ON SOME BK SPACES

BRUNO DE MALAFOSSE

Received 25 April 2002

We characterize the spaces $s_{\alpha}(\Delta), s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$ and we deal with some sets generalizing the well-known sets $w_{0}(\lambda), w_{\infty}(\lambda), w(\lambda), c_{0}(\lambda), c_{\infty}(\lambda)$, and $c(\lambda)$.

2000 Mathematics Subject Classification: 46A45, 40C05.

1. Notations and preliminary results. For a given infinite matrix $A=$ $\left(a_{n m}\right)_{n, m \geq 1}$, the operators A_{n}, for any integer $n \geq 1$, are defined by

$$
\begin{equation*}
A_{n}(X)=\sum_{m=1}^{\infty} a_{n m} x_{m}, \tag{1.1}
\end{equation*}
$$

where $X=\left(x_{n}\right)_{n \geq 1}$ is the series intervening in the second member being convergent. So, we are led to the study of the infinite linear system

$$
\begin{equation*}
A_{n}(X)=b_{n}, \quad n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

where $B=\left(b_{n}\right)_{n \geq 1}$ is a one-column matrix and X the unknown, see $[2,3,5,6,7,9]$. Equation (1.2) can be written in the form $A X=B$, where $A X=\left(A_{n}(X)\right)_{n \geq 1}$. In this paper, we will also consider A as an operator from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a BK space if each projection $P_{n}: X \rightarrow P_{n} X$ is continuous. A BK space E is said to have AK (see [8]) if for every $B=\left(b_{n}\right)_{n \geq 1}, B=\sum_{n=1}^{\infty} b_{m} e_{m}$, that is,

$$
\begin{equation*}
\left\|\sum_{m=N+1}^{\infty} b_{m} e_{m}\right\|_{E} \rightarrow 0 \quad(n \rightarrow \infty) . \tag{1.3}
\end{equation*}
$$

We shall write s, c, c_{0}, and l_{∞} for the sets of all complex, convergent sequences, sequences convergent to zero, and bounded sequences, respectively. We shall write $c s$ and l_{1} for the sets of convergent and absolutely convergent series, respectively. We will use the set

$$
\begin{equation*}
U^{+*}=\left\{\left(u_{n}\right)_{n \geq 1} \in s \mid u_{n}>0 \forall n\right\} . \tag{1.4}
\end{equation*}
$$

Using Wilansky's notations [12], we define, for any sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 1} \in$ U^{+*} and for any set of sequences E, the set

$$
\begin{equation*}
\alpha * E=\left\{\left(x_{n}\right)_{n \geq 1} \in s \left\lvert\,\left(\frac{x_{n}}{\alpha_{n}}\right)_{n} \in E\right.\right\} . \tag{1.5}
\end{equation*}
$$

Writing

$$
\alpha * E= \begin{cases}s_{\alpha}^{\circ} & \text { if } E=c_{0} \tag{1.6}\\ s_{\alpha}^{(c)} & \text { if } E=c \\ s_{\alpha} & \text { if } E=l_{\infty},\end{cases}
$$

we have for instance

$$
\begin{equation*}
\alpha * c_{0}=s_{\alpha}^{\circ}=\left\{\left(x_{n}\right)_{n \geq 1} \in s \mid x_{n}=o\left(\alpha_{n}\right) n \rightarrow \infty\right\} . \tag{1.7}
\end{equation*}
$$

Each of the spaces $\alpha * E$, where $E \in\left\{c_{0}, c, l_{\infty}\right\}$, is a BK space normed by

$$
\begin{equation*}
\|X\|_{s_{\alpha}}=\sup _{n \geq 1}\left(\frac{\left|x_{n}\right|}{\alpha_{n}}\right), \tag{1.8}
\end{equation*}
$$

and s_{α}° has AK.
Now, let $\alpha=\left(\alpha_{n}\right)_{n \geq 1}$ and $\beta=\left(\beta_{n}\right)_{n \geq 1} \in U^{+*}$. We shall write $S_{\alpha, \beta}$ for the set of infinite matrices $A=\left(a_{n m}\right)_{n, m \geq 1}$ such that

$$
\begin{equation*}
\left(a_{n m} \alpha_{m}\right)_{m \geq 1} \in l^{1} \quad \forall n \geq 1, \quad \sum_{m=1}^{\infty}\left|a_{n m}\right| \alpha_{m}=O\left(\beta_{n}\right) \quad(n \rightarrow \infty) . \tag{1.9}
\end{equation*}
$$

The set $S_{\alpha, \beta}$ is a Banach space with the norm

$$
\begin{equation*}
\|A\|_{S_{\alpha, \beta}}=\sup _{n \geq 1}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right| \frac{\alpha_{m}}{\beta_{n}}\right) . \tag{1.10}
\end{equation*}
$$

Let E and F be any subsets of s. When A maps E into F, we write $A \in(E, F)$, see [10]. So, for every $X \in E, A X \in F(A X \in F$ will mean that for each $n \geq 1$, the series defined by $y_{n}=\sum_{m=1}^{\infty} a_{n m} x_{m}$ is convergent and $\left.\left(y_{n}\right)_{n \geq 1} \in F\right)$. It has been proved in [8] that $A \in\left(s_{\alpha}, s_{\beta}\right)$ if and only if $A \in S_{\alpha, \beta}$. So, we can write $\left(s_{\alpha}, s_{\beta}\right)=S_{\alpha, \beta}$.

When $s_{\alpha}=s_{\beta}$, we obtain the unital Banach algebra $S_{\alpha, \beta}=S_{\alpha}$, (see $[2,3,9]$) normed by $\|A\|_{S_{\alpha}}=\|A\|_{S_{\alpha, \alpha}}$.

We also have $A \in\left(s_{\alpha}, s_{\alpha}\right)$ if and only if $A \in S_{\alpha}$. If $\|I-A\|_{S_{\alpha}}<1$, we say that $A \in \Gamma_{\alpha}$. The set S_{α} being a unital algebra, we have the useful result: if $A \in \Gamma_{\alpha}$, A is bijective from s_{α} into itself.

If $\alpha=\left(r^{n}\right)_{n \geq 1}$, then $\Gamma_{\alpha}, S_{\alpha}, s_{\alpha}, s_{\alpha}^{\circ}$, and $s_{\alpha}^{(c)}$ are replaced by $\Gamma_{r}, S_{r}, s_{r}, s_{r}^{\circ}$, and $s_{r}^{(c)}$, respectively, (see $[2,3,5,6,7,8,9]$). When $r=1$, we obtain $s_{1}=l_{\infty}, s_{1}^{\circ}=c_{0}$, and $s_{1}^{(c)}=c$, and putting $e=(1,1, \ldots)$, we have $S_{1}=S_{e}$. It is well known, see [10], that

$$
\begin{equation*}
\left(s_{1}, s_{1}\right)=\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=S_{1} . \tag{1.11}
\end{equation*}
$$

We write $e_{n}=(0, \ldots, 1, \ldots)$ (where 1 is in the nth position).
For any subset E of s, we put

$$
\begin{equation*}
A E=\{Y \in s \mid \exists X \in E Y=A X\} . \tag{1.12}
\end{equation*}
$$

If F is a subset of s, we denote

$$
\begin{equation*}
F(A)=F_{A}=\{X \in s \mid Y=A X \in F\} . \tag{1.13}
\end{equation*}
$$

We can see that $F(A)=A^{-1} F$.
2. Sets $s_{\alpha}(\Delta), s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$. In this section, we will give necessary and sufficient conditions permitting us to write the sets $s_{\alpha}(\Delta), s_{\alpha}^{\circ}(\Delta)$, and $s_{\alpha}^{(c)}(\Delta)$ by means of the spaces s_{ξ}, s_{ξ}°, or $s_{\xi}^{(c)}$. For this, we need to study the sequence $C(\alpha) \alpha$.
2.1. Properties of the sequence $C(\alpha) \alpha$. Here, we will deal with the operators represented by $C(\lambda)$ and $\Delta(\lambda)$, see $[2,5,7,8,9]$.

