
IJMMS 2003:30, 1911–1922
PII. S0161171203207195

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

FIRST HITTING TIMES OF SIMPLE RANDOM WALKS
ON GRAPHS WITH CONGESTION POINTS

MIHYUN KANG

Received 29 July 2002

We derive the explicit formulas of the probability generating functions of the first
hitting times of simple random walks on graphs with congestion points using
group representations.

2000 Mathematics Subject Classification: 60G50, 60B15, 60K30, 05A15.

1. Introduction. Random walk on a graph is a Markov chain whose state

space is the vertex set of the graph and whose transition from a given vertex

to an adjacent vertex along an edge is defined according to some probability

distribution. The probability distribution might depend on vertices, and the

case of the uniform distribution over incident edges is called a simple random

walk. Many researches have been done on various aspects of random walks

such as transience or recurrence, asymptotic behavior of transition probabil-

ities, convergence rates to its stationary distributions, and convergence to a

boundary and harmonic functions [2, 6].

Random walks can describe the structure of graphs, groups, and related

objects and the structure of computer networks or electric networks [3, 8]. It

is quite useful to devise probabilistic algorithms of random walks on graphs

which reflect combinatorial problems when deterministic methods to analyze

them are known to be difficult [10]. It is well known that random walks play a

crucial role in the design of randomized algorithms (off- or online) [4, 11, 15].

The first hitting time (also called the first passage time) is the time taken to

reach a vertex for the first time starting from another vertex. This is one of the

classical problems on Markov chains, and one can investigate the probabilistic

properties of the first hitting time, the stopping time, or transition probabilities

[1, 12]. The expected hitting times for random walks on graphs have been

computed using the relation between electrical networks and random walks

[9, 13, 14] and for random walks on finite groups using group representations

[5]. The group representation approach has been quite powerful in measuring

the convergence rate of random walks to its stationary distributions [5, 7].

In this paper, we apply group representation technique for a simple random

walk on finite graphs with cutvertices (or congestion points), which can be de-

composed into several finite groups. Finite graphs with congestion points may
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capture the delays in computer, telecommunication, and the transportation

systems, and the probability generating functions would be useful in perfor-

mance evaluation of stochastic models, which arise from those various sys-

tems.

2. Preliminaries. Let G be a finite group with the identity e. Let V be a vec-

tor space of dimension d over C of complex numbers, and let GL(V) be the

group of invertible matrices of rank d which represent invertible linear trans-

formations from V to V . A linear representation ρ of G is a continuous map

ρ :G→ GL(V) satisfying ρ(xy)= ρ(x)ρ(y) for every x,y ∈G. It follows that

ρ(e) is the identity matrix I and ρ(x−1)= ρ(x)−1. The dimension of V is called

the dimension of ρ and is denoted by dρ . A linear representation ρ is called

a trivial representation if ρ(x) = 1 for all x ∈ G. It is called irreducible if V is

not {0} and no subspace of V is stable under G. In other words, there is no

subspace W of V except for {0} and V such that ρ(x)W ⊂ W for all x ∈ G.

Denote by Ĝ the set of all irreducible representations of G. For each x ∈G, put

χρ(x)= Tr(ρ(x)), where Tr(ρ(x))=∑i(ρ(x))ii, that is, the trace of ρ(x). The

complex-valued function χρ is called the character of ρ. For a finite abelian

group G, every irreducible representation of G is of dimension 1 and hence

χρ(x) = ρ(x). For a function µ defined on G, the Fourier transform µ̂ : Ĝ→ C
is defined by

µ̂(ρ)=
∑
x∈G

µ(x)ρ(x), (2.1)

and the Fourier inversion formula is given by

µ(x)= 1
|G|

∑
ρ∈Ĝ
dρTr

(
ρ
(
x−1)µ̂(ρ)), (2.2)

where |G| denotes the number of elements in G.

Let µ be a probability distribution on G. Suppose that E = {x ∈G | µ(x) > 0}
generates G; in other words, the set of all finite products of some elements in

E is equal to G. Then the neighbor of x is given by Nx = {gx, g ∈ E}. Consider

the transition matrix P = (Px,y)x,y∈G given by

Px,y =
µ
(
yx−1

)
, if y ∈Nx,

0, otherwise,
(2.3)

which defines a random walk which moves from x to y with probability

µ(yx−1). Define the convolution µ∗µ by

(µ∗µ)(x)=
∑
y∈G

µ
(
xy−1)µ(y), x ∈G, (2.4)
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and define µ∗k = µ∗(k−1)∗µ. Then

(µ∗µ)(x)=
∑
y∈G

Py,xPe,y =
∑
y∈G

Pe,yPy,x =
(
P2)

e,x, (2.5)

and hence (µ∗µ)(x) is the probability that a random path arrives at x in two

steps when it starts from e. Similarly, µ∗k(x) is the probability that the path

arrives at x in k steps starting from e. In particular, a simple random walk is

defined by

Px,y =


1∣∣Nx∣∣ , if y ∈Nx,
0, otherwise.

