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A one-to-one correspondence is established between the germs of functions and
tangent vectors on a NOS X and the bi-germs of functions, respectively, elemen-
tary fields of tangent vectors (EFTV) on the orientable double cover of X. Some
representation theorems for the algebra of germs of functions, the tangent space
at an arbitrary point of X, and the space of vector fields on X are proved by us-
ing a symmetrisation process. An example related to the normal derivative on the
border of the Möbius strip supports the nontriviality of the concepts introduced
in this paper.
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1. Introduction. It was Felix Klein who first had the idea that, in order to

do more than topology on NOS, they should be endowed with dianalytic struc-

tures. This was exploited much later by Schiffer and Spencer [13], who under-

took, for the first time, the analysis of NOS. In the monograph [2], the category

of Klein surfaces was introduced, and, in [3], Andreian Cazacu clarified com-

pletely the concept of morphism of Klein surfaces. She proved that the interior

transformations of Stoïlow [14], on which he had based his topological prin-

ciples of analytic functions, are essential in the definition of the morphisms

of Klein surfaces. The category of Riemann surfaces appears as a subcategory

of the category of Klein surfaces. Moreover, since the last one contains border

free, as well as bordered surfaces, it also contains the subcategory of bordered

Riemann surfaces. For this reason, if the contrary is not explicitly mentioned,

by a surface, Riemann surface, or Klein surface, we will understand in this

paper a bordered or a bordered free surface, respectively Riemann surface or

Klein surface.

In this paper, the methods used in [4, 5, 6, 7, 8] are extended to the study

of vector fields on NOS. The extension required new concepts and techniques.

The first three sections present the general frame of the problems we are

dealing with and which are based on a result of Felix Klein (Theorem 2.1).

In section 4, the concept of bi-germ of functions on a symmetric Riemann

surface is defined.

In Section 5, the operators of symmetrisation/antisymmetrisation of the bi-

germs are introduced. Both operators play a basic role in analysis on nonori-

entable surfaces.

http://dx.doi.org/10.1155/S0161171203204038
http://dx.doi.org/10.1155/S0161171203204038
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


134 I. BARZA AND D. GHISA

Section 6 deals with the study of vector fields on symmetric Riemann sur-

faces and on NOS. A symmetrisation process, dual to the symmetrisation of

bi-germs, is defined. The connection between the vector fields on a nonori-

entable Klein surface and the vector fields on its orientable double covering is

given (Theorem 6.2).

In Section 7, we give the detailed construction of the unit normal vector field

to the border of the Möbius strip.

2. Prerequisites. Let X be a surface. If p ∈ X, a chart at p is a couple (U,ϕ)
consisting of an open neighborhood U of p and a homeomorphism ϕ :U → V
where V is a relatively open subset of the closed upper half-plane

C+ := {z ∈ C | Im(z)≥ 0
}
. (2.1)

A dianalytic atlas on X is a family of charts �= {(Uα,ϕα) |α∈ I} such that

X=⋃α∈I Uα and, for every two charts (Uα,ϕα) and (Uβ,ϕβ)∈�, the transfer

function ϕβ ◦ϕ−1
α is either conformal or anticonformal on each connected

component of ϕα(Uα∩Uβ).
The couple (X,�) is called a Klein surface if � is a maximal dianalytic atlas

on X.

We notice that a Klein surface can be an orientable as well as a nonorientable

surface. However, the universal covering X̂ of any Klein surface X, being sim-

ply connected, is necessarily orientable. Consequently, there is a conformal

structure on X̂ that makes the canonical projection

p : X̂ �→ X (2.2)

locally analytic or antianalytic in terms of each chart; we call such a map dian-

alytic.

Let � be the group of covering transformations of X̂ over X. Some elements

of � might be conformal and some anticonformal mappings of X̂ on itself. If

X is a nonorientable Klein surface, then � contains necessarily anticonformal

mappings. Suppose that this is the case and let �1 be the subgroup of � formed

with all its conformal elements. Then, the orbit space

�2 := �2(X) := X̂/�1 (2.3)

is an orientable surface. Moreover, �2 has a unique analytic structure, which

makes the canonical projection

π : X̂ �→ �2 (2.4)
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an analytic mapping. If g ∈ �\�1, then � = �1∪g�1 and �1∩g�1 =∅. There-

fore, we can define

h : �2 �→ �2 (2.5)

by h(x̂) := ĝx, where ŷ is the fiber of y ∈ X̂ with respect to π : X̂→ �2, that is,

ŷ = {gy | g ∈ �1}.
Obviously, h is an antianalytic involution since g ∈ �\�1 and g2 ∈ �1. It is

fixed point free since h(x̂)= x̂ would imply g ∈ �1, contrary to the hypothesis.

Klein called symmetry an involution of a Riemann surface of the type pre-

viously described. There are lots of other types of symmetries (see, e.g., [1,

2, 10, 11], and so on); however, in this paper, we will only use the concept of

symmetry in the sense of Klein.

The following theorem has its origins in Klein’s works.

Theorem 2.1. If (�2,h) is a symmetric Riemann surface and if 〈h〉 is the

two-element group generated by h, then the covering projection

q : �2 �→ �2/〈h〉 (2.6)

induces a structure of nonorientable Klein surface on �2/〈h〉 with respect to

which q is a morphism of Klein surfaces.

Conversely, if X is a nonorientable Klein surface, there exists a symmetric

Riemann surface (�2,h) such that X is dianalytically equivalent to �2/〈h〉.
We call �2 := �2(X) the orientable double cover of X, and we notice that this

concept is different from those defined by other types of symmetries.

