆)= s(c)α ;

(iii) α∈ Γ ;
(iv) α∈ Ĉ1;

(v) sα(∆)= sα;

(vi) s◦α(∆)= s◦α.

Then (i)�(ii)⇒(iii)⇒(iv)�(v)�(vi).

We obtain from the precedent the following corollary.
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Corollary 2.10. (i) (sα−s◦α)(∆)= sα−s◦α if and only if α∈ Ĉ1,

(ii) (s(c)α −s◦α)(∆)= s(c)α −s◦α if and only if α∈ Ĉ ,

(iii) α∈ Ĉ implies (sα−s(c)α )(∆)= sα−s(c)α .

Proof. (i) If ∆ is bijective from sα−s◦α into itself, then for every B ∈ sα−s◦α,

we have X = ΣB ∈ sα−s◦α. Since α ∈ sα−s◦α, we conclude that Σα ∈ sα, that is,

C(α)α∈ l∞. Conversely, from Theorem 2.6(i) and (ii), it can be easily seen that

∆ is bijective from sα to sα and from s◦α to s◦α, since α ∈ Ĉ1. So, ∆ is bijective

from sα−s◦α to sα−s◦α.

(ii) Suppose that ∆ is bijective from s(c)α −s◦α into itself. Reasoning as above,

we have α∈ s(c)α −s◦α and Σα∈ s(c)α , so D1/αΣα= C(α)α∈ c. Conversely, using

Theorem 2.6(i) and (iii), we see that ∆ is bijective from s(c)α to s(c)α and from s◦α
to s◦α since α∈ Ĉ and Ĉ ⊂ Ĉ1. So, (s(c)α −s◦α)(∆)= s(c)α −s◦α.

Similarly, (iii) comes from the fact that ∆ is bijective from s(c)α into itself and

from sα into itself, since α∈ Ĉ .

Remark 2.11. Assume that limn→∞[C(α)α]n = l. Then

xn
αn

�→ L implies
xn−xn−1

αn
�→ L

l
. (2.35)

Indeed, from Proposition 2.1(ii) (b), αn−1/αn→ 1−(1/l) and

xn−xn−1

αn
= xn
αn

− xn−1

αn−1

αn−1

αn
�→ L−L

(
1− 1

l

)
= L
l
. (2.36)

3. Generalization to the sets sr (∆h) and sα(∆h) for h real. In this section,

we consider the operator ∆h, where h is a real, and give among other things a

necessary and sufficient condition to have sα(∆h)= sα.

First, recall that we can associate to any power series f(z)=∑∞
k=0akzk, de-

fined in the open disk |z|<R, the upper triangular infinite matrix A=ϕ(f)∈⋃
0<r<R Sr defined by

ϕ(f)=


a0 a1 a2 ·

a0 a1 ·
0 a0 ·

·

 (3.1)

(see [3, 4, 5]). Practically, we will write ϕ[f(z)] instead of ϕ(f). We have the

following lemma.

Lemma 3.1. (i) The mapϕ : f →A is an isomorphism from the algebra of the

power series defined in |z| < R into the algebra of the corresponding matrices

Ā.
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(ii) Let f(z) =∑∞
k=0akzk, with a0 ≠ 0, and assume that 1/f(z) =∑∞

k=0a
′
kzk

admits R′ > 0 as radius of convergence. Then

ϕ
(

1
f

)
= [ϕ(f)]−1 ∈

⋃
0<r<R′

Sr . (3.2)

Now, for h∈ R−N, we define (see [13])(
−h+k−1

k

)
= −h(−h+1)···(−h+k−1)

k!
if k > 0,

(
−h+k−1

k

)
= 1 if k= 0,

(3.3)

and putting ∆+ =∆t , we get for any h∈ R,

(
∆+
)h =ϕ[(1−z)h]=ϕ

 ∞∑
k=0

(
−h+k−1

k

)
zk
 for |z|< 1. (3.4)

Then if ∆h = (τnm)n,m,

τnm =


(
−h+n−m−1

n−m

)
if m≤n,

0 if m>n.
(3.5)

Using the isomorphism ϕ, we get the following proposition.