(2.6)

Diaconis [5] considered another random walk which starts from x and is

absorbed the first time it hits S(⊂G) whose elements are called sinks. In other

words, if a random path arrives at S once, then it permanently stays there.

Let ak(t) be the probability of arriving at t at time k (i.e., in k steps) in the

restricted random walk with S ≠φ. Then ak(t) can be interpreted as follows:

(1) if t ∉ S, then it is the probability of the path being at t at time k without

having hit any sites in S;

(2) if t ∈ S, then it is the probability of first being absorbed at t at time k.

Let bk(t) be the probability of arriving at t at time k in the unrestricted random

walk (S =φ), namely, bk(t)= µ∗k(tx−1). Let A(t,z) and B(t,z) be probability

generating functions given by

A(t,z)=
∞∑
k=0

ak(t)zk, B(t,z)=
∞∑
k=0

bk(t)zk. (2.7)

Fact 2.1. (i) For t ∈ S,

B(t,z)=
∑
s∈S
A(s,z)B

(
ts−1x,z

)
, (2.8)

and for t ∉ S,

B(t,z)=A(t,z)+
∑
s∈S
A(s,z)B

(
ts−1x,z

)
. (2.9)

(ii) For t ∈G,

B(t,z)= 1
|G|

 1
1−z +

∑
1≠ρ∈Ĝ

dρTr
(
ρ
(
xt−1)[I− µ̂(ρ)z]−1

). (2.10)

Example 2.2. Consider a simple random walk on Zn = {0, . . . ,n−1} with a

probability distribution µ such that µ(1)= µ(−1)= 1/2.
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The dual group Ẑn consists of characters of the form

χk(x)= exp
(

2πikx
n

)
, x,k∈ Zn, (2.11)

and the Fourier transform of µ is defined by

µ̂
(
χk
)= cos

(
2πk
n

)
, k∈ Zn. (2.12)

From Fact 2.1, the generating function of the first hitting time from x to t
is

Un(x,t,z)= 1+(1−z)∑n−1
k=1 cos

(
2πk(x−t)/n)[1−cos(2πk/n)z

]−1

1+(1−z)∑n−1
k=1

[
1−cos(2πk/n)z

]−1 ,

(2.13)

and the generating function of the first hitting time from x to t without having

hit s ≠ t on Zn is

Vn(x,t,s,z)

= 1
n

n−1∑
k=1

[
cos

(
2πk(x−t)

n

)
−cos

(
2πk(s−t)

n

)][
1−cos

(
2πk
n

)
z
]−1

− 1
n

1+(1−z)∑n−1
k=1 cos

(
2πk(s−t)/n)[1−cos(2πk/n)z

]−1

1+(1−z)∑n−1
k=1

[
1−cos(2πk/n)z

]−1


×
n−1∑
k=1

(
cos

(
2πk(x−s)

n

)
−1

)[
1−cos

(
2πk
n

)
z
]−1

.
(2.14)

For notational convenience,

f(z)= Vn(n−2,0,n−1,z), g(z)= Vn(n−2,n−1,0,z). (2.15)

Lemma 2.3. Consider a simple random walk on a line L, consisting of n+1

vertices, {0, . . . ,n}. For x,y,t ∈ L, let Ttx,y be the first hitting time from x to y
without having hit t and let Ctx,y(z)=

∑∞
k=0 Pr(T tx,y = k)zk. Then

Cnn−1,0(z)=
zf(z)

2+zg(z) , Cn1,0(z)=−g(z)+
zf(z)2

2+zg(z) . (2.16)

Proof. Consider a random path on L from x to 0 without having hit n.
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If x is equal to n−1, then each path from x to 0 without having hit n should

move the first step to n−2 with probability 1/2. In other words,

2Cnn−1,0(z)= zCnn−2,0(z). (2.17)