3. Vector fields. Let X be a Klein surface. For P ∈ X, we denote by �∞(P) the

algebra of germs of complex functions defined on neighborhoods of P whose

real and imaginary parts are functions of class �∞. To every differentiable

curve α : ]−ε,ε[→ X (ε > 0 and α(0)= P), we associate the operator

�→
XP,α = �→

XP : �∞(P) �→ C (3.1)

defined by

�→
XP(f) := d(f ◦α)

dt
(0), (3.2)

for every f ∈ �∞(P). The map
�→
XP is a linear operator and satisfies Leibniz

rule for the derivation of the product of functions. This operator
�→
XP is called

a tangent vector at P to X. The vector space TPX of all tangent vectors at P to

X is called the tangent space at P to X.
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If (U,ϕ) is a chart at P and if ϕ(Q)= (x,y) are the local coordinates in U,
ϕ(P)= (0,0), then x→ϕ−1(x,0) and y →ϕ−1(0,y), the so-called coordinate

curves at P , determine a basis for TPX

�=�(U,ϕ) :=
{(

∂
∂x

)
P
,
(
∂
∂y

)
P

}
(3.3)

defined by (
∂
∂x

)
P
(f ) := ∂

(
f ◦ϕ−1

)
∂x

(
ϕ(P)

)
,(

∂
∂y

)
P
(f ) := ∂

(
f ◦ϕ−1

)
∂y

(
ϕ(P)

)
,

(3.4)

where ∂/∂x and ∂/∂y are the usual partial derivatives in the complex plane C.

(See, e.g., [9, 11, 12].)

Every
�→
XP ∈ TPX has the form

�→
XP =X1(P)

(
∂
∂x

)
P
+X2(P)

(
∂
∂y

)
P
, (3.5)

where X1(P) and X2(P) are complex coefficients.

The tangent bundle of X is the set

TX :=
⋃
P∈X

TPX. (3.6)

It is well known that TX has a canonical structure of differential manifold of

real dimension 4.

If A is a subset of X, a vector field on A is any function

�→
X :A �→ TX (3.7)

such that
�→
X(P) := �→

XP ∈ TPX for every P ∈A.

In particular, for a chart (U,ϕ), we have the vector fields ∂/∂x and ∂/∂y

∂
∂x
,
∂
∂y

:U �→ TX, (3.8)

P → (∂/∂x)(P) := (∂/∂x)P , respectively, P → (∂/∂y)(P) := (∂/∂y)P as defined

by (3.4).

If
�→
X :A→ TX is a vector field of class �∞, then the restriction of

�→
X to U has

the form

�→
XU =X1 ∂

∂x
+X2 ∂

∂y
, (3.9)

where X1,X2 :U → C are functions of class �∞ on U .
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We will study in more detail the vector fields on X and �2 := �2(X).

4. Bi-germs of functions on �2. In all what follows, X will be a nonorientable

Klein surface, �2 := �2(X) will be the corresponding double cover of X, h will

be the symmetry of �2 as in Theorem 2.1, and X will be identified with the orbit

space �2/〈h〉. The map q : �2 → �2/〈h〉 will be the canonical projection.

Different parametric disks or half-disks, if centered on the border �(X), will

be evenly covered by q. Then, the inverse image by q of such a parametric disk

(half-disk) D̃ consists of a pair D and hD of symmetric disks (half-disks) on �2

q−1(D̃)=D∪hD, D∩hD =∅. (4.1)

This brings us to the necessity of considering germs of �∞-functions on sym-

metric subsets of �2 as defined next.

For P ∈ �2, we denote by {P ;hP} the orbit of P with respect to 〈h〉 and by

P̃ = h̃P the image by q of P and hP on X := �2/〈h〉.
Since q is a dianalytic map, if F : X → C is a function of class �∞ or if F is

harmonic or dianalytic, then so is F ◦q and vice versa.

A subset Σ of �2 will be called symmetric if it is h-invariant, that is, hΣ= Σ.

Obviously, the restriction of h to any symmetric set Σ continues to be an invo-

lution.

In the study of local properties of functions at points P̃ ∈ X, we only need

symmetric neighborhoods of {P ;hP}. Such a neighborhood is, by definition, a

subset Σ such that there is a parametric disk (half disk)D centered at P ,D ⊂ Σ.

Implicitly, hD is a parametric disk (half disk) centered at hP and D∪hD ⊆ Σ.

If � is the family of parametric disks (half-disks) centered at P , the family

{D∪hD | D ∈ �} is a fundamental system of symmetric neighborhoods of

{P ;hP}. If D∩hD =∅, then

D̃ := {P̃ | P ∈D} (4.2)

is a parametric disk (half-disk) on X, and it is evenly covered by q. Let �∞(P̃)
be the algebra of germs of functions of class �∞ at P̃ , and let FP̃ ∈�∞(P̃).

We will denote by F any class representative of the germ FP̃ , and we will

consider that the domain of F is a disk or a half-disk as previously defined

(i.e., evenly covered by q). The functions fP := F ◦qD and fhP := F ◦qhD (qD and

qhD being the restrictions of q to D and, respectively, to hD) are functions of

class �∞. Having in mind the conventional notations, we can write

fP ∈�∞(P), fhP ∈�∞(hP). (4.3)



138 I. BARZA AND D. GHISA

Thus, the germ FP̃ induces on X the two-element set of germs {fP ;fhP}. This

set is a nonordered pair of elements of the set �∞(P)∪�∞(hP), with the pair

having an element in each member of this union. With this preparation in mind,

we can give the following definition.