Proposition 3.2 (see [5]). (i) The operator represented by∆ is bijective from

sr into itself for every r > 1, and ∆+ is bijective from sr into itself for all r ,

0< r < 1.

(ii) The operator ∆+ is surjective and not injective from sr into itself for all

r > 1.

(iii) For all r ≠ 1 and for every integer µ ≥ 1, (∆+)hsr = sr .

(iv) We have successively

(α) if h is a real greater than 0 and h ∉ N, then ∆h maps sr into itself

when r ≥ 1, but not for 0 < r < 1; if −1 < h < 0, then ∆h maps sr
into itself when r > 1, but not for r = 1;

(β) if h > 0 and h ∉ N, then (∆+)h maps sr into itself when 0 < r ≤ 1,

but not if r > 1; if −1 < h < 0, then (∆+)h maps sr into itself for

0< r < 1, but not for r = 1.

(v) Let h be any given integer ≥ 1, Then

A∈ (sr (∆h),sr )⇐⇒ sup
n≥1

 ∞∑
m=1

∣∣anm∣∣rm−n
<∞ ∀r > 1,

A∈
(
sr
(
∆+
)h,sr)⇐⇒ sup

n≥1

 ∞∑
m=1

∣∣anm∣∣rm−n
<∞ ∀r ∈ ]0,1[.

(3.6)
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(vi) For every integer h≥ 1,

s1 ⊂ s1
(
∆h
)⊂ s(nh)n≥1

⊂
⋂
r>1

sr . (3.7)

(vii) If h> 0 and h ∉N, then q is the greatest integer strictly less than (h+1).
For all r > 1,

Ker
((
∆+
)h)⋂sr = span

(
V1,V2, . . . ,Vq

)
, (3.8)

where

V1 = et, V2 =
(
A1

1,A
1
2, . . .

)t ,
V3 =

(
0,A2

2,A
2
3, . . .

)t , . . . , Vq =
(
0,0, . . . ,Aq−1

q−1,A
q−1
q , . . . ,Aq−1

n , . . .
)t

;
(3.9)

Aji = i!/(i−j)!, with 0 ≤ j ≤ i, being the number of permutations of i things

taken j at a time.

We give here an extension of the previous results, where sr is replaced by sα.

Proposition 3.3. Let h be a real greater than 0. The condition sα(∆h)= sα
is equivalent to

γn(h)= 1
αn

n−1∑
k=1

(
h+n−k−1

n−k

)
αk

=O(1) (n �→∞). (3.10)

Proof. The operator ∆h is bijective from sα into itself if and only if ∆h,

Σh ∈ (sα,sα). We have ∆h ∈ (sα,sα) if and only if

D1/α∆hDα ∈ S1, (3.11)

and using (3.5), we deduce that ∆h ∈ (sα,sα) if and only if

1
αn

n∑
k=1

∣∣∣∣∣
(
−h+n−k−1

n−k

)∣∣∣∣∣αk =O(1). (3.12)

Further, (Σt)h =ϕ[(1−z)−h], where

ϕ(z)= 1+
∞∑
n=1

(
h+n−1

n

)
zn with |z|< 1. (3.13)
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So, D1/αΣhDα ∈ S1 if and only if (3.10) holds. Finally, since h> 0, we have

∣∣∣∣∣
(
−h+n−k−1

n−k

)∣∣∣∣∣≤
(
h+n−k−1

n−k

)
for k= 1,2, . . . ,n−1, (3.14)

and we conclude since (3.10) implies (3.12).

We deduce immediately the next result.

Corollary 3.4. Leth be an integer greater than or equal to 1. The following

properties are equivalent:

(i) α∈ Ĉ1;

(ii) sα(∆)= sα;

(iii) sα(∆h)= sα;

(iv) C(α)(Σh−1α)∈ l∞.