For 1≤ x ≤n−2, each path from x to 0 without having hit n is either a path

from x to 0 without passing n−1 on the way or a path which hits n−1 before

arriving at 0 and then restarts a random walk from n−1 to reach 0 without

passing n;

∞∑
k=0

Pr
(
Tnx,0 = k

)
zk

=
∞∑
k=0

Pr
(
Tn−1
x,0 = k)zk+ ∞∑

k=0

Pr
(
T 0
x,n−1+Tnn−1,0 = k

)
zk

=
∞∑
k=0

Pr
(
Tn−1
x,0 = k)zk+ ∞∑

k=0

k∑
l=0

Pr
(
T 0
x,n−1 = l

)
Pr
(
Tnn−1,0 = k−l

)
zk

=
∞∑
k=0

Pr
(
Tn−1
x,0 = k)zk+ ∞∑

k=0

Pr
(
T 0
x,n−1 = k

)
zk

∞∑
k=0

Pr
(
Tnn−1,0 = k

)
zk.

(2.18)

In other words,

Cnx,0(z)= Cn−1
x,0 (z)+C0

x,n−1(z)C
n
n−1,0(z). (2.19)

For 1≤y ≤n−1, every random path on L from x to y without having passed

any of the endpoints of L, 0, or n can be regarded as a path from x to y gen-

erated by a random walk on Zn = {0, . . . ,n−1} with a sink 0 and a probability

distribution µ defined by µ(1) = µ(−1) = 1/2. It is necessary to observe that

a path on L from x to 0 without having hit n−1 is a path on Zn from x to 0

without having hit n−1. And a path on L which hits n−1 before arriving at 0

is a path on Zn which hits n−1 before arriving at 0. For 0 ≤ y , t ≤ n−1, let

T̃x,y be the first hitting time on Zn from x to y and let T̃ tx,y be the first hitting

time on Zn from x to y without having hit t. Equation (2.14) implies that for

1≤ x ≤n−2,

Cn−1
x,0 (z)=

∞∑
k=0

Pr
(
T̃ n−1
x,0 = k)zk = Vn(x,0,n−1,z),

C0
x,n−1(z)=

∞∑
k=0

Pr
(
T̃ 0
x,n−1 = k

)
zk = Vn(x,n−1,0,z).

(2.20)

Equations (2.19) and (2.20) imply that for 1≤ x ≤n−2,

Cnx,0(z)= Vn(x,0,n−1,z)+V(x,n−1,0,z)Cnn−1,0(z). (2.21)
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Equations (2.17) and (2.21) imply that

Cnn−1,0(z)=
zVn(n−2,0,n−1,z)

2−zVn(n−2,n−1,0,z)
= zf(z)

2+zg(z) , (2.22)

and for 1≤ x ≤n−2,

Cnx,0(z)= Vn(x,0,n−1,z)+ zVn(x,n−1,0,z)f (z)
2+zg(z) . (2.23)

In particular,

Cn1,0(z)=−g(z)+
zf(z)2

2+zg(z) . (2.24)

Remark 2.4. Note that in the above proof we also have derived the gener-

ating function Cnx,0(z) of the first hitting time from x to 0 without having hit

n on L and the symmetry implies C0
x,n(z)= Cnn−x,0(z).

3. On graphs with congestion points. In this section, we consider a simple

random walk on a lollipop and a dumbbell, which obviously have cutvertices. A

cutvertex is a vertex such that the graph without this vertex is not connected.

Those cutvertices represent typical congestion points which cause delays in

various traffic systems such as computer networks, telecommunication, and

the transportation systems. We are interested in the first hitting time which

can be interpreted as the performance time of such models. Since they have rel-

atively simple structures, the probability generating functions can be derived

using basic probabilistic argument. But it is interesting as well to apply group

representation technique for these models since they can be decomposed into

several cyclic groups Zn. First we define the functions

φ(z)= 1+(1−z)∑2n−1
k=1 cos(πk)

[
1−cos(πk/n)z

]−1

1+(1−z)∑2n−1
k=1

[
1−cos(πk/n)z

]−1 ,

ϕ(z)= 1+(1−z)∑2n−1
k=1 cos(πk/n)

[
1−cos(πk/n)z

]−1

1+(1−z)∑2n−1
k=1

[
1−cos(πk/n)z

]−1 ,

ξ(z)= (3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2,

ψ(z)= 6+5zg(z)−2z2f(z)2,

η(z)= z2f(z)
(
2+zg(z))(2zϕ(z)−3

)
,

(3.1)

where f(z) and g(z) were defined by (2.15).
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1W

0W

(2n−1)W

nW =n
0

Figure 3.1. The lollipop P in Theorem 3.1.