Definition 4.1. A bi-germ of class �∞ at {P ;hP} is a function

χ :
{
P ;hP

}
�→�∞(P)∪�∞(hP) (4.4)

such that χ(Q)∈�∞(Q) for every Q∈ {P ;hP}.
We denote by �∞(P ;hP) the set of bi-germs of class �∞ at {P ;hP}. The alge-

braic operations in �∞(P ;hP) are the natural operations induced by the algebra

�∞(Q), that is, for arbitrary χ,λ∈�∞(P ;hP), Q∈ {P ;hP}, and a∈ C,

(χ+λ)(Q) := χ(Q)+λ(Q),
(χλ)(Q) := χ(Q)λ(Q),
(aχ)(Q) = aχ(Q).

(4.5)

Obviously, �∞(P ;hP)with these operations is a commutative algebra with unit.

We call it the algebra of bi-germs of class �∞ at {P ;hP}.
Remark 4.2. The algebra �∞(P ;hP) is not the product algebra �∞(P)×

�∞(hP) since the last one consists of ordered pairs of germs.

It is convenient to denote the bi-germ χ ∈ �∞(P ;hP) by {χP ;χhP}. The two

germs χP ∈ �∞(P) and χhP ∈ �∞(hP) are different, and, generally, there is no

connection between them. With these notations, the algebraic operations in

�∞(P ;hP) become

{
χP ;χhP

}+{λP ;λhP
}= {χP +λP ;χhP +λhP

}
, and so on. (4.6)

The pullback algebra isomorphism of �∞(hP) onto �∞(P) induced by h is

usually denoted by h∗P

h∗P : �∞(hP) �→�∞(P), h∗P (f ) := f ◦h, (4.7)

(where f ◦h is the germ at P of f ◦hhD , D being the domain of f ). Obviously,

the inverse of h∗P is h∗hP : �∞(P)→ �∞(hP). It is also obvious that h∗P and h∗hP
are different maps.



VECTOR FIELDS ON NONORIENTABLE SURFACES 139

The involution h : {P,hP} → {P,hP} also induces a pullback map defined as

follows and denoted, to avoid confusions, by hb

hb : �∞(P ;hP) �→�∞(P ;hP), hb
({
χP ;χhP

})
:= {h∗P (χhP

)
;h∗hP

(
χP
)}
. (4.8)

The algebraic properties of h∗P imply that hb is an involutive algebra isomor-

phism.

We now consider F ∈�∞(P̃). It induces the bi-germ

qb(F) := {q∗P (F);q∗hP (F)}∈�∞(P ;hP). (4.9)

In this way, we obtain the map

qb : �∞
(
P̃
)
�→�∞(P ;hP). (4.10)

The main properties of qb are given in the following proposition.

Proposition 4.3. (i) The map qb is an injective algebra morphism;

(ii) hb ◦qb = qb, that is, qb is hb-left invariant;

(iii) qb(�∞(P̃))= {χ | hb(χ)= χ}.
Proof. The assertions (i) and (ii) are obvious. According to (ii), qb(�∞(P̃))

consists of bi-germs which are hb-invariant, that is, qb(�∞(P̃))⊆ {χ | hb(χ)=
χ}.

Reciprocally, let χ = {χP ;χhP} be an hb-invariant bi-germ. We have the fol-

lowing equivalences:

hb(χ)= χ⇐⇒ {
h∗P
(
χhP

)
;h∗hP

(
χP
)}= {χP ;χhP

}⇐⇒ h∗P
(
χhP

)= χP ,
h∗hP

(
χP
)= χhP ⇐⇒ h∗P

(
χhP

)= χP (4.11)

(because h∗hP = (h∗P )−1).

If D is a disk or (half-disk) centered at P such that D∩hD =∅, we consider

the map q−1
D , the inverse of qD :D→ D̃.

Let (q−1
D )

∗
P̃ be the pullback algebra isomorphism induced by q−1

D . With

h∗P (χhP )= χP ∈�∞(P), we get successively:

�∞(P̃)� F := (q−1
D
)∗
P̃
(
χP
)= (q−1

D
)∗
P̃
(
h∗P
(
χhP

))= ((q−1
D )

∗
P̃ ◦h∗P

)
(χhP

)
= (h◦q−1

D
)∗
P̃
(
χhP

)= (q−1
hD
)∗
P̃
(
χhP

)
,

qb(F)= {q∗P (F);q∗hP (F)}= {χP ;χhP
}
;

(4.12)

thus, χ ∈ qb(�∞(P̃)). Finally, {χ | hb(χ)= χ} ⊆ qb(�∞(P̃)).
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The main assertion of this section is that finding the germs of �∞-functions

at P̃ is equivalent to finding the hb-invariant elements of �∞(P ;hP).
We will study the hb-invariant bi-germs in the next section.

5. Symmetrisation and antisymmetrisation. We consider an arbitrary bi-

germ χ ∈�∞(P ;hP). We define the bi-germ �χ by

�χ := 1
2

(
χ+hbχ

)= {1
2

(
χP +h∗P

(
χhP

))
;
1
2

(
χhP +h∗hP

(
χP
))}

. (5.1)

It is obvious that the equality hb(χ) = χ is equivalent to �χ = χ, that is, hb

and � have the same set of fixed points. Thus, the difference χ−�χ gives

an “estimation” of the deviation of χ from hb-invariance. This prompts us to

define a new operator � : �∞(P ;hP)→�∞(P ;hP) by

�χ := χ−�χ = 1
2

(
χ−hbχ

)
. (5.2)

Clearly, the equality �χ = χ is equivalent to hb(χ) = −χ. In this way, we are

led to the following definition.

Definition 5.1. A bi-germ χ ∈�∞(P ;hP) is called symmetric or h-invariant

(resp., antisymmetric or h-antiinvariant) if and only if hb(χ)= χ (resp., hb(χ)=
−χ).