Proof. From the proof of Proposition 3.3, sα(∆h) = sα is equivalent to

D1/αΣhDα = C(α)Σh−1Dα ∈ S1, that is, C(α)(Σh−1α) ∈ l∞. So, (iii) and (iv) are

equivalent. It remains to prove that (ii)�(iii). If sα(∆)= sα, ∆ and consequently

∆h are bijective from sα into itself and condition (iii) holds. Conversely, assume

that sα(∆h)= sα holds. Then (3.10) holds, and since

(
h+n−k−1

n−k

)
≥ 1 for k= 1,2, . . . ,n−1, (3.15)

we deduce that

[
C(α)α

]
n ≤ γn(h)=O(1), n �→∞. (3.16)

So, (i) holds and (ii) is satisfied.

4. Generalization of well-known sets. In this section, we see that under

some conditions, the spaces w̃α(λ), w̃◦
α(λ), w̃∗

α (λ), c̃α(λ,µ), c̃◦α(λ,µ), and

c̃∗α(λ,µ) can be written by means of the sets sξ or s◦ξ .

4.1. Sets w̃α(λ), w̃◦
α(λ), and w̃∗

α (λ). We recall some definitions and prop-

erties of some spaces. For every sequence X = (xn)n, we define |X| = (|xn|)n
and

w̃α(λ)=
{
X ∈ s | C(λ)(|X|)∈ sα},

w̃◦
α(λ)=

{
X ∈ s | C(λ)(|X|)∈ s◦α},

w̃∗
α (λ)=

{
X ∈ s |X−let ∈ w̃◦

α(λ) for some l∈ C}.
(4.1)
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For instance, we see that

w̃α(λ)=
X = (xn)n ∈ s | sup

n≥1

 1∣∣λn∣∣αn
n∑
k=1

∣∣xk∣∣
<∞

. (4.2)

If there exist A, B > 0 such that A < αn < B for all n, we get the well-

known spaces w̃α(λ) =w∞(λ), w̃◦
α(λ) =w0(λ), and w̃∗

α (λ) =w(λ) (see [12]).

It has been proved that if λ is a strictly increasing sequence of reals tending

to infinity, w0(λ) and w∞(λ) are BK spaces and w0(λ) has AK, with respect to

the norm

‖X‖ = ∥∥C(λ)(|X|)∥∥l∞ = sup
n

 1
λn

n∑
k=1

∣∣xk∣∣
 (4.3)

(see [1]).

We have the next result.

Theorem 4.1. Let α and λ be any sequences of U+∗.

(i) Consider the following properties:

(a) αn−1λn−1/αnλn→ 0;

(b) s(c)α (C(λ))= s(c)αλ ;

(c) αλ∈ Ĉ1;

(d) w̃α(λ)= sαλ;
(e) w̃◦

α(λ)= s◦αλ;
(f) w̃∗

α (λ)= s◦αλ.
Then (a)⇒(b), (c)�(d), and (c)⇒(e) and (f).

(ii) If αλ ∈ Ĉ1, w̃α(λ), w̃◦
α(λ), and w̃∗

α (λ) are BK spaces with respect to the

norm

‖X‖sαλ = sup
n≥1

( ∣∣xn∣∣
αnλn

)
, (4.4)

and w̃◦
α(λ)= w̃∗

α (λ) has AK.

Proof. (i) First, we prove that (a)⇒(b). We have

s(c)α
(
C(λ)

)=∆(λ)s(c)α =∆Dλs(c)α =∆s(c)αλ , (4.5)

and from Proposition 2.1(i) and Theorem 2.6(iii), we get successively αλ ∈ Ĉ ,

∆s(c)αλ = s(c)αλ , and (b) holds.

(c)�(d). Assume that (c) holds. Then

w̃α(λ)=
{
X | |X| ∈∆(λ)sα

}
. (4.6)
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Since ∆(λ) = ∆Dλ, we get ∆(λ)sα = ∆sαλ. Now, using (c), we see that ∆ is

bijective from sαλ into itself andwα(λ)= sαλ. Conversely, assume thatwα(λ)=
sαλ. Then αλ∈ sαλ implies that C(λ)(αλ)∈ sα, and sinceD1/αC(λ)(αλ)∈ s1 =
l∞, we conclude that C(αλ)(αλ)∈ l∞. The proof of (c)⇒(e) follows on the same

lines of the proof of (c)⇒(d) replacing sαλ by s◦αλ.
We prove that (c) implies (f). Take X ∈ w̃∗