Theorem 3.1. Consider a simple random walk on the lollipop P , which con-

sists of a circle with 2n vertices and a line segment with n+1 vertices, as in

Figure 3.1. The generating function of the first hitting time from 0W to 0 on the

lollipop P is given by

F0W ,0(z)=
z2φ(z)f(z)(

3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2
. (3.2)

Proof. Let Tx,y be the first hitting time from x to y and let Ttx,y be the first

hitting time from x toy without having hit t on P . Let Fx,y(z)=
∑∞
k=0 Pr(Tx,y =

k)zk and Ftx,y(z)=
∑∞
k=0 Pr(T tx,y = k)zk.

Note that each path from 0W to 0 should pass through nW =n before arriv-

ing at 0 and restart from n to 0; hence

F0W ,0(z)= F0W ,nW (z)Fn,0(z). (3.3)

Since each path from 0W to nW can be regarded as the path from 0 to n on Z2n

with a probability distribution µ defined by µ(1)= µ(−1)= 1/2, (2.13) implies

that

F0W ,nW (z)=U2n(0,n,z)=φ(z). (3.4)

Hence, we obtain

F0W ,0(z)=φ(z)Fn,0(z). (3.5)

Note that each path from n to 0 moves the first step to one of three direc-

tions: (n+1)W , (n−1)W , and n−1, with probability 1/3. We have

3Fn,0(z)= z
(
F(n+1)W ,0(z)+F(n−1)W ,0(z)+Fn−1,0(z)

)
. (3.6)
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1W

0W

(2n−1)W

nW =n

(2n−1)E

0E

1E

nE =n

Figure 3.2. The dumbbell Q in Theorem 3.2.

Similar to (3.3) and (3.4), we obtain

F(n+1)W ,0(z)= F(n+1)W ,nW (z)Fn,0(z),

F(n+1)W ,nW (z)=U2n(n+1,n,z)=ϕ(z),
F(n−1)W ,0(z)= F(n−1)W ,nW (z)Fn,0(z),

F(n−1)W ,nW (z)=U2n(n−1,n,z)=ϕ(z).

(3.7)

Hence, we have

F(n+1)W ,0(z)= F(n−1)W ,0(z)=ϕ(z)Fn,0(z). (3.8)

On the other hand, each path from n− 1 to 0 either arrives at 0 without

having hit n or hits n before arriving at 0, and then restarts random walk to

reach 0 from n= nW , and that the paths on P from n−1 to 0 without having

hit n and from n−1 to n without having hit 0 can be regarded as the paths

on L in Lemma 2.3. Hence, we have

Fn−1,0(z)= Fnn−1,0(z)+F0
n−1,n(z)FnW ,0(z)

= Cnn−1,0(z)+C0
n−1,n(z)Fn,0(z).

(3.9)

Equations (3.6), (3.8), and (3.9) and Lemma 2.3(i) imply

Fn,0(z)=
zCnn−1,0(z)

3−2zϕ(z)−zC0
n−1,n(z)

= z2f(z)(
3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2

,
(3.10)

which, together with (3.5), implies the theorem.

Theorem 3.2. Consider a simple random walk on the dumbbell Q, which

consist of a line segment withn+1 vertices and two circles each with 2n vertices,

as in Figure 3.2. The generating function of the first hitting time from 0W to 0E
on the dumbbell Q is given by

F̃0W ,0E (z)=
2z4φ(z)f(z)2

ψ(z)ξ(z)−η(z) . (3.11)
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Proof. Let T̃x,y be the first hitting time from x to y and let T̃ tx,y be the first

hitting time fromx toy without having hit t onQ. Let F̃x,y(z)=
∑∞
k=0 Pr(T̃x,y =

k)zk and F̃ tx,y(z)=
∑∞
k=0 Pr(T̃ tx,y = k)zk.