Thus, the symmetric bi-germs are the fixed points of � and the antisymmet-

ric ones are the fixed points of �. We denote by 	 the identity of �∞(P ;hP).
The following theorem gives the most important properties of the operators

� and �.

Theorem 5.2. (A) (�,�) is a pair of orthogonal projectors of �∞(P ;hP), that

is, the following five assertions hold:

(i) �,� : �∞(P ;hP)→�∞(P ;hP) are linear operators;

(ii) �◦�=� and �◦�=�;

(iii) �◦�=�◦�= 0= the null operator of �∞(P ;hP);
(iv) �+�= 	= the identity of �∞(P ;hP);
(v) �−�=hb = an involution of �∞(P ;hP).

(B) With the notations µs :=�µ and µa :=�µ for µ ∈�∞(P ;hP), we have

(vi) (µλ)s = µsλs+µaλa;

(vii) (µλ)a = µsλa+µaλs , for every µ,λ∈�∞(P ;hP).

Proof. (i) The linearity of 	 and hb, together with the equalities �= (1/2)
(	+hb) and �= (1/2)(	−hb), implies that � and � are linear.

(ii) �◦�= (1/2)(	+hb)◦(1/2)(	+hb)= (1/4)(	+2hb+hb◦hb)=(1/4)(2	+
2hb)=�. Analogously, �◦�=�.

(iii) �◦� = (1/2)(	+hb)◦(1/2)(	−hb)= (1/4)(	−hb ◦hb)= 0 since hb is

an involution. Analogously, �◦�=0.
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(iv) and (v) are clear. Now we shall prove (vi).

(vi) The assertions

µsλs+µaλa = 1
4

(
µ+hbµ

)(
λ+hbλ

)+ 1
4

(
µ−hbµ

)(
λ−hbλ

)
= 1

4

[
µλ+µhbλ+(hbµ)λ+(hbµ)(hbλ)]

+ 1
4

[
µλ−µhbλ−(hbµ)λ+(hbµ)(hbλ)]

= 1
4

[
2µλ+2

(
hbµ

)(
hbλ

)]
= 1

2

[
µλ+hb(µλ)

]
=�(µλ)= (µλ)s.

(5.3)

In a similar way, we prove (vii).

Having in view Proposition 4.3(iii) and the properties of � and �, the follow-

ing notations are justified:

�∞s (P ;hP) := {χ ∈�∞(P ;hP) | hbχ = χ},
�∞a (P ;hP) := {χ ∈�∞(P ;hP) | hbχ =−χ}. (5.4)

Clearly, �∞s (P ;hP) = ��∞(P ;hP) and �∞a (P ;hP) = ��∞(P ;hP). These equal-

ities are consequences of Theorem 5.2 and of the equivalences hbχ = χ �
�χ = χ and hbχ =−χ��χ = χ.

The proofs of the following two corollaries of Theorem 5.2 are straightfor-

ward.

Corollary 5.3. (i) If µ,λ ∈ �∞s (P ;hP) or µ,λ ∈ �∞a (P ;hP), then λµ ∈
�∞s (P ;hP);

(ii) If λ∈�∞s (P ;hP) and µ ∈�∞a (P ;hP), then λµ ∈�∞a (P ;hP).

Corollary 5.4. The set �∞s (P ;hP) is a subalgebra of �∞(P ;hP), but

�∞a (P ;hP) is not; however, �∞a (P ;hP) is a subspace of �∞(P ;hP).

The statement (ii) in the next theorem gives a representation of the algebra

�∞(P̃) into �∞(P ;hP).

Theorem 5.5. (i) The vector space �∞(P ;hP) has the following direct sum

decomposition:

�∞(P ;hP)=�∞s (P ;hP)⊕�∞a (P ;hP). (5.5)

(ii) The natural map qb : �∞(P̃)→�∞s (P ;hP) is an algebra isomorphism.

Proof. (i) We have seen that �∞s (P ;hP) = ��∞(P ;hP) and �∞a (P ;hP) =
��∞(P ;hP). It is also clear that �∞s (P ;hP)∩�∞a (P ;hP)= {0}, that is, the single

bi-germ that is both symmetric and antisymmetric is the bi-germ zero.
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For every µ ∈�∞(P ;hP), we have

µ =�µ+�µ (5.6)

with �µ = µs ∈�∞s (P ;hP) and �µ = µa ∈�∞a (P ;hP). Thus, (i) holds true.

(ii) This part of the proposition is a consequence of Proposition 4.3(i), (iii),

and the definition of �∞s (P ;hP).

As C. Constantinescu noticed, we can prove that the subspace �∞a (P ;hP) of

the algebra �∞(P ;hP) is isomorphic with the vector space of germs of functions

of odd type in the sense of G. de Rham (see [5, page 27]).

6. Vector fields on X and �2

Definition 6.1. The vector field
�→
Z : �2 → T�2 is called symmetric or dh-

invariant (resp., antisymmetric or dh-antiinvariant) if and only if (dh)(
�→
Z)= �→

Z
(resp., (dh)(

�→
Z)=− �→Z ).

We denote, as usual, by χ(X) and χ(�2) the sets of vector fields on X and,

respectively, �2 endowed with their algebraic structures (vector spaces and

modules over the algebra of complex functions). We introduce the following

notations:

χs
(
�2
)

:= { �→Y ∈ χ(�2
) | (dh)

( �→
Y
)= �→

Y
}
;

χa
(
�2
)

:= { �→Y ∈ χ(�2
) | (dh)

( �→
Y
)=− �→Y }. (6.1)

The main result of this paper is assertion (iii) of the next theorem.

Theorem 6.2. (i) χs(�2) and χa(�2) are subspaces of χ(�2);
(ii) the following direct sum decomposition holds true:

χ
(
�2
)= χs(�2

)⊕χa(�2
)
; (6.2)

(iii) χ(X) is canonically isomorphic with χs(�2).