Let

$$
\begin{equation*}
U=\left\{\left(u_{n}\right)_{n \geq 1} \in s \mid u_{n} \neq 0 \forall n\right\} . \tag{2.1}
\end{equation*}
$$

We define $C(\lambda)=\left(c_{n m}\right)_{n, m \geq 1}$, for $\lambda=\left(\lambda_{n}\right)_{n \geq 1} \in U$, by

$$
c_{n m}= \begin{cases}\frac{1}{\lambda_{n}} & \text { if } m \leq n \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

It can be proved that the matrix $\Delta(\lambda)=\left(c_{n m}^{\prime}\right)_{n, m \geq 1}$, with

$$
c_{n m}^{\prime}= \begin{cases}\lambda_{n} & \text { if } m=n \tag{2.3}\\ -\lambda_{n-1} & \text { if } m=n-1, n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\lambda)$, see [8]. If $\lambda=e$, we get the well-known operator of first difference represented by $\Delta(e)=\Delta$ and it is usually written $\Sigma=C(e)$. Note that $\Delta=\Sigma^{-1}$, and Δ and Σ belong to any given space S_{R} with $R>1$.

We use the following sets:

$$
\begin{align*}
& \widehat{C}=\left\{\alpha \in U^{+*} \left\lvert\, C(\alpha) \alpha=\left(\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n} \alpha_{k}\right)\right)_{n \geq 1} \in c\right.\right\}, \\
& \widehat{C_{1}}=\left\{\alpha \in U^{+*} \mid C(\alpha) \alpha \in s_{1}=l_{\infty}\right\}, \tag{2.4}\\
& \Gamma=\left\{\alpha \in U^{+*} \left\lvert\, \overline{\lim _{n \rightarrow \infty}}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)<1\right.\right\} .
\end{align*}
$$

Note that $\Delta \in \Gamma_{\alpha}$ implies $\alpha \in \Gamma$. It can be easily seen that $\alpha \in \Gamma$ if and only if there is an integer $q \geq 1$ such that

$$
\begin{equation*}
\gamma_{q}(\alpha)=\sup _{n \geq q+1}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)<1 . \tag{2.5}
\end{equation*}
$$

See [7].
In order to express the following results, we will denote by $[C(\alpha) \alpha]_{n}$ (instead of $[C(\alpha)]_{n}(\alpha)$) the nth coordinate of $C(\alpha) \alpha$. We get the following proposition.

Proposition 2.1. Let $\alpha \in U^{+*}$. Then
(i) $\alpha_{n-1} / \alpha_{n} \rightarrow 0$ if and only if $[C(\alpha) \alpha]_{n} \rightarrow 1$;
(ii) (a) $\alpha \in \hat{C}$ implies that $\left(\alpha_{n-1} / \alpha_{n}\right)_{n \geq 1} \in c$,
(b) $[C(\alpha) \alpha]_{n} \rightarrow l$ implies that $\alpha_{n-1} / \alpha_{n} \rightarrow 1-1 / l$;
(iii) if $\alpha \in \widehat{C_{1}}$, there are $K>0$ and $\gamma>1$ such that

$$
\begin{equation*}
\alpha_{n} \geq K \gamma^{n} \quad \forall n ; \tag{2.6}
\end{equation*}
$$

(iv) the condition $\alpha \in \Gamma$ implies that $\alpha \in \widehat{C_{1}}$ and there exists a real $b>0$ such that

$$
\begin{equation*}
\left.[C(\alpha) \alpha]_{n} \leq \frac{1}{1-x}+b \chi^{n} \quad \text { for } n \geq q+1, \chi=\gamma_{q}(\alpha) \in\right] 0,1[\tag{2.7}
\end{equation*}
$$

Proof. (i) Assume that $\alpha_{n-1} / \alpha_{n} \rightarrow 0$. Then there is an integer N such that

$$
\begin{equation*}
n \geq N+1 \Rightarrow \frac{\alpha_{n-1}}{\alpha_{n}} \leq \frac{1}{2} \tag{2.8}
\end{equation*}
$$

So, there exists a real $K>0$ such that $\alpha_{n} \geq K 2^{n}$ for all n and

$$
\begin{equation*}
\frac{\alpha_{k}}{\alpha_{n}}=\frac{\alpha_{k}}{\alpha_{k+1}} \cdots \frac{\alpha_{n-1}}{\alpha_{n}} \leq\left(\frac{1}{2}\right)^{n-k} \quad \text { for } N \leq k \leq n-1 \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n-1} \alpha_{k}\right) & =\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{N-1} \alpha_{k}\right)+\sum_{k=N}^{n-1} \frac{\alpha_{k}}{\alpha_{n}} \tag{2.10}\\
& \leq \frac{1}{K 2^{n}}\left(\sum_{k=1}^{N-1} \alpha_{k}\right)+\sum_{k=N}^{n-1}\left(\frac{1}{2}\right)^{n-k} ;
\end{align*}
$$

and since

$$
\begin{equation*}
\sum_{k=N}^{n-1}\left(\frac{1}{2}\right)^{n-k}=1-\left(\frac{1}{2}\right)^{n-N} \rightarrow 1 \quad(n \rightarrow \infty) \tag{2.11}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n-1} \alpha_{k}\right)=O(1), \quad\left([C(\alpha) \alpha]_{n}\right) \in l_{\infty} \tag{2.12}
\end{equation*}
$$

Using the identity

$$
\begin{align*}
{[C(\alpha) \alpha]_{n} } & =\frac{\alpha_{1}+\cdots+\alpha_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_{n}}+1 \\
& =[C(\alpha) \alpha]_{n-1}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)+1, \tag{2.13}
\end{align*}
$$

we get $[C(\alpha) \alpha]_{n} \rightarrow 1$. This proves the necessity.
Conversely, if $[C(\alpha) \alpha]_{n} \rightarrow 1$, then

$$
\begin{equation*}
\frac{\alpha_{n-1}}{\alpha_{n}}=\frac{[C(\alpha) \alpha]_{n}-1}{[C(\alpha) \alpha]_{n-1}} \rightarrow 0 . \tag{2.14}
\end{equation*}
$$

Assertion (ii) is a direct consequence of identity (2.14).
(iii) We put $\Sigma_{n}=\sum_{k=1}^{n} \alpha_{k}$. Then for a real $M>1$,

$$
\begin{equation*}
[C(\alpha) \alpha]_{n}=\frac{\Sigma_{n}}{\Sigma_{n}-\Sigma_{n-1}} \leq M \quad \forall n . \tag{2.15}
\end{equation*}
$$

So, $\Sigma_{n} \geq(M /(M-1)) \Sigma_{n-1}$ and $\Sigma_{n} \geq(M /(M-1))^{n-1} \alpha_{1}$ for all n. Therefore, from

$$
\begin{equation*}
\frac{\alpha_{1}}{\alpha_{n}}\left(\frac{M}{M-1}\right)^{n-1} \leq[C(\alpha) \alpha]_{n}=\frac{\Sigma_{n}}{\alpha_{n}} \leq M \tag{2.16}
\end{equation*}
$$

we conclude that $\alpha_{n} \geq K \gamma^{n}$ for all n, with $K=(M-1) \alpha_{1} / M^{2}$ and $\gamma=M /(M-$ 1) >1.
(iv) If $\alpha \in \Gamma$, then there is an integer $q \geq 1$ for which

$$
\begin{equation*}
k \geq q+1 \Rightarrow \frac{\alpha_{k-1}}{\alpha_{k}} \leq x<1 \quad \text { with } x=\gamma_{q}(\alpha) \tag{2.17}
\end{equation*}
$$

So, there is a real $M^{\prime}>0$ for which

$$
\begin{equation*}
\alpha_{n} \geq \frac{M^{\prime}}{\chi^{n}} \quad \forall n \geq q+1 \tag{2.18}
\end{equation*}
$$

Writing $\sigma_{n q}=1 / \alpha_{n}\left(\sum_{k=1}^{q} \alpha_{k}\right)$ and $d_{n}=[C(\alpha) \alpha]_{n}-\sigma_{n q}$, we get

$$
\begin{align*}
d_{n} & =\frac{1}{\alpha_{n}}\left(\sum_{k=q+1}^{n} \alpha_{k}\right)=1+\sum_{j=q+1}^{n-1}\left(\prod_{k=1}^{n-j} \frac{\alpha_{n-k}}{\alpha_{n-k+1}}\right) \tag{2.19}\\
& \leq \sum_{j=q+1}^{n} x^{n-j} \leq \frac{1}{1-x} .
\end{align*}
$$

And using (2.18), we get

$$
\begin{equation*}
\sigma_{n q} \leq \frac{1}{M^{\prime}} x^{n}\left(\sum_{k=1}^{q} \alpha_{k}\right) \tag{2.20}
\end{equation*}
$$

So

$$
\begin{equation*}
[C(\alpha) \alpha]_{n} \leq a+b \alpha^{n} \tag{2.21}
\end{equation*}
$$

with $a=1 /(1-\chi)$ and $b=\left(1 / M^{\prime}\right)\left(\sum_{k=1}^{q} \alpha_{k}\right)$.
Remark 2.2. Note that $\alpha \in \widehat{C_{1}}$ does not imply that $\alpha \in \Gamma$.
2.2. New properties of the operator represented by Δ. Throughout this paper, we will denote by D_{ξ} the infinite diagonal matrix $\left(\xi_{n} \delta_{n m}\right)_{n, m \geq 1}$ for any given sequence $\xi=\left(\xi_{n}\right)_{n \geq 1}$. Now, we require some lemmas.

