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Let P = (pk) be a bounded positive sequence and let A= (ank) be an infinite ma-
trix with all ank ≥ 0. For normed spaces E and Ek, the matrix A generates the
paranormed sequence spaces [A,P]∞((Ek)), [A,P]0((Ek)), and [A,P]((E)), which
generalise almost all the well-known sequence spaces such as c0, c, lp , l∞, and
wp . In this paper, topological duals of these paranormed sequence spaces are con-
structed and general representation formulae for their bounded linear functionals
are obtained in some special cases of matrix A.
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1. Introduction. In the last few decades, Köthe [3], Maddox [4, 5, 6], Simons

[11], and several others have made a significant contribution to the study of

topological duals of real- and complex-valued sequence spaces. One of the clas-

sic problems in the study of topological duals of paranormed sequence spaces

is to obtain representation formulae for the elements in their dual spaces. A

decisive break with the classical approach is made in this paper by introduc-

ing vector-valued sequence spaces in place of sequences of numbers. Here, we

study the topological duals of vector-valued sequences which are generated by

infinite matrices.

The topological dual of a normed linear space is the set of all continuous

linear functionals on the space. Such duals of classical sequence spaces like

c0, c, lp , and wp [7] are well-known sequence spaces, while the dual of l∞ is

a function space. But in the case of a sequence space which is generated by

an infinite matrix, the topology is most often induced by a paranorm. While

considering the paranormed sequence spaces, the topology of the dual space

must be carefully chosen since the paranorm on the original space does not

necessarily induce a well-behaved topology on the dual space. In such cases,

it may be convenient to use the topology of uniform convergence [10] on the

closed balls of the original space. In this paper, this topology has been fre-

quently used in establishing the representation formulae for the continuous

linear functionals in the dual spaces.

Attempts have been made to obtain general representation theorems for

the elements in topological duals of the vector-valued sequence spaces such
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as [A,P]0((Ek)) and [A,P]((E)), which are introduced and studied by the au-

thor in [9]. In fact, all the corresponding results related to the duals of the

sequence spaces such as c0, c, lp , and wp (see [4, 5, 11]) follow as special

cases of results established in Section 4. A topological isomorphism is estab-

lished between l�(P,(Ek)) and l(Q,(E�k )), for 1 < infkpk. Finally, topological

duals of the spaces l(P,(Ek)), for 0 < pk ≤ 1, and w(P,E), for 0 < pk ≤ 1, are

determined.

2. Definitions and notations. Let N be the set of natural numbers and C be

the set of complex numbers. Throughout this paper, E and Ek, for all k ∈ N,

are normed linear spaces. The topological dual of a normed linear space E is

denoted as E∗. It is well known that E∗ is always a Banach space. The closed

unit ball in E (resp., Ek) is denoted as U (resp., Uk). We assume that for the

sequence P = (pk), pk > 0 for all k ∈N, and for the infinite matrix A = (ank),
ank ≥ 0 for all n,k ∈ N. If P is a bounded sequence, then we write pk = O(1)
andM =max(supkpk,1). If infkpk > 1, thenQ= (qk) is the sequence for which

1/pk+1/qk = 1, for each k∈N. The symbol zk denotes a sequence whose kth

term is z and all other terms are 0. In particular, ek is a sequence with kth term

1 and all other terms 0. Let I denote the unit matrix, (C,1) denote the Cesaro

matrix [7], and D denote the upper triangular matrix.

A vector-valued sequence space is a linear space of sequences whose ele-

ments are in other linear spaces. The symbol S(δ) stands for the closed δ-ball

centered at the origin θ of such a sequence space and g denotes the paranorm

[7] on a sequence space. Some of the topological properties of the following

three vector-valued sequence spaces, which are generated by the infinite ma-

trix A= (ank), were studied by Maddox [5, 7] in the special case when Ek = C,

for all k∈N:

(i) [A,P]((E)) = {x = (xk) | xk ∈ E, for all k and there exists l ∈ E such

that
∑
kank‖xk−l‖pk converges, for all n∈N, and tends to 0 as n→∞}

(in this case we say that xk→ l[A,P](E));
(ii) [A,P]0((Ek)) = {x = (xk) ∈ ΠkEk |

∑
kank‖xk‖pk converges, for all n ∈

N, and tends to 0 as n→∞};
(iii) [A,P]∞((Ek))= {x = (xk)∈ΠkEk | supn

∑
kank‖xk‖pk <∞}.