We present the proof of this theorem in several steps.

Step 1 (elementary fields of tangent vectors (EFTV) on �2). Let
�→
XP̃ ∈ TP̃X.

The differentials q∗,P = dPq and q∗,hP = dhPq are bijective mappings. They lead

to the tangent vectors
�→
Y P := (dPq)−1(

�→
XP̃)∈ TP�2 and

�→
Y hP := (dhPq)−1(

�→
XP̃)∈

ThP�2. Thus, to every tangent vector
�→
XP̃ ∈ TP̃X corresponds a nonordered

pair of tangent vectors { �→Y P ;
�→
Y hP} where

�→
Y P ∈ TP�2 and

�→
Y hP ∈ ThP�2. This

circumstance suggests the following definition.
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Definition 6.3. An elementary field of tangent vectors (EFTV) on �2 (at the

pair of symmetric points {P ;hP}) is a function

�→
Z : {P ;hP} �→ TP�2∪ThP�2 (6.3)

such that
�→
Z(Q) := �→

ZQ ∈ TQ�2 for every Q∈ {P ;hP}.
We denote by ET{P ;hP}�2 the set of all EFTV at {P ;hP}, and the element

�→
Z ∈ ET{P ;hP}�2 will be denoted by { �→ZP ;

�→
Z hP}.

The set ET{P ;hP}�2 will be endowed with its natural structure of vector space:

If
�→
Z = { �→ZP ;

�→
Z hP}, ������→W = { ������→WP ;

������→
WhP} ∈ ET{P ;hP}�2 and a ∈ C, then

�→
Z + ������→

W and

a
�→
Z are defined as:

�→
Z + ������→W := { �→ZP + ������→WP ;

�→
Z hP + ������→WhP

}
,

a
�→
Z := {a �→ZP ; a

�→
Z hP

}
.

(6.4)

It is obvious that the differential

dh= h∗ : T�2 �→ T�2 (6.5)

is a fixed-point free involution. If
�→
ZQ ∈ TQ�2, then (dh)(

�→
ZQ)∈ ThQ�2.

We see that the restriction of dh to ET{P ;hP}�2 (still denoted by dh) continues

to be an involution. We have

(
dPh

)−1 = dhPh : ThP�2 �→ TP�2. (6.6)

If
�→
Z = { �→ZP ;

�→
Z hP} ∈ ET{P ;hP}�2, then (dh)(

�→
Z) = {(dh)(

�→
Z hP );(dh)(

�→
ZP)} ∈

ET{P ;hP}�2.

We now formulate the counterpart of Definition 5.1.

Definition 6.4. The EFTV
�→
Z is called symmetric or dh-invariant (resp., an-

tisymmetric or dh-antiinvariant) if and only if (dh)(
�→
Z)= �→

Z (resp., (dh)(
�→
Z)=

− �→Z ).

If
�→
XP̃ ∈ TP̃X, then (dq)−1(

�→
XP̃) =

�→
Y = { �→Y P ;

�→
Y hP}, where

�→
Y P = (dPq)−1(

�→
XP̃)

and
�→
Y hP = (dhPq)−1(

�→
XP̃).

Proposition 6.5. (i) For every
�→
XP̃ ∈ TP̃X, the EFTV

�→
Y = (dq)−1(

�→
XP̃) is dh-

invariant.

(ii) Conversely, if
�→
Z = { �→ZP ;

�→
Z hP} ∈ ET{P ;hP}�2 is dh-invariant, then

(
dPq

)( �→
ZP

)= (dhPq
)( �→
Z hP

)
:= �→
XP̃ ∈ TP̃X (6.7)

and (dq)−1(
�→
XP̃)=

�→
Z .

The proof is simple and will be omitted.
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The following simple proposition gives the rule of derivation on nonori-

entable Klein surfaces.

Proposition 6.6. Let
�→
XP̃ ∈ TP̃X and f̃ ∈�∞(P̃). If

�→
Y = { �→Y P ;

�→
Y hP} = (dq)−1

(
�→
XP̃) and {fP ;fhP} := qb(f̃ )= {q∗P (f̃ );q∗hP (f̃ )} ∈�∞(P,hP), then

�→
XP̃

(
f̃
)= �→

Y P
(
fP
)= �→

Y hP
(
fhP

)
. (6.8)

Proof. Since fP = h∗P (fhP ) and
�→
Y is dh-invariant, we get

�→
Y P

(
fP
)= �→

Y P
(
h∗P
(
fhP

))= (dPh
)( �→
Y P

)(
fhP

)= �→
Y hP

(
fhP

)
. (6.9)

On the other hand,
�→
Y P(fP)= �→

Y P(q∗P (f̃ ))= (dq)(
�→
Y P)(f̃ )= �→

XP̃(f̃ ).

Step 2 (symmetrisation and antisymmetrisation of EFTV). We consider
�→
Y =

{ �→Y P ;
�→
Y hP} ∈ ET{P ;hP}�2. Generally, there is no connection between

�→
Y P and

�→
Y hP .

We remember that (dPh)−1 = dhPh and that the restriction of dh to ET{P ;hP}�2

(also denoted by dh) is an involution of ET{P ;hP}�2.

As in the case of bi-germs, we define the operators �,� : ET{P ;hP}�2 →
ET{P ;hP}�2 by

�
�→
Y := 1

2

[ �→
Y +(dh)

( �→
Y
)]
,

�
�→
Y := 1

2

[ �→
Y −(dh)

( �→
Y
)] (6.10)

for every
�→
Y ∈ ET{P ;hP}�2.