Lemma 2.3. The condition $\Delta \in\left(s_{\alpha}^{\circ}, s_{\alpha}^{\circ}\right)$ is equivalent to $\Delta_{\alpha}=D_{1 / \alpha} \Delta D_{\alpha} \in$ $\left(c_{0}, c_{0}\right)$ and $\Delta \in\left(s_{\alpha}^{(c)}, s_{\alpha}^{(c)}\right)$ implies $\Delta_{\alpha}=D_{1 / \alpha} \Delta D_{\alpha} \in(c, c)$.

Proof. First, D_{α} is bijective from c_{0} into s_{α}°. In fact, the equation $D_{\alpha} X=B$, for every $B=\left(b_{n}\right)_{n} \in s_{\alpha}^{\circ}$, admits a unique solution $X=D_{1 / \alpha} B=\left(b_{n} / \alpha_{n}\right)_{n} \in c_{0}$. Suppose now that $\Delta \in\left(s_{\alpha}^{\circ}, s_{\alpha}^{\circ}\right)$. Then for every $X \in c_{0}$, we get successively $X^{\prime}=$ $D_{\alpha} X \in s_{\alpha}^{\circ}, \Delta X^{\prime} \in s_{\alpha}^{\circ}$, and $\Delta_{\alpha}=D_{1 / \alpha} \Delta D_{\alpha} \in\left(c_{0}, c_{0}\right)$. Conversely, assume that $\Delta_{\alpha} \in\left(c_{0}, c_{0}\right)$ and let $X \in s_{\alpha}^{\circ}$. Then $X=D_{\alpha} X^{\prime}$ with $X^{\prime} \in c_{0}$. So, $\Delta X \in D_{\alpha} c_{0}=s_{\alpha}^{\circ}$ and $\Delta \in\left(s_{\alpha}^{\circ}, s_{\alpha}^{\circ}\right)$. By a similar reasoning, we get $\Delta \in\left(s_{\alpha}^{(c)}, s_{\alpha}^{(c)}\right) \Rightarrow \Delta_{\alpha} \in(c, c)$.

We need to recall here the following well-known results given in [12].

Lemma 2.4. The condition $A \in(c, c)$ is equivalent to the following conditions:
(i) $A \in S_{1}$;
(ii) $\left(a_{n m}\right)_{n \geq 1} \in c$ for each $m \geq 1$;
(iii) $\left(\sum_{m=1}^{\infty} a_{n m}\right)_{n \geq 1} \in c$.

If for any given sequence $X=\left(x_{n}\right)_{n} \in c$, with $\lim _{n} x_{n}=l, A_{n}(X)$ is convergent for all n and $\lim _{n} A_{n}(X)=l$, it is written that

$$
\begin{equation*}
\lim X=A-\lim X \tag{2.22}
\end{equation*}
$$

and A is called a Toeplitz matrix. We also have the next result.
Lemma 2.5. The operator $A \in(c, c)$ is a Toeplitz matrix if and only if
(i) $A \in S_{1}$;
(ii) $\lim _{n} a_{n m}=0$ for each $m \geq 1$;
(iii) $\lim _{n}\left(\sum_{m=1}^{\infty} a_{n m}\right)=1$.

Now, we can assert the following theorem.
Theorem 2.6. We have successively
(i) $s_{\alpha}(\Delta)=s_{\alpha}$ if and only if $\alpha \in \widehat{C_{1}}$;
(ii) $s_{\alpha}^{\circ}(\Delta)=s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C_{1}}$;
(iii) $s_{\alpha}^{(c)}(\Delta)=s_{\alpha}^{(c)}$ if and only if $\alpha \in \hat{C}$;
(iv) $\Delta_{\alpha}=D_{1 / \alpha} \Delta D_{\alpha}$ is bijective from c into itself with $\lim X=\Delta_{\alpha}-\lim X$ if and only if

$$
\begin{equation*}
\frac{\alpha_{n-1}}{\alpha_{n}} \longrightarrow 0 \tag{2.23}
\end{equation*}
$$

Proof. (i) We have $s_{\alpha}(\Delta)=s_{\alpha}$ if and only if $\Delta, \Sigma \in\left(s_{\alpha}, s_{\alpha}\right)$. This means that $\Delta, \Sigma \in S_{\alpha}$, that is,

$$
\begin{equation*}
\|\Delta\|_{S_{\alpha}}=\sup _{n \geq 1}\left(1+\frac{\alpha_{n-1}}{\alpha_{n}}\right)<\infty, \quad\|\Sigma\|_{S_{\alpha}}=\sup _{n \geq 1}[C(\alpha) \alpha]_{n}<\infty \tag{2.24}
\end{equation*}
$$

Since $0<\alpha_{n-1} / \alpha_{n} \leq[C(\alpha) \alpha]_{n}$, we deduce that $\Delta, \Sigma \in S_{\alpha}$ if and only if $\|\Sigma\|_{S_{\alpha}}<$ ∞, that is, $\alpha \in \widehat{C_{1}}$.
(ii) From Lemma 2.3, if $s_{\alpha}^{\circ}(\Delta)=s_{\alpha}^{\circ}$, then $\Delta_{\alpha}=D_{1 / \alpha} \Delta D_{\alpha} \in\left(c_{0}, c_{0}\right)$. So, $\Delta_{\alpha} \in$ $\left(c_{0}, l_{\infty}\right)=S_{1}$ and since $\Delta_{\alpha}=\left(d_{n m}\right)_{n, m \geq 1}$ with

$$
d_{n m}= \begin{cases}1 & \text { if } m=n \tag{2.25}\\ -\frac{\alpha_{n-1}}{\alpha_{n}} & \text { if } m=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

we deduce that $\alpha_{n-1} / \alpha_{n}=O(1), n \rightarrow \infty$. Further, $s_{\alpha}^{\circ}(\Delta)=s_{\alpha}^{\circ}$ implies $\Sigma_{\alpha}=$ $D_{1 / \alpha} \Sigma D_{\alpha} \in\left(c_{0}, c_{0}\right)$ and $\Sigma_{\alpha} \in\left(c_{0}, l_{\infty}\right)=S_{1}$. Since $\Sigma_{\alpha}=\left(\sigma_{n m}\right)_{n, m \geq 1}$ with

$$
\sigma_{n m}= \begin{cases}\frac{\alpha_{m}}{\alpha_{n}} & \text { if } m \leq n \tag{2.26}\\ 0 & \text { if } m>n\end{cases}
$$

we deduce that

$$
\begin{equation*}
\sup _{n \geq 1}\left(\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n} \alpha_{k}\right)\right)<\infty, \tag{2.27}
\end{equation*}
$$

that is, $\alpha \in \widehat{C_{1}}$. Conversely, assume that $\alpha \in \widehat{C_{1}}$. First, $\Delta \in\left(s_{\alpha}^{\circ}, s_{\alpha}^{\circ}\right)$. Indeed, from the inequality

$$
\begin{equation*}
\frac{\alpha_{n-1}}{\alpha_{n}} \leq \sup _{n \geq 1}\left([C(\alpha) \alpha]_{n}\right)<\infty, \tag{2.28}
\end{equation*}
$$

we deduce that for every $X \in s_{\alpha}^{\circ}, x_{n} / \alpha_{n}=o(1)$,

$$
\begin{equation*}
\frac{x_{n}-x_{n-1}}{\alpha_{n}}=\frac{x_{n}}{\alpha_{n}}-\frac{x_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_{n}}=o(1) \tag{2.29}
\end{equation*}
$$

and $\Delta X \in s_{\alpha}^{\circ}$. Further, take $B=\left(b_{n}\right)_{n \geq 1} \in s_{\alpha}^{\circ}$. Then there exists $v=\left(v_{n}\right)_{n \geq 1} \in c_{0}$ such that $b_{n}=\alpha_{n} v_{n}$. We must prove that the equation $\Delta X=B$ admits a unique solution in the space s_{α}°. First, we obtain

$$
\begin{equation*}
X=\Sigma B=\left(\sum_{k=1}^{n} \alpha_{k} v_{k}\right)_{n \geq 1} . \tag{2.30}
\end{equation*}
$$