Note that each path from 0W to 0E should pass through nE before arriving

at 0E and restart a random walk from nE to 0E ; we have

F̃0W ,0E (z)= F̃0W ,nE (z)F̃nE,0E (z). (3.12)

Since each path from 0W to nE on the dumbbellQ can be regarded as a path

from 0W to 0 on the lollipop P , Theorem 3.1 implies

F̃0W ,nE (z)= F0W ,0(z)=
z2φ(z)f(z)(

3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2
. (3.13)

Note that a path starting from nE and ending at 0E moves the first step

randomly to one of three directions: (n−1)E , (n+1)E , and 1, with probability

1/3. In other words,

3F̃nE,0E (z)= z
(
F̃(n−1)E ,0E (z)+ F̃(n+1)E ,0E (z)+ F̃1,0E (z)

)
. (3.14)

By symmetry,

F̃(n−1)E ,0E (z)= F̃(n+1)E ,0E (z). (3.15)

Since each random path from (n−1)E to 0E either arrives at 0E without having

hit nE or hits nE before arriving at 0E and then restarts random walk to reach

0E from nE , we have

F̃(n−1)E ,0E (z)= F̃nE(n−1)E ,0E (z)+ F̃
0E
(n−1)E ,nE (z)F̃nE,0E (z). (3.16)

Note that each path from (n−1)E to 0E without having hit nE on Q can be

regarded as a path from n−1 to 0 on L in Lemma 2.3;

F̃nE(n−1)E ,0E (z)= Cnn−1,0(z)=
zf(z)

2+zg(z) . (3.17)

Similarly, we have

F̃0E
(n−1)E ,nE (z)= C0

n−1,n(z)=−g(z)+
zf(z)2

2+zg(z) . (3.18)

Hence, we have

F̃(n−1)E ,0E (z)= F̃(n+1)E ,0E (z)

= zf(z)
2+zg(z) +

(
−g(z)+ zf(z)2

2+zg(z)

)
F̃nE,0E (z).

(3.19)



1920 MIHYUN KANG

On the other hand, each path from 1 to 0E on Q should pass through 0 and

restart from 0=nE to 0E ; we have

F̃1,0E (z)= F̃1,0(z)F̃nE,0E (z). (3.20)

Since each path from 1 to 0 either arrives at 0 without having hit n or hits n
and then restarts from n to 0,

F̃1,0(z)= F̃n1,0(z)+ F̃0
1,n(z)F̃n,0(z). (3.21)

But those paths on Q from 1 to 0 without having hit n and from 1 to n
without having hit 0 can be regarded as those paths on L in Lemma 2.3, that

is,

F̃n1,0(z)= Cn1,0(z)=
zf(z)

2+zg(z) ,

F̃0
1,n(z)= C0

1,n(z)=−g(z)+
zf(z)2

2+zg(z) .
(3.22)

Note that each path from n to 0 on Q can be regarded as the path from n
to 0 on P and formula (3.10) implies

F̃n,0(z)= Fn,0(z)= z2f(z)(
3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2

. (3.23)

Hence, we have

F̃1,0(z)= zf(z)
(
3−2zϕ(z)

)(
3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2

. (3.24)

Formulas (3.20) and (3.24) imply

F̃1,0E (z)=
(

zf(z)
(
3−2zϕ(z)

)(
3−2zϕ(z)+zg(z))(2+zg(z))−z2f(z)2

)
F̃nE,0E (z), (3.25)

and hence (3.14), (3.19), and (3.25) imply the theorem.

4. Conclusions. It is not hard to modify our argument to derive the proba-

bility generating functions on necklace graphs which consist of several circles

and some lines, and also on more general finite graphs which consist of several

Cayley graphs. The probabilistic algorithms of random walks on such graphs

may give rich information on probabilistic properties of several combinatorial

models, such as networks and traffic congestion problems, in terms of hitting

times.

Since we have derived the explicit formulas of the probability generating

functions in the previous sections, we can efficiently compute the distribu-

tion of the first hitting time; namely, the probability, the average, variance,
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Figure 4.1. The expectations computed by Theorem 3.1 and Maple.

and higher-order moments using Taylor series expansion (see, e.g., [16]). Let

pk denote the probability of the first hitting time from x to y being k. The

probability generating function, defined by

A(z)=
∞∑
k=0

pkzk, (4.1)

gives the value pk as

pk = 1
k!
A(k)(0), (4.2)

where A(k)(0) denotes the kth derivative of A(z) at z = 0. Moreover, we can

compute the average, variance, and higher-order moments using higher deriva-

tives, for example,

E(T)=
∑
k
kpk =A′(1), Var(T)=A′′(1)+A′(1)−A′(1)2. (4.3)

Some computational softwares, such as Maple or Mathematica, allow us to

compute them very quickly with high accuracy. For example, using Maple and

Theorem 3.1, the expectations of the first hitting time on the lollipop have

been computed up to n= 12 as shown in Figure 4.1.
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