Clearly, (dh)(
�→
Y )= �→

Y if and only if �
�→
Y = �→

Y and (dh)(
�→
Y )=− �→Y if and only if

�
�→
Y = �→

Y . Based on Definition 6.1, we call the operators � and � the operators

of symmetrisation and antisymmetrisation, respectively, of EFTV on �2.

We denote by 	 the identity of ET{P ;hP}�2. Formulas (6.10) become

� = 1
2
[	+dh],

� := 1
2
[	−dh].

(6.11)

The next theorem is similar to Theorem 5.2 and the proof will be omitted.

Theorem 6.7. The operators � and � are a pair of orthogonal projectors

of the space ET{P ;hP}�2, that is, the following five assertions hold:

(i) �,� : ET{P ;hP}�2 → ET{P ;hP}�2 are linear operators;

(ii) �◦�=� and �◦�=�;
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(iii) �◦�=�◦�= 0= the null operator of ET{P ;hP}�2;

(iv) �+�= 	= the identity of ET{P ;hP}�2;

(v) �−�= dh= an involution of ET{P ;hP}�2.

Step 3 (a representation theorem for TP̃X). We introduce the following no-

tations:

ETs;{P ;hP}�2 := { �→Y ∈ ET{P ;hP}�2 | (dh)
( �→
Y
)= �→

Y
}
;

ETa;{P ;hP}�2 := { �→Y ∈ ET{P ;hP}�2 | (dh)
( �→
Y
)=− �→Y }. (6.12)

Now, we can formulate the following theorem.

Theorem 6.8. (i) The sets ETs;{P ;hP}�2 and ETa;{P ;hP}�2 are subspaces of

ET{P ;hP}�2;

(ii) the following direct sum decomposition holds true:

ET{P ;hP}�2 = ETs;{P ;hP}�2⊕ETa;{P ;hP}�2; (6.13)

(iii) the vector spaces TP̃X and ETs;{P ;hP}�2 are canonically isomorphic.

Proof. (i) The operators � and � are linear operators and �(ET{P ;hP}�2)=
ETs;{P ;hP}�2 and �(ET{P ;hP}�2)= ETa;{P ;hP}�2. This proves (i).

(ii) Obviously, ETs;{P ;hP}�2∩ETa;{P ;hP}�2 = {0} and
�→
Y = �

�→
Y +�

�→
Y for every

�→
Y ∈ ET{P ;hP}�2.

(iii) We have seen that if
�→
Z = { �→ZP , �→Z hP} ∈ ETs;{P ;hP}�2 then (dPq)(

�→
ZP) =

(dhPq)(
�→
Z hP ). We define

qb : ETs;{P ;hP}�2 �→ TP̃X (6.14)

by qb(
�→
Z) := (dPq)(

�→
ZP)= (dhPq)(

�→
Z hP ). The mapping qb is the natural isomor-

phism mentioned in (iii).

Step 4 (global symmetrisation and antisymmetrisation). The global sym-

metrisation operator � and the global antisymmetrisation operator � (or the

operators of dh-invariance and dh-antiinvariance, respectively) are defined in

a way similar to the case of EFTVs, namely, �,� : χ(�2)→ χ(�2), where

�
( �→
X
)

:= 1
2

[ �→
X+(dh)

( �→
X
)]
,

�
( �→
X
)

:= 1
2

[ �→
X−(dh)

( �→
X
)]
,

(6.15)

for every
�→
X ∈ χ(�2) or, equivalently, in terms of 	 and dh,

� := 1
2
[	+dh],

� := 1
2
[	−dh].

(6.16)
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If {P ;hP} is an arbitrary pair of symmetric points on �2, we denote by 
 the

operator of restriction to {P ;hP} of the vector fields
�→
X ∈ χ(�2)



( �→
X
)

:= �→
X |{P ;hP} =

{ �→
XP ;

�→
XhP

}
. (6.17)

Indeed, the restriction of
�→
X to the two-element set {P ;hP} may be identified

with the image by
�→
X of this set, namely, with { �→XP ;

�→
XhP}. This means that


(
�→
X)∈ ET{P ;hP}�2, that is,


 : χ
(
�2
)
�→ ET{P ;hP}�2. (6.18)

It is obvious that the following two diagrams are commutative:

χ
(
�2
) �




χ
(
�2
)




ET{P ;hP}�2
�

ET{P ;hP}�2,

χ
(
�2
) �




χ
(
�2
)




ET{P ;hP}�2
�

ET{P ;hP}�2.

(6.19)

As a consequence of the fact that dh : T�2 → T�2 is an involution, we can

formulate the following theorem, which is the globalisation of Theorem 6.7.

The proof will be omitted.

Theorem 6.9. The pair of operators (�,�) defined by (6.15) is a pair of

orthogonal projectors of the vector space χ(�2), that is,

(i) �,� : χ(�2)→ χ(�2) are linear operators;

(ii) �◦�=� and �◦�=�;

(iii) �◦�=�◦�= 0= the null operator of χ(�2);
(iv) �+�= 	= the identity of χ(�2);
(v) �−�= dh= an involution of χ(�2).

Step 5 (final remarks). We can now complete the proof of Theorem 6.2.

(i) The global operators � and � are linear operators on the vector space

χ(�2). Moreover, �χ(�2)= χs(�2) and �χ(�2)= χa(�2). The same conclusion

follows directly from (6.1). However, these equalities highlight the fact that

the elements of χs(�2) and χa(�2) appear, respectively, as the dh-invariant

and dh-antiinvariant components of the elements of χ(�2).
(ii) Clearly,

�→
X ∈ χs(�2)∩χa(�2) if and only if

�→
X = �→

0 = the zero vector field

on �2. Since
�→
X = �

�→
X +�

�→
X for every

�→
X ∈ χ(�2) and since �

�→
X ∈ χs(�2) and

�
�→
X ∈ χa(�2), (ii) holds true.