In order to show that $X=\left(x_{n}\right)_{n \geq 1} \in s_{\alpha}^{\circ}$, we will consider any given $\varepsilon>0$. From Proposition 2.1(iii), the condition $\alpha \in \widehat{C_{1}}$ implies that $\alpha_{n} \rightarrow \infty$. So, there exists an integer N such that

$$
\begin{align*}
& S_{n}=\frac{1}{\alpha_{n}}\left|\sum_{k=1}^{N} \alpha_{k} v_{k}\right| \leq \frac{\varepsilon}{2} \quad \text { for } n \geq N, \tag{2.31}\\
& \sup _{n \geq N+1}\left(\left|v_{k}\right|\right) \leq \frac{\varepsilon}{2 \sup _{n \geq 1}\left([C(\alpha) \alpha]_{n}\right)} .
\end{align*}
$$

Writing $R_{n}=1 / \alpha_{n}\left|\sum_{k=N+1}^{n} \alpha_{k} \nu_{k}\right|$, we conclude that

$$
\begin{equation*}
R_{n} \leq\left(\sup _{N+1 \leq k \leq n}\left(\left|v_{k}\right|\right)\right)[C(\alpha) \alpha]_{n} \leq \frac{\varepsilon}{2} . \tag{2.32}
\end{equation*}
$$

Finally, we obtain

$$
\begin{align*}
\frac{\left|x_{n}\right|}{\alpha_{n}} & =\left|\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{N} \alpha_{k} v_{k}\right)+\frac{1}{\alpha_{n}}\left(\sum_{k=N+1}^{n} \alpha_{k} v_{k}\right)\right| \tag{2.33}\\
& \leq S_{n}+R_{n} \leq \varepsilon \text { for } n \geq N
\end{align*}
$$

and $X \in s_{\alpha}^{0}$.
(iii) As above, $s_{\alpha}^{(c)}(\Delta)=s_{\alpha}^{(c)}$ if and only if $\Delta_{\alpha}, \Sigma_{\alpha} \in(c, c)$; and from Lemma 2.4, we have $\Delta_{\alpha} \in(c, c)$ if and only if $\left(\alpha_{n-1} / \alpha_{n}\right)_{n} \in c$. In fact, we have $\Delta_{\alpha} \in S_{1}$ and $\sum_{m=1}^{n} d_{n m}=1+\alpha_{n-1} / \alpha_{n}$ tends to a limit as $n \rightarrow \infty$. Afterwards, $\Sigma_{\alpha} \in(c, c)$ is equivalent to
(a) $\Sigma_{\alpha} \in S_{1}$, that is, $\alpha \in \widehat{C_{1}}$;
(b) $\lim _{n}\left(\alpha_{m} / \alpha_{n}\right)=0$ for all $m \geq 1$;
(c) $\alpha \in \widehat{C}$.

From Proposition 2.1(iii), (c) implies that α_{n} tends to infinity, so (c) implies (a) and (b). Finally, from Proposition 2.1(ii), we conclude that $\alpha \in \widehat{C}$ implies $\left(\alpha_{n-1} / \alpha_{n}\right)_{n} \in c$. This completes the proof of (iii).
(iv) From Lemma 2.5, it can be easily verified that $\Delta_{\alpha} \in(c, c)$ and $\lim X=$ $\Delta_{\alpha}-\lim X$ if and only if $\alpha_{n-1} / \alpha_{n} \rightarrow 0$. We conclude, using (iii), since $\alpha_{n-1} / \alpha_{n}=$ $o(1)$ implies that $\alpha \in \hat{C}$.

Remark 2.7. In Theorem 2.6(iv), we see that $\Sigma_{\alpha} \in(c, c)$ and $\lim X=\Sigma_{\alpha}-$ $\lim X$ if and only if $\alpha_{n-1} / \alpha_{n} \rightarrow 0$. In fact, we must have for each $m \geq 1, \sigma_{n m}=$ $\alpha_{m} / \alpha_{n}=o(1)(n \rightarrow \infty)$ and

$$
\begin{equation*}
\lim _{n}\left(\sum_{m=1}^{n} \sigma_{n m}\right)=\lim _{n}\left(1+\sum_{m=1}^{n-1} \frac{\alpha_{m}}{\alpha_{n}}\right)=1 \tag{2.34}
\end{equation*}
$$

and from Proposition 2.1(i), the previous property is satisfied if and only if $\alpha_{n-1} / \alpha_{n} \rightarrow 0$.

Remark 2.8. It can be seen that the condition $\left(\alpha_{n-1} / \alpha_{n}\right)_{n} \in c$ does not imply that $\alpha \in \widehat{C_{1}}$. It is enough to consider $C(e) e=(n)_{n} \notin c_{0}$.

The next corollary is a direct consequence of the previous results.
Corollary 2.9. Consider the following properties:
(i) $\alpha \in \hat{C}$;
(ii) $s_{\alpha}^{(c)}(\Delta)=s_{\alpha}^{(c)}$;
(iii) $\alpha \in \Gamma$;
(iv) $\alpha \in \widehat{C_{1}}$;
(v) $s_{\alpha}(\Delta)=s_{\alpha}$;
(vi) $s_{\alpha}^{\circ}(\Delta)=s_{\alpha}^{\circ}$.

Then $(i) \Leftrightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v) \Leftrightarrow(v) \Leftrightarrow(v i)$.
We obtain from the precedent the following corollary.

Corollary 2.10. (i) $\left(s_{\alpha}-s_{\alpha}^{\circ}\right)(\Delta)=s_{\alpha}-s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C_{1}}$,
(ii) $\left(s_{\alpha}^{(c)}-s_{\alpha}^{\circ}\right)(\Delta)=s_{\alpha}^{(c)}-s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C}$,
(iii) $\alpha \in \hat{C}$ implies $\left(s_{\alpha}-s_{\alpha}^{(c)}\right)(\Delta)=s_{\alpha}-s_{\alpha}^{(c)}$.

Proof. (i) If Δ is bijective from $s_{\alpha}-s_{\alpha}^{\circ}$ into itself, then for every $B \in s_{\alpha}-s_{\alpha}^{\circ}$, we have $X=\Sigma B \in s_{\alpha}-s_{\alpha}^{\circ}$. Since $\alpha \in s_{\alpha}-s_{\alpha}^{\circ}$, we conclude that $\Sigma \alpha \in s_{\alpha}$, that is, $C(\alpha) \alpha \in l_{\infty}$. Conversely, from Theorem 2.6(i) and (ii), it can be easily seen that Δ is bijective from s_{α} to s_{α} and from s_{α}° to s_{α}°, since $\alpha \in \widehat{C_{1}}$. So, Δ is bijective from $s_{\alpha}-s_{\alpha}^{\circ}$ to $s_{\alpha}-s_{\alpha}^{\circ}$.
(ii) Suppose that Δ is bijective from $s_{\alpha}^{(c)}-s_{\alpha}^{\circ}$ into itself. Reasoning as above, we have $\alpha \in s_{\alpha}^{(c)}-s_{\alpha}^{\circ}$ and $\Sigma \alpha \in s_{\alpha}^{(c)}$, so $D_{1 / \alpha} \Sigma \alpha=C(\alpha) \alpha \in c$. Conversely, using Theorem 2.6(i) and (iii), we see that Δ is bijective from $s_{\alpha}^{(c)}$ to $s_{\alpha}^{(c)}$ and from s_{α}° to s_{α}° since $\alpha \in \widehat{C}$ and $\hat{C} \subset \widehat{C_{1}}$. So, $\left(s_{\alpha}^{(c)}-s_{\alpha}^{\circ}\right)(\Delta)=s_{\alpha}^{(c)}-s_{\alpha}^{\circ}$.