α (λ). There is a complex number l
such that

C(λ)
(∣∣X−let∣∣)∈ s◦α. (4.7)

So

∣∣X−let∣∣∈∆(λ)s◦α =∆s◦αλ, (4.8)

and from Theorem 2.6(ii), ∆s◦αλ = s◦αλ. Now, since (c) holds, we deduce from

Proposition 2.1(iii) that αnλn →∞ and let ∈ s◦αλ. We conclude that X ∈ w̃∗
α (λ)

if and only if X ∈ let+s◦αλ = s◦αλ.
Assertion (ii) is a direct consequence of (i).

4.2. Sets c̃α(λ,µ), c̃◦α(λ,µ), and c̃∗α(λ,µ). Let α = (αn)n ∈ U+∗ be a given

sequence, we consider now for λ∈U , µ ∈ s the space

c̃α(λ,µ)=
(
wα(λ)

)
∆(µ) =

{
X ∈ s |∆(µ)X ∈wα(λ)

}
. (4.9)

It is easy to see that

c̃α(λ,µ)=
{
X ∈ s | C(λ)(∣∣∆(µ)X∣∣)∈ sα}, (4.10)

that is,

c̃α(λ,µ)=
X = (xn)n ∈ s | sup

n≥2

 1∣∣λn∣∣αn
n∑
k=2

∣∣µkxk−µk−1xk−1

∣∣<∞
,
(4.11)

see [1]. Similarly, we define the following sets:

c̃◦α(λ,µ)=
{
X ∈ s | C(λ)(∣∣∆(µ)X∣∣)∈ s◦α},

c̃∗α(λ,µ)=
{
X ∈ s |X−let ∈ c̃◦α(λ,µ) for some l∈ C}. (4.12)

Recall that if λ= µ, it is written that c0(λ)= (w0(λ))∆(λ),

c(λ)= {X ∈ s |X−let ∈ c0(λ) for some l∈ C}, (4.13)



1798 BRUNO DE MALAFOSSE

and c∞(λ)= (w∞(λ))∆(λ), see [11]. It can be easily seen that

c0(λ)= c̃◦e (λ,λ), c∞(λ)= c̃e(λ,λ), c(λ)= c̃∗e (λ,λ). (4.14)

These sets of sequences are called strongly convergent to 0, strongly conver-

gent, and strongly bounded. If λ ∈ U+∗ is a sequence strictly increasing to

infinity, c(λ) is a Banach space with respect to

‖X‖c∞(λ) = sup
n≥1

 1
λn

n∑
k=1

∣∣λkxk−λk−1xk−1

∣∣ (4.15)

with the convention x0 = 0. Each of the spaces c0(λ), c(λ), and c∞(λ) is a BK

space, relatively to the previous norm (see [1]). The set c0(λ) has AK and every

X ∈ c(λ) has a unique representation given by

X = let+
∞∑
k=1

(
xk−l

)
etk, (4.16)

where X−let ∈ c0. The scalar l is called the strong c(λ)-limit of the sequence

X.

We obtain the next result.

Theorem 4.2. Let α, λ, and µ be sequences of U+∗.

(i) Consider the following properties:

(a) αλ∈ Ĉ1;

(b) c̃α(λ,µ)= sα(λ/µ);
(c) c̃◦α(λ,µ)= s◦α(λ/µ);
(d) c̃∗α(λ,µ)= {X ∈ s |X−let ∈ s◦α(λ/µ) for some l∈ C}.

Then (a)�(b) and (a)⇒(c) and (d).