(iii) Let
����→
M ∈ χ(X) be an arbitrary vector field on X and let P̃ ∈ X. According

to Proposition 6.5(i),
�→
Y := (dq)−1(

����→
M) is a dh-invariant EFTV on �2. Since the

〈h〉-orbits on �2 are either identical or disjoint and since �2 =
⋃
P̃∈X.{P ;hP}, we

can define
�→
X ∈ χs(�2) by its restrictions

�→
X |{P ;hP} := (dq)−1( ����→MP̃

)
(6.20)
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to the set of 〈h〉-orbits {P ;hP}. It is an easy exercise to check that the cor-

respondence
����→
M ↔ �→

X is an isomorphism between the vector spaces χ(X) and

χs(�2).

7. The normal derivative to the border of the Möbius strip. As an appli-

cation of the topics that we have dealt with so far, we present, in detail, the

normal derivative to the border of the Möbius strip, which is a vector field

defined on that border.

We consider the annulus AR defined as

AR :=
{
z ∈ C | 1

R
≤ |z| ≤ R

}
, (7.1)

where R > 1 is fixed. The map h :AR →AR defined by

hz := h(z) :=−1
z
=w =u+iv (7.2)

for every z = x+iy ∈AR is a fixed-point free antianalytic involution of AR and

the orbit space

MR :=AR/〈h〉, (7.3)

where 〈h〉 = {Id;h} is the two element group generated by h, is a Möbius strip.

If z ∈AR , its h-orbit is the two-element set

z̃ = {z;hz} = h̃z. (7.4)

If z = ρeiθ , 1/R ≤ ρ ≤ R, 0≤ θ < π , the h-symmetric point of z is w =−1/z =
(1/ρ)ei(θ+π).

When z runs over the line segment with end-points Reiθ and (1/R)eiθ from

Reiθ towards (1/R)eiθ (i.e., ρ decreases from R to 1/R), its symmetric w runs

on the line segment with endpoints (1/R)ei(θ+π) and Rei(θ+π) from the first

point toward the second.

The border of MR consists of the orbits z̃ such that |z| = R or 1/R, that is,

∂MR =
{{
Reiθ ;

1
R
ei(θ+π)

}
| 0≤ θ <π

}
. (7.5)

If q :AR →MR is the canonical projection and z0 = Reiθ0 , then q−1(z̃0) consists

of z0 and (1/R)ei(θ0+π) =w0.

The unit normal vector that we use in the definition of the normal derivative

to the border of AR is taken with respect to the Euclidian metric. This metric

should be replaced now with its h-invariant component in order to be able to

give a meaning to the normal derivative to ∂MR [4, 6, 8].
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The unit inner normal (to ∂AR) vectors with respect to the Euclidian metric

ds2 = dx2+dy2 at the points z0 and w0 = hz0 are

�→
Y z0 =

(
∂
∂n

)
z0

=−(cosθ0
)( ∂
∂x

)
z0

−(sinθ0
)( ∂
∂y

)
z0

,

�→
Y w0 =

(
∂
∂n

)
w0

=−(cosθ0
)( ∂
∂u

)
w0

−(sinθ0
)( ∂
∂v

)
w0

.
(7.6)

With our earlier notations,

�→
Y = { �→Y z0 ;

�→
Y w0

}∈ ET{z0;w0}AR. (7.7)

In all that follows, AR will be endowed with the metric gs given by

gs(z)= dσ 2 = 1
4

(
1+ 1

|z|2
)2

[dx⊗dx+dy⊗dy] (7.8)

and MR with the projection g̃s of this metric by q (see [8]).

Thus, h is an isometric involution of (AR,gs) and

q :
(
AR,gs

)
�→ (

MR,g̃s
)

(7.9)

is a local isometry.

If z ∈AR , we define the scalar product and the norm induced by gs on TzAR
as follows.

If
�→
U = U1(∂/∂x)z +U2(∂/∂y)z,

�→
V = V1(∂/∂x)z +V2(∂/∂y)z ∈ TzAR , their

scalar product 〈 �→U, �→V 〉 = 〈 �→U, �→V 〉gs is given by

〈 �→
U,
�→
V
〉= gs(z)( �→U, �→V )= 1

4

(
1+ 1

|z|2
)2[

U1V1+U2V2
]
. (7.10)

The norm ‖ �→U‖ = ‖ �→U‖gs of
�→
U , given by (7.10), is

∥∥ �→U∥∥= 〈 �→U, �→U〉1/2 = 1
2

(
1+ 1

|z|2
)√
U2

1 +U2
2 . (7.11)

The gs -length of the vectors
�→
Y z0 and

�→
Y w0 is given by

∥∥ �→Y z0

∥∥= 1
2

(
1+ 1

R2

)√
cos2θ0+sin2θ0 = R

2+1
2R2

;

∥∥ �→Y w0

∥∥= 1
2

(
1+R2)√cos2θ0+sin2θ0 = R

2+1
2

.

(7.12)
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Thus, ‖ �→Y z0‖< 1< ‖ �→Y w0‖. As
�→
Y = { �→Y z0 ;

�→
Y w0} ∉ ETs;{z0;w0}AR , it cannot be used

to define the unit normal vector to ∂MR !

The relations (7.12) suggest, instead,

�→
N0 :=

{
2R2

R2+1

�→
Y z0 ;

2
R2+1

�→
Y w0

}
:= { �→Nz0 ;

�→
Nw0

}∈ ET{z0;w0}AR. (7.13)

Clearly, ‖ �→Nz0‖ = ‖
�→
Nw0‖ = 1.