Similarly, (iii) comes from the fact that Δ is bijective from $s_{\alpha}^{(c)}$ into itself and from s_{α} into itself, since $\alpha \in \widehat{C}$.

Remark 2.11. Assume that $\lim _{n \rightarrow \infty}[C(\alpha) \alpha]_{n}=l$. Then

$$
\begin{equation*}
\frac{x_{n}}{\alpha_{n}} \rightarrow L \text { implies } \frac{x_{n}-x_{n-1}}{\alpha_{n}} \rightarrow \frac{L}{l} \tag{2.35}
\end{equation*}
$$

Indeed, from Proposition 2.1(ii) (b), $\alpha_{n-1} / \alpha_{n} \rightarrow 1-(1 / l)$ and

$$
\begin{equation*}
\frac{x_{n}-x_{n-1}}{\alpha_{n}}=\frac{x_{n}}{\alpha_{n}}-\frac{x_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_{n}} \rightarrow L-L\left(1-\frac{1}{l}\right)=\frac{L}{l} . \tag{2.36}
\end{equation*}
$$

3. Generalization to the sets $s_{r}\left(\Delta^{h}\right)$ and $s_{\alpha}\left(\Delta^{h}\right)$ for h real. In this section, we consider the operator Δ^{h}, where h is a real, and give among other things a necessary and sufficient condition to have $s_{\alpha}\left(\Delta^{h}\right)=s_{\alpha}$.

First, recall that we can associate to any power series $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, defined in the open disk $|z|<R$, the upper triangular infinite matrix $A=\varphi(f) \in$ $\bigcup_{0<r<R} S_{r}$ defined by

$$
\varphi(f)=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & . \tag{3.1}\\
& a_{0} & a_{1} & . \\
0 & & a_{0} & . \\
& & & .
\end{array}\right)
$$

(see $[3,4,5]$). Practically, we will write $\varphi[f(z)]$ instead of $\varphi(f)$. We have the following lemma.

Lemma 3.1. (i) The map $\varphi: f \rightarrow A$ is an isomorphism from the algebra of the power series defined in $|z|<R$ into the algebra of the corresponding matrices \bar{A}.
(ii) Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, with $a_{0} \neq 0$, and assume that $1 / f(z)=\sum_{k=0}^{\infty} a_{k}^{\prime} z^{k}$ admits $R^{\prime}>0$ as radius of convergence. Then

$$
\begin{equation*}
\varphi\left(\frac{1}{f}\right)=[\varphi(f)]^{-1} \in \bigcup_{0<r<R^{\prime}} S_{r} \tag{3.2}
\end{equation*}
$$

Now, for $h \in R-N$, we define (see [13])

$$
\begin{align*}
& \binom{-h+k-1}{k}=\frac{-h(-h+1) \cdots(-h+k-1)}{k!} \quad \text { if } k>0 \\
& \binom{-h+k-1}{k}=1 \quad \text { if } k=0 \tag{3.3}
\end{align*}
$$

and putting $\Delta^{+}=\Delta^{t}$, we get for any $h \in R$,

$$
\begin{equation*}
\left(\Delta^{+}\right)^{h}=\varphi\left[(1-z)^{h}\right]=\varphi\left[\sum_{k=0}^{\infty}\binom{-h+k-1}{k} z^{k}\right] \quad \text { for }|z|<1 \tag{3.4}
\end{equation*}
$$

Then if $\Delta^{h}=\left(\boldsymbol{\tau}_{n m}\right)_{n, m}$,

$$
\tau_{n m}= \begin{cases}\binom{-h+n-m-1}{n-m} & \text { if } m \leq n \tag{3.5}\\ 0 & \text { if } m>n\end{cases}
$$

Using the isomorphism φ, we get the following proposition.
Proposition 3.2 (see [5]). (i) The operator represented by Δ is bijective from s_{r} into itself for every $r>1$, and Δ^{+}is bijective from s_{r} into itself for all r, $0<r<1$.
(ii) The operator Δ^{+}is surjective and not injective from s_{r} into itself for all $r>1$.
(iii) For all $r \neq 1$ and for every integer $\mu \geq 1,\left(\Delta^{+}\right)^{h} s_{r}=s_{r}$.
(iv) We have successively
(α) if h is a real greater than 0 and $h \notin N$, then Δ^{h} maps s_{r} into itself when $r \geq 1$, but not for $0<r<1$; if $-1<h<0$, then Δ^{h} maps s_{r} into itself when $r>1$, but not for $r=1$;
(β) if $h>0$ and $h \notin N$, then $\left(\Delta^{+}\right)^{h}$ maps s_{r} into itself when $0<r \leq 1$, but not if $r>1$; if $-1<h<0$, then $\left(\Delta^{+}\right)^{h}$ maps s_{r} into itself for $0<r<1$, but not for $r=1$.
(v) Let h be any given integer ≥ 1, Then

$$
\begin{gather*}
A \in\left(s_{r}\left(\Delta^{h}\right), s_{r}\right) \Leftrightarrow \sup _{n \geq 1}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right| r^{m-n}\right)<\infty \quad \forall r>1, \tag{3.6}\\
\left.A \in\left(s_{r}\left(\Delta^{+}\right)^{h}, s_{r}\right) \Longleftrightarrow \sup _{n \geq 1}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right| r^{m-n}\right)<\infty \quad \forall r \in\right] 0,1[.
\end{gather*}
$$

(vi) For every integer $h \geq 1$,

$$
\begin{equation*}
s_{1} \subset s_{1}\left(\Delta^{h}\right) \subset s_{\left(n^{h}\right)_{n \geq 1}} \subset \bigcap_{r>1} s_{r} \tag{3.7}
\end{equation*}
$$

(vii) If $h>0$ and $h \notin N$, then q is the greatest integer strictly less than $(h+1)$. For all $r>1$,

$$
\begin{equation*}
\operatorname{Ker}\left(\left(\Delta^{+}\right)^{h}\right) \bigcap s_{r}=\operatorname{span}\left(V_{1}, V_{2}, \ldots, V_{q}\right), \tag{3.8}
\end{equation*}
$$

where

$$
\begin{gather*}
V_{1}=e^{t}, \quad V_{2}=\left(A_{1}^{1}, A_{2}^{1}, \ldots\right)^{t} \\
V_{3}=\left(0, A_{2}^{2}, A_{3}^{2}, \ldots\right)^{t}, \ldots, \quad V_{q}=\left(0,0, \ldots, A_{q-1}^{q-1}, A_{q}^{q-1}, \ldots, A_{n}^{q-1}, \ldots\right)^{t} ; \tag{3.9}
\end{gather*}
$$

$A_{i}^{j}=i!/(i-j)!$, with $0 \leq j \leq i$, being the number of permutations of i things taken j at a time.

We give here an extension of the previous results, where s_{r} is replaced by s_{α}.
Proposition 3.3. Let h be a real greater than 0 . The condition $s_{\alpha}\left(\Delta^{h}\right)=s_{\alpha}$ is equivalent to

$$
\begin{equation*}
\gamma_{n}(h)=\frac{1}{\alpha_{n}}\left[\sum_{k=1}^{n-1}\binom{h+n-k-1}{n-k} \alpha_{k}\right]=O(1) \quad(n \rightarrow \infty) . \tag{3.10}
\end{equation*}
$$

Proof. The operator Δ^{h} is bijective from s_{α} into itself if and only if Δ^{h}, $\Sigma^{h} \in\left(s_{\alpha}, s_{\alpha}\right)$. We have $\Delta^{h} \in\left(s_{\alpha}, s_{\alpha}\right)$ if and only if

$$
\begin{equation*}
D_{1 / \alpha} \Delta^{h} D_{\alpha} \in S_{1} \tag{3.11}
\end{equation*}
$$

and using (3.5), we deduce that $\Delta^{h} \in\left(s_{\alpha}, s_{\alpha}\right)$ if and only if

$$
\begin{equation*}
\frac{1}{\alpha_{n}} \sum_{k=1}^{n}\left|\binom{-h+n-k-1}{n-k}\right| \alpha_{k}=O(1) \tag{3.12}
\end{equation*}
$$