(ii) If αλ∈ Ĉ1, then c̃α(λ,µ), c̃◦α(λ,µ), and c̃∗α(λ,µ) are BK spaces with respect

to the norm

‖X‖sα(λ/µ) = sup
n≥1

(
µn

∣∣xn∣∣
αnλn

)
. (4.17)

The set c̃◦α(λ,µ) has AK and every X ∈ c̃∗α(λ,µ) has a unique representation

given by (4.16), where X−let ∈ s◦α(λ/µ).
Proof. We show that (a)⇒(b). Take X ∈ cα(λ,µ). We have ∆(µ)X ∈wα(λ),

which is equivalent to

X ∈ C(µ)sαλ =D1/µΣsαλ, (4.18)

and using Theorem 2.6(i), ∆ and consequently Σ are bijective from sαλ into

itself. So, Σsαλ = sαλ and X ∈ D1/µΣsαλ = sα(λ/µ). We conclude that (b) holds.

We prove that (b) implies (a). First, put α̃λ,µ = ((−1)n(λn/µn)αn)n≥1. We have
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α̃λ,µ ∈ sα(λ/µ) = c̃α(λ,µ) = sα(λ/µ), and since ∆(µ) = ∆Dµ and Dµα̃λ,µ =
((−1)nλnαn)n≥1, we get |∆(µ)α̃λ,µ| = (ξn)n≥1, with

ξn =
λ1α1 if n= 1,

λn−1αn−1+λnαn if n≥ 2.
(4.19)

From (b), we deduce that Σ|∆(µ)α̃λ,µ| ∈ sαλ. This means that

C′n =
1

αnλn

λ1α1+
n∑
k=2

(
λk−1αk−1+λkαk

)=O(1), n �→∞. (4.20)

From the inequality

[
C(αλ)(αλ)

]
n ≤ C′n, (4.21)

we obtain (a). The proof of (a)⇒(c) follows on the same lines of the proof of

(a)⇒(b) with sα replaced by s◦α.

We show that (a) implies (d). Take X ∈ c̃∗α(λ,µ). There exists l∈ C such that

∆(µ)
(
X−let)∈ w̃◦

α(λ), (4.22)

and from (c)⇒(e) in Theorem 4.1, we have w̃◦
α(λ)= s◦αλ. So

X−let ∈ C(µ)s◦αλ =D1/µΣs◦αλ, (4.23)

and from Theorem 2.6(ii), Σs◦αλ = s◦αλ, and D1/µΣs◦αλ = s◦α(λ/µ), we conclude that

X ∈ c̃∗α(λ,µ) if and only if X ∈ let+s◦α(λ/µ) for some l∈ C .

Assertion (ii) is a direct consequence of (i) and of the fact that for every

X ∈ c̃∗α(λ), we have

∥∥∥∥∥∥X−let−
N∑
k=1

(
xk−l

)
etk

∥∥∥∥∥∥
sα(λ/µ)

= sup
n≥N+1

(
µn

∣∣xn−l∣∣
αnλn

)
= o(1), N �→∞.

(4.24)

We deduce immediately the following corollary.

Corollary 4.3. Assume that α, λ, µ ∈U+∗.

(i) If αλ∈ Ĉ1 and µ ∈ l∞, then

c̃∗α(λ,µ)= s◦α(λ/µ). (4.25)
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(ii) Then

λ∈ Γ �⇒ λ∈ Ĉ1 �⇒ c0(λ)= s◦λ, c∞(λ)= sλ. (4.26)

Proof. (i) Since µ ∈ l∞, we deduce, using Proposition 2.1(iii), that there are

K > 0 and γ > 1 such that

αnλn
µn

≥Kγn ∀n. (4.27)

So, let ∈ s◦α(λ/µ) and (4.25) holds. (ii) comes from Theorem 4.2 since Γ ⊂ Ĉ1.

Example 4.4. We denote by ẽ the base of the natural system of logarithms.

From the well-known Stirling formula, we have

nn+1/2

n!
∼ ẽn 1√

2π
, (4.28)

so s(nn+(1/2)/n!)n = sẽ. Further, λ= (nn/n!)n ∈ Γ since

λn−1

λn
= ẽ−(n−1) ln(1+1/(n−1)) �→ 1

ẽ
< 1. (4.29)

We conclude that

c̃◦e
((
nn

n!

)
n
,
(

1√
n

)
n

)
= s◦ẽ , c̃e

((
nn

n!

)
n
,
(

1√
n

)
n

)
= sẽ. (4.30)
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