If z = x + iy ∈ AR and w = u+ iv = −1/z = hz, then the action of the

differential dzh= h∗,z on the vectors (∂/∂x)z,(∂/∂y)z of the basis of TzAR is

given by

(
dzh

)(( ∂
∂x

)
z

)
=u′x(z)

(
∂
∂u

)
w
+v′x(z)

(
∂
∂v

)
w

;

(
dzh

)(( ∂
∂y

)
z

)
=u′y(z)

(
∂
∂u

)
w
+v′y(z)

(
∂
∂v

)
w
,

(7.14)

where {(∂/∂u)w ;(∂/∂v)w} is the basis of TwAR and u′x(z)= (∂u/∂x)(z), and

so on. The Jacobian matrix Jh;z of h at the point z is

Jh;z =
[
u′x(z) v′x(z)
u′y(z) v′y(z)

]
=


x2−y2

|z|4
2xy
|z|4

2xy
|z|4

−(x2−y2
)

|z|4

 . (7.15)

If we take z = h−1w = hw, the analogues of formulas of (7.14) and (7.15) are

(
dwh

)(( ∂
∂u

)
w

)
= x′u(w)

(
∂
∂x

)
z
+y ′u(w)

(
∂
∂y

)
z
;

(
dwh

)(( ∂
∂u

)
w

)
= x′v(w)

(
∂
∂x

)
z
+y ′v(w)

(
∂
∂y

)
z
,

(7.16)

respectively,

Jh;w =
[
x′u(w) y ′u(w)
x′v(w) y ′v(w)

]
=


u2−u2

|w|4
2uv
|w|4

2uv
|w|4

−(u2−v2
)

|w|4

 . (7.17)

Let
�→
X = { �→Xz, �→Xw} ∈ ET{z;w}AR

�→
Xz =Az

(
∂
∂x

)
z
+Bz

(
∂
∂y

)
z
, Az,Bz ∈ C;

�→
Xw =Aw

(
∂
∂u

)
w
+Bw

(
∂
∂v

)
w
, Aw,Bw ∈ C.

(7.18)
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Clearly (dh)(
�→
X)= {(dwh)(

�→
Xw);(dzh)(

�→
Xz)}∈ET{z;w}AR , and the two elements

of (dh)(
�→
X) are obtained from (7.14) and (7.16) and are given by

(
dwh

)( �→
Xw

)= [Awx′u(w)+Bwx′v(w)]( ∂
∂x

)
z
+[Awy ′u(w)+Bwy ′v(w)]( ∂

∂y

)
z
,

(
dzh

)( �→
Xw

)= [Azu′x(z)+Bzu′y(z)]( ∂
∂u

)
w
+[Azv′x(z)+Bzv′y(z)]( ∂

∂v

)
w
.

(7.19)

Taking into account (7.18) and (7.19), we can formulate the following proposi-

tion.

Proposition 7.1. The EFTVs
�→
X is dh-invariant, that is,

�→
X ∈ ETs;{z;w}AR if

and only if

Awx′u(w)+Bwx′v(w)=Az;
Awy ′u(w)+Bwy ′v(w)= Bz.

(7.20)

We now consider the particular case z = z0 = Reiθ0 , w =w0 = (1/R)ei(θ0+π)

and
�→
X = �→

N0 = the EFTV given by (7.13).

The coefficients Az, Bz, Aw , and Bw become, in this case,

Az = −2R2 cosθ0

R2+1
; Bz = −2R2 sinθ0

R2+1

Aw = −2cosθ0

R2+1
; Bw = −2sinθ0

R2+1
.

(7.21)

The corresponding Jacobian matrix is

Jh;w =
[
x′u(w) y ′u(w)
x′v(w) y ′v(w)

]
=
[
R2 cos2θ0 R2 sin2θ0

R2 sin2θ0 −R2 cos2θ0

]
. (7.22)

We check the validity of relations (7.20) corresponding to the following case:

Awx′u(w)+Bwx′v(w)=
−2cosθ0

R2+1
R2 cos2θ0+ −2sinθ0

R2+1
R2 sin2θ0

= −2R2
(
cosθ0 cos2θ0+sinθ0 sin2θ0

)
R2+1

= −2R2 cosθ0

R2+1
=Az.

(7.23)

In the same way, we can see that the second relation of (7.20) is fulfilled.

Thus, the EFTV
�→
N0 is in ETs;{z;w}AR .



VECTOR FIELDS ON NONORIENTABLE SURFACES 151

The (inner) g̃s -unit normal vector to the border of MR at the point z̃0 is

therefore the image of
�→
N0 by dq

�̃→
N0 := dq

( �→
N0

)
. (7.24)

We see now how
�̃→
N0 acts on germs f̃z̃ ∈�∞(z̃). Here, the answer is given by

Proposition 6.6.

{fz,fw} = qb(f̃z̃) is a symmetric bi-germ and

�̃→
N0

(
f̃z̃
)= �→

Nz0

(
fz
)= �→

Nw0

(
fw
)
, (7.25)

where
�→
Nz0 and

�→
Nw0 are given by (7.13). Thus,

�̃→
N0

(
f̃z̃
)=− 2R2

R2+1

[(
cosθ0

)∂fz
∂x

(
z0
)+(sinθ0

)∂fz
∂y

(
z0
)]
. (7.26)

A similar result has been obtained in [6, 7] where the derivative, with respect

to the exterior normal, was taken.

As a final remark, we should notice that, since any nonorientable surface S is

“created” by a symmetric Riemann surface R, all the objects on S should be de-

pendent on “similar” objects on R. Although the EFTVs might appear somehow

artificial, their existence is dictated by the previously mentioned philosophy.
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