Further, $\left(\Sigma^{t}\right)^{h}=\varphi\left[(1-z)^{-h}\right]$, where

$$
\begin{equation*}
\varphi(z)=1+\sum_{n=1}^{\infty}\binom{h+n-1}{n} z^{n} \quad \text { with }|z|<1 \tag{3.13}
\end{equation*}
$$

So, $D_{1 / \alpha} \Sigma^{h} D_{\alpha} \in S_{1}$ if and only if (3.10) holds. Finally, since $h>0$, we have

$$
\begin{equation*}
\left|\binom{-h+n-k-1}{n-k}\right| \leq\binom{ h+n-k-1}{n-k} \text { for } k=1,2, \ldots, n-1 \tag{3.14}
\end{equation*}
$$

and we conclude since (3.10) implies (3.12).
We deduce immediately the next result.
COROLLARY 3.4. Let h be an integer greater than or equal to 1 . The following properties are equivalent:
(i) $\alpha \in \widehat{C_{1}}$;
(ii) $s_{\alpha}(\Delta)=s_{\alpha}$;
(iii) $s_{\alpha}\left(\Delta^{h}\right)=s_{\alpha}$;
(iv) $C(\alpha)\left(\Sigma^{h-1} \alpha\right) \in l_{\infty}$.

Proof. From the proof of Proposition 3.3, $s_{\alpha}\left(\Delta^{h}\right)=s_{\alpha}$ is equivalent to $D_{1 / \alpha} \Sigma^{h} D_{\alpha}=C(\alpha) \Sigma^{h-1} D_{\alpha} \in S_{1}$, that is, $C(\alpha)\left(\Sigma^{h-1} \alpha\right) \in l_{\infty}$. So, (iii) and (iv) are equivalent. It remains to prove that (ii) \Leftrightarrow (iii). If $s_{\alpha}(\Delta)=s_{\alpha}, \Delta$ and consequently Δ^{h} are bijective from s_{α} into itself and condition (iii) holds. Conversely, assume that $s_{\alpha}\left(\Delta^{h}\right)=s_{\alpha}$ holds. Then (3.10) holds, and since

$$
\begin{equation*}
\binom{h+n-k-1}{n-k} \geq 1 \quad \text { for } k=1,2, \ldots, n-1 \tag{3.15}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
[C(\alpha) \alpha]_{n} \leq \gamma_{n}(h)=O(1), \quad n \rightarrow \infty . \tag{3.16}
\end{equation*}
$$

So, (i) holds and (ii) is satisfied.
4. Generalization of well-known sets. In this section, we see that under some conditions, the spaces $\widetilde{w_{\alpha}}(\lambda), \widetilde{w_{\alpha}^{\circ}}(\lambda), \widetilde{w_{\alpha}^{*}}(\lambda), \widetilde{c_{\alpha}}(\lambda, \mu), \widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)$, and $\widetilde{c_{\alpha}^{*}}(\lambda, \mu)$ can be written by means of the sets s_{ξ} or s_{ξ}°.
4.1. Sets $\widetilde{w_{\alpha}}(\lambda), \widetilde{w_{\alpha}^{\circ}}(\lambda)$, and $\widetilde{w_{\alpha}^{*}}(\lambda)$. We recall some definitions and properties of some spaces. For every sequence $X=\left(x_{n}\right)_{n}$, we define $|X|=\left(\left|x_{n}\right|\right)_{n}$ and

$$
\begin{align*}
& \widetilde{w_{\alpha}}(\lambda)=\left\{X \in s \mid C(\lambda)(|X|) \in s_{\alpha}\right\}, \\
& \widetilde{w_{\alpha}^{\circ}}(\lambda)=\left\{X \in s \mid C(\lambda)(|X|) \in s_{\alpha}^{\circ}\right\}, \tag{4.1}\\
& \widetilde{w_{\alpha}^{*}}(\lambda)=\left\{X \in s \mid X-l e^{t} \in \widetilde{w_{\alpha}^{\circ}}(\lambda) \text { for some } l \in C\right\} .
\end{align*}
$$

For instance, we see that

$$
\begin{equation*}
\widetilde{w_{\alpha}}(\lambda)=\left\{X=\left(x_{n}\right)_{n} \in s \left\lvert\, \sup _{n \geq 1}\left(\frac{1}{\left|\lambda_{n}\right| \alpha_{n}} \sum_{k=1}^{n}\left|x_{k}\right|\right)<\infty\right.\right\} . \tag{4.2}
\end{equation*}
$$

If there exist $A, B>0$ such that $A<\alpha_{n}<B$ for all n, we get the wellknown spaces $\widetilde{w_{\alpha}}(\lambda)=w_{\infty}(\lambda), \widetilde{w_{\alpha}^{\circ}}(\lambda)=w_{0}(\lambda)$, and $\widetilde{w_{\alpha}^{*}}(\lambda)=w(\lambda)$ (see [12]). It has been proved that if λ is a strictly increasing sequence of reals tending to infinity, $w_{0}(\lambda)$ and $w_{\infty}(\lambda)$ are BK spaces and $w_{0}(\lambda)$ has AK, with respect to the norm

$$
\begin{equation*}
\|X\|=\|C(\lambda)(|X|)\|_{l^{\infty}}=\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|x_{k}\right|\right) \tag{4.3}
\end{equation*}
$$

(see [1]).
We have the next result.
Theorem 4.1. Let α and λ be any sequences of U^{+*}.
(i) Consider the following properties:
(a) $\alpha_{n-1} \lambda_{n-1} / \alpha_{n} \lambda_{n} \rightarrow 0$;
(b) $s_{\alpha}^{(c)}(C(\lambda))=s_{\alpha \lambda}^{(c)}$;
(c) $\alpha \lambda \in \widehat{C_{1}}$;
(d) $\widetilde{w_{\alpha}}(\lambda)=s_{\alpha \lambda}$;
(e) $\widetilde{w_{\alpha}^{\circ}}(\lambda)=s_{\alpha \lambda}^{\circ}$;
(f) $\widetilde{w_{\alpha}^{*}}(\lambda)=s_{\alpha \lambda}^{\circ}$.

Then $(a) \Rightarrow(b),(c) \Leftrightarrow(d)$, and $(c) \Rightarrow(e)$ and (f).
(ii) If $\alpha \lambda \in \widehat{C_{1}}, \widetilde{w_{\alpha}}(\lambda), \widetilde{w_{\alpha}^{\circ}}(\lambda)$, and $\widetilde{w_{\alpha}^{*}}(\lambda)$ are $B K$ spaces with respect to the norm

$$
\begin{equation*}
\|X\|_{s_{\alpha \lambda}}=\sup _{n \geq 1}\left(\frac{\left|x_{n}\right|}{\alpha_{n} \lambda_{n}}\right), \tag{4.4}
\end{equation*}
$$

and $\widetilde{w_{\alpha}^{\circ}}(\lambda)=\widetilde{w_{\alpha}^{*}}(\lambda)$ has $A K$.
Proof. (i) First, we prove that (a) \Rightarrow (b). We have

$$
\begin{equation*}
s_{\alpha}^{(c)}(C(\lambda))=\Delta(\lambda) s_{\alpha}^{(c)}=\Delta D_{\lambda} s_{\alpha}^{(c)}=\Delta s_{\alpha \lambda}^{(c)} \tag{4.5}
\end{equation*}
$$

and from Proposition 2.1(i) and Theorem 2.6(iii), we get successively $\alpha \lambda \in \hat{C}$, $\Delta s_{\alpha \lambda}^{(c)}=s_{\alpha \lambda}^{(c)}$, and (b) holds.
(c) \Leftrightarrow (d). Assume that (c) holds. Then

$$
\begin{equation*}
\widetilde{w_{\alpha}}(\lambda)=\left\{X| | X \mid \in \Delta(\lambda) s_{\alpha}\right\} . \tag{4.6}
\end{equation*}
$$

Since $\Delta(\lambda)=\Delta D_{\lambda}$, we get $\Delta(\lambda) s_{\alpha}=\Delta s_{\alpha \lambda}$. Now, using (c), we see that Δ is bijective from $s_{\alpha \lambda}$ into itself and $w_{\alpha}(\lambda)=s_{\alpha \lambda}$. Conversely, assume that $w_{\alpha}(\lambda)=$ $s_{\alpha \lambda}$. Then $\alpha \lambda \in s_{\alpha \lambda}$ implies that $C(\lambda)(\alpha \lambda) \in s_{\alpha}$, and since $D_{1 / \alpha} C(\lambda)(\alpha \lambda) \in s_{1}=$ l_{∞}, we conclude that $C(\alpha \lambda)(\alpha \lambda) \in l_{\infty}$. The proof of (c) $\Rightarrow(\mathrm{e})$ follows on the same lines of the proof of $(\mathrm{c}) \Rightarrow(\mathrm{d})$ replacing $s_{\alpha \lambda}$ by $s_{\alpha \lambda}^{\circ}$.

We prove that (c) implies (f). Take $X \in \widetilde{w_{\alpha}^{*}}(\lambda)$. There is a complex number l such that

$$
\begin{equation*}
C(\lambda)\left(\left|X-l e^{t}\right|\right) \in s_{\alpha}^{\circ} . \tag{4.7}
\end{equation*}
$$

So

$$
\begin{equation*}
\left|X-l e^{t}\right| \in \Delta(\lambda) s_{\alpha}^{\circ}=\Delta s_{\alpha \lambda}^{\circ}, \tag{4.8}
\end{equation*}
$$

and from Theorem 2.6(ii), $\Delta s_{\alpha \lambda}^{\circ}=s_{\alpha \lambda}^{\circ}$. Now, since (c) holds, we deduce from Proposition 2.1(iii) that $\alpha_{n} \lambda_{n} \rightarrow \infty$ and $l e^{t} \in s_{\alpha \lambda}^{\circ}$. We conclude that $X \in \widetilde{w_{\alpha}^{*}}(\lambda)$ if and only if $X \in l e^{t}+s_{\alpha \lambda}^{\circ}=s_{\alpha \lambda}^{\circ}$.

Assertion (ii) is a direct consequence of (i).
4.2. Sets $\widetilde{c_{\alpha}}(\lambda, \mu), \widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)$, and $\widetilde{c_{\alpha}^{*}}(\lambda, \mu)$. Let $\alpha=\left(\alpha_{n}\right)_{n} \in U^{+*}$ be a given sequence, we consider now for $\lambda \in U, \mu \in s$ the space

$$
\begin{equation*}
\widetilde{c_{\alpha}}(\lambda, \mu)=\left(w_{\alpha}(\lambda)\right)_{\Delta(\mu)}=\left\{X \in s \mid \Delta(\mu) X \in w_{\alpha}(\lambda)\right\} \tag{4.9}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\widetilde{\mathcal{c}_{\alpha}}(\lambda, \mu)=\left\{X \in s \mid C(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}\right\}, \tag{4.10}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\widetilde{\mathcal{c}_{\alpha}}(\lambda, \mu)=\left\{X=\left(x_{n}\right)_{n} \in s \left\lvert\, \sup _{n \geq 2}\left(\frac{1}{\left|\lambda_{n}\right| \alpha_{n}} \sum_{k=2}^{n}\left|\mu_{k} x_{k}-\mu_{k-1} x_{k-1}\right|\right)<\infty\right.\right\} \tag{4.11}
\end{equation*}
$$

see [1]. Similarly, we define the following sets:

$$
\begin{align*}
& \widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)=\left\{X \in s \mid C(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}^{\circ}\right\}, \\
& \widetilde{c_{\alpha}^{*}}(\lambda, \mu)=\left\{X \in s \mid X-l e^{t} \in \widetilde{c_{\alpha}^{\circ}}(\lambda, \mu) \text { for some } l \in C\right\} . \tag{4.12}
\end{align*}
$$

Recall that if $\lambda=\mu$, it is written that $c_{0}(\lambda)=\left(w_{0}(\lambda)\right)_{\Delta(\lambda)}$,

$$
\begin{equation*}
c(\lambda)=\left\{X \in s \mid X-l e^{t} \in c_{0}(\lambda) \text { for some } l \in C\right\}, \tag{4.13}
\end{equation*}
$$

and $c_{\infty}(\lambda)=\left(w_{\infty}(\lambda)\right)_{\Delta(\lambda)}$, see [11]. It can be easily seen that

$$
\begin{equation*}
c_{0}(\lambda)=\widetilde{c_{e}^{e}}(\lambda, \lambda), \quad c_{\infty}(\lambda)=\widetilde{c_{e}}(\lambda, \lambda), \quad c(\lambda)=\widetilde{c_{e}^{*}}(\lambda, \lambda) . \tag{4.14}
\end{equation*}
$$

These sets of sequences are called strongly convergent to 0 , strongly convergent, and strongly bounded. If $\lambda \in U^{+*}$ is a sequence strictly increasing to infinity, $c(\lambda)$ is a Banach space with respect to

$$
\begin{equation*}
\|X\|_{c_{\infty}(\lambda)}=\sup _{n \geq 1}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|\lambda_{k} x_{k}-\lambda_{k-1} x_{k-1}\right|\right) \tag{4.15}
\end{equation*}
$$

with the convention $x_{0}=0$. Each of the spaces $c_{0}(\lambda), c(\lambda)$, and $c_{\infty}(\lambda)$ is a BK space, relatively to the previous norm (see [1]). The set $c_{0}(\lambda)$ has AK and every $X \in c(\lambda)$ has a unique representation given by

$$
\begin{equation*}
X=l e^{t}+\sum_{k=1}^{\infty}\left(x_{k}-l\right) e_{k}^{t}, \tag{4.16}
\end{equation*}
$$

where $X-l e^{t} \in c_{0}$. The scalar l is called the strong $c(\lambda)$-limit of the sequence X.

We obtain the next result.
Theorem 4.2. Let α, λ, and μ be sequences of U^{+*}.
(i) Consider the following properties:
(a) $\alpha \lambda \in \widehat{C_{1}}$;
(b) $\widetilde{c_{\alpha}}(\lambda, \mu)=s_{\alpha(\lambda / \mu)}$;
(c) $\widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)=s_{\alpha(\lambda / \mu)}^{\circ}$;
(d) $\widetilde{c_{\alpha}^{*}}(\lambda, \mu)=\left\{X \in s \mid X-l e^{t} \in s_{\alpha(\lambda / \mu)}^{\circ}\right.$ for some $\left.l \in C\right\}$.

Then (a) $\Leftrightarrow(b)$ and (a) \Rightarrow (c) and (d).
(ii) If $\alpha \lambda \in \widehat{c_{1}}$, then $\widetilde{c_{\alpha}}(\lambda, \mu), \widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)$, and $\widetilde{c_{\alpha}^{*}}(\lambda, \mu)$ are BK spaces with respect to the norm

$$
\begin{equation*}
\|X\|_{s_{\alpha(\lambda / \mu)}}=\sup _{n \geq 1}\left(\mu_{n} \frac{\left|x_{n}\right|}{\alpha_{n} \lambda_{n}}\right) . \tag{4.17}
\end{equation*}
$$

The set $\widetilde{c_{\alpha}^{\circ}}(\lambda, \mu)$ has $A K$ and every $X \in \widetilde{c_{\alpha}^{*}}(\lambda, \mu)$ has a unique representation given by (4.16), where $X-l e^{t} \in s_{\alpha(\lambda / \mu)}^{\circ}$.

Proof. We show that (a) $\Rightarrow(\mathrm{b})$. Take $X \in c_{\alpha}(\lambda, \mu)$. We have $\Delta(\mu) X \in w_{\alpha}(\lambda)$, which is equivalent to

$$
\begin{equation*}
X \in C(\mu) s_{\alpha \lambda}=D_{1 / \mu} \Sigma s_{\alpha \lambda} \tag{4.18}
\end{equation*}
$$

and using Theorem 2.6(i), Δ and consequently Σ are bijective from $s_{\alpha \lambda}$ into itself. So, $\Sigma s_{\alpha \lambda}=s_{\alpha \lambda}$ and $X \in D_{1 / \mu} \Sigma s_{\alpha \lambda}=s_{\alpha(\lambda / \mu)}$. We conclude that (b) holds. We prove that (b) implies (a). First, put $\widetilde{\alpha}_{\lambda, \mu}=\left((-1)^{n}\left(\lambda_{n} / \mu_{n}\right) \alpha_{n}\right)_{n \geq 1}$. We have
$\widetilde{\alpha}_{\lambda, \mu} \in s_{\alpha(\lambda / \mu)}=\widetilde{c_{\alpha}}(\lambda, \mu)=s_{\alpha(\lambda / \mu)}$, and since $\Delta(\mu)=\Delta D_{\mu}$ and $D_{\mu} \widetilde{\alpha}_{\lambda, \mu}=$ $\left((-1)^{n} \lambda_{n} \alpha_{n}\right)_{n \geq 1}$, we get $\left|\Delta(\mu) \widetilde{\alpha}_{\lambda, \mu}\right|=\left(\xi_{n}\right)_{n \geq 1}$, with

$$
\xi_{n}= \begin{cases}\lambda_{1} \alpha_{1} & \text { if } n=1 \tag{4.19}\\ \lambda_{n-1} \alpha_{n-1}+\lambda_{n} \alpha_{n} & \text { if } n \geq 2\end{cases}
$$

From (b), we deduce that $\Sigma\left|\Delta(\mu) \widetilde{\alpha}_{\lambda, \mu}\right| \in s_{\alpha \lambda}$. This means that

$$
\begin{equation*}
C_{n}^{\prime}=\frac{1}{\alpha_{n} \lambda_{n}}\left(\lambda_{1} \alpha_{1}+\sum_{k=2}^{n}\left(\lambda_{k-1} \alpha_{k-1}+\lambda_{k} \alpha_{k}\right)\right)=O(1), \quad n \rightarrow \infty . \tag{4.20}
\end{equation*}
$$

From the inequality

$$
\begin{equation*}
[C(\alpha \lambda)(\alpha \lambda)]_{n} \leq C_{n}^{\prime}, \tag{4.21}
\end{equation*}
$$

we obtain (a). The proof of $(a) \Rightarrow$ (c) follows on the same lines of the proof of (a) \Rightarrow (b) with s_{α} replaced by s_{α}°.

We show that (a) implies (d). Take $X \in \widetilde{c_{\alpha}^{*}}(\lambda, \mu)$. There exists $l \in C$ such that

$$
\begin{equation*}
\Delta(\mu)\left(X-l e^{t}\right) \in \widetilde{w_{\alpha}^{\circ}}(\lambda) \tag{4.22}
\end{equation*}
$$

and from $(\mathrm{c}) \Rightarrow(\mathrm{e})$ in Theorem 4.1, we have $\widetilde{w_{\alpha}^{\circ}}(\lambda)=s_{\alpha \lambda}^{\circ}$. So

$$
\begin{equation*}
X-l e^{t} \in C(\mu) s_{\alpha \lambda}^{\circ}=D_{1 / \mu} \Sigma s_{\alpha \lambda}^{\circ}, \tag{4.23}
\end{equation*}
$$

and from Theorem 2.6(ii), $\Sigma s_{\alpha \lambda}^{\circ}=s_{\alpha \lambda}^{\circ}$, and $D_{1 / \mu} \Sigma s_{\alpha \lambda}^{\circ}=s_{\alpha(\lambda / \mu)}^{\circ}$, we conclude that $X \in \widetilde{c_{\alpha}^{*}}(\lambda, \mu)$ if and only if $X \in l e^{t}+s_{\alpha(\lambda / \mu)}^{\circ}$ for some $l \in C$.

Assertion (ii) is a direct consequence of (i) and of the fact that for every $X \in \widetilde{c_{\alpha}^{*}}(\lambda)$, we have

$$
\begin{equation*}
\left\|X-l e^{t}-\sum_{k=1}^{N}\left(x_{k}-l\right) e_{k}^{t}\right\|_{s_{\alpha(\lambda / \mu)}}=\sup _{n \geq N+1}\left(\mu_{n} \frac{\left|x_{n}-l\right|}{\alpha_{n} \lambda_{n}}\right)=o(1), \quad N \rightarrow \infty . \tag{4.24}
\end{equation*}
$$

We deduce immediately the following corollary.
Corollary 4.3. Assume that $\alpha, \lambda, \mu \in U^{+*}$.
(i) If $\alpha \lambda \in \widehat{C_{1}}$ and $\mu \in l_{\infty}$, then

$$
\begin{equation*}
\widetilde{c_{\alpha}^{*}}(\lambda, \mu)=s_{\alpha(\lambda / \mu)}^{\circ} . \tag{4.25}
\end{equation*}
$$

(ii) Then

$$
\begin{equation*}
\lambda \in \Gamma \Rightarrow \lambda \in \widehat{C_{1}} \Longrightarrow c_{0}(\lambda)=s_{\lambda}^{\circ}, \quad c_{\infty}(\lambda)=s_{\lambda} \tag{4.26}
\end{equation*}
$$

Proof. (i) Since $\mu \in l_{\infty}$, we deduce, using Proposition 2.1(iii), that there are $K>0$ and $\gamma>1$ such that

$$
\begin{equation*}
\frac{\alpha_{n} \lambda_{n}}{\mu_{n}} \geq K \gamma^{n} \quad \forall n \tag{4.27}
\end{equation*}
$$

So, $l e^{t} \in s_{\alpha(\lambda / \mu)}^{\circ}$ and (4.25) holds. (ii) comes from Theorem 4.2 since $\Gamma \subset \widehat{C_{1}}$.

Example 4.4. We denote by \tilde{e} the base of the natural system of logarithms. From the well-known Stirling formula, we have

$$
\begin{equation*}
\frac{n^{n+1 / 2}}{n!} \sim \tilde{e}^{n} \frac{1}{\sqrt{2 \pi}}, \tag{4.28}
\end{equation*}
$$

so $s_{\left(n^{n+(1 / 2)} / n!\right)_{n}}=s_{\tilde{e}}$. Further, $\lambda=\left(n^{n} / n!\right)_{n} \in \Gamma$ since

$$
\begin{equation*}
\frac{\lambda_{n-1}}{\lambda_{n}}=\widetilde{e}^{-(n-1) \ln (1+1 /(n-1))} \rightarrow \frac{1}{\widetilde{e}}<1 . \tag{4.29}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\widetilde{c_{e}^{\circ}}\left(\left(\frac{n^{n}}{n!}\right)_{n},\left(\frac{1}{\sqrt{n}}\right)_{n}\right)=s_{\widetilde{e}}^{\circ}, \quad \widetilde{c_{e}}\left(\left(\frac{n^{n}}{n!}\right)_{n},\left(\frac{1}{\sqrt{n}}\right)_{n}\right)=s_{\widetilde{e}} . \tag{4.30}
\end{equation*}
$$

References

[1] A. M. Al-Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo (2) Suppl. (1998), no. 52, 177-191.
[2] B. de Malafosse, Some properties of the Cesàro operator in the space s_{r}, Comm. Fac. Sci. Univ. Ankara Ser. A Math. Statist. 48 (1999), no. 1-2, 53-71.
[3] , Bases in sequence spaces and expansion of a function in a series of power series, Mat. Vesnik 52 (2000), no. 3-4, 99-112.
[4] ,___, Application of the sum of operators in the commutative case to the infinite matrix theory, Soochow J. Math. 27 (2001), no. 4, 405-421.
[5] _ Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), no. 2, 283-299.
[6] , Recent results in the infinite matrix theory, and application to Hill equation, Demonstratio Math. 35 (2002), no. 1, 11-26.
[7] , Variation of an element in the matrix of the first difference operator and matrix transformations, Novi Sad J. Math. 32 (2002), no. 1, 141-158.
[8] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 2, 277-294.
[9] R. Labbas and B. de Malafosse, On some Banach algebra of infinite matrices and applications, Demonstratio Math. 31 (1998), no. 1, 153-168.
[10] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Mathematics, vol. 786, Springer-Verlag, Berlin, 1980.
[11] F. Móricz, On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar. 54 (1989), no. 3-4, 319-327.
[12] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing, Amsterdam, 1984.
[13] K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, Zweite, erweiterte und verbesserte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 15, Springer-Verlag, Berlin, 1970 (German).

Bruno de Malafosse: Laboratoire de Mathematiques Appliquées Havrais, Institut Universitaire de Technologie Le Havre, Université du Havre, BP 4006, 76610 Le Havre, France

E-mail address: bdemalaf@europost.org