If pk = O(1), then the spaces [A,P]0((Ek)), [A,P]((E)), and [A,P]∞((Ek))
are linear topological spaces [7], the topology being induced by the paranorm

g(x)= sup
n

[∑
k
ank

∥∥xk∥∥pk
]1/M

. (2.1)

These three spaces generalize almost all the well-known sequence spaces.

For example, ifA=D, the upper triangular matrix, then [D,P]0((Ek))=l(P,(Ek)).
In particular, if pk = p for all k, then we get the sequence space l(p,(Ek)) (see

[5]) and if Ek = C for all k, then we get l(P) (see [11]). Moreover, if Ek = C and
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Table 2.1

Matrix
Vector-valued sequence If Ek = C If Ek = C, pk = 1,

spaces for all k for all k

A= I
[A,P]((E))= c(P,E) = c(P) = c

[A,P]0((Ek))= c0(P,E) = c0(P) = c0

[A,P]∞((Ek))= l∞(P,(Ek)) = l∞(P) = l∞

A= (C,1)
[A,P]((E))=w(P,E) =w(P) =w

[A,P]0((Ek))=w0(P,E) =w0(P) =w0

[A,P]∞((Ek))=w∞(P,(Ek)) =w∞(P) =w∞

pk = p, for all k, then we have the special case of lp [7]. Table 2.1 gives a few

examples of special cases of [A,P]0((Ek)), [A,P]((E)), and [A,P]∞((Ek)).
The following spaces are used in establishing some results in Section 4:

M1
(
P,
(
E∗k
))=∪r>1

{(
fk
)∈ΠkE∗k |∑

k

∥∥fk∥∥qkr−qk/pk <∞
}
,

M2
(
P,
(
E∗k
))=

{(
fk
)∈ΠkE∗k | ∑

r≥0

max
r

2r/pk
∥∥fk∥∥<∞

}
,

M3
(
p,E∗

)=

(fk) | fk ∈ E∗, ∀k,

∑
r≥0

2r/p
(∑

r

∥∥fk∥∥q
)1/q

<∞

.

(2.2)

3. Preliminaries. In this section, we introduce the lemmas that are used to

prove the main results in Section 4.

Lemma 3.1. If p > 1, x,y ∈ C, and 1/p+1/q = 1, then |xy| ≤ |x|p+|y|p .

Proof. This follows from the well-known inequality [2, page 17],

ap
′
bq

′ ≤ p′a+q′b, (3.1)

where p′ > 0, q′ < 1, p′+q′ = 1, a≥ 0, and b ≥ 0 by putting p′ = 1/p, q′ = 1/q,

|x| = (1/p)a1/p , and |y| = (1/q)b1/q.

Lemma 3.2. Let pk > 1 and pk =O(1). Then

∣∣∣∣∣
∑
k
akxk

∣∣∣∣∣≤
[∑

k

∣∣ak∣∣qk+1

]
g(x) (3.2)

for all x = (xk)∈ l(p) and a= (ak)∈ l(q), whenever g(x)≤ 1.
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Proof. By Lemma 3.1, |akxk|/g(x)≤ |ak|qk+|xk/g(x)|pk , and since g(x)
≤ 1,

∣∣∣∣∣
∑
k
akxk

∣∣∣∣∣≤ g(x)
∑
k

∣∣∣∣∣akxkg(x)

∣∣∣∣∣
≤ g(x)

∑
k

∣∣ak∣∣qk+∣∣g(x)∣∣1−M∑
k

∣∣xk∣∣pk

= g(x)
[∑

k

∣∣ak∣∣qk+1

]
.

(3.3)

This proves the lemma.

Lemma 3.3 (Simons [11, Lemma 4]). Let 0<pk≤1. Ifx∈l(p)with
∑
k |xk|pk=

α, a∈ l∞(p)with supk |ak|pk = β and β > 1, then
∑
kakxk converges absolutely

and |∑kakxk| ≤αβ.

4. Representation theorems. This section presents the main results estab-

lished in the paper. Attempts have been made in Theorems 4.1 and 4.2 to

obtain some general representation formulae for elements in [A,P]∗(E) and

[A,P]∗0 (E), which include many known cases of representation theorems for

sequence spaces as special cases.

Theorem 4.1. Let A = (ank) be an infinite matrix with limn→∞ank = 0 for

each k∈N. Then for each f ∈ [A,P]∗(E), there exist uniquely defined function-

als fk ∈ E∗ for all k∈N such that

f(x)= f(y)+
∑
k
fk
(
xk−l

)
, (4.1)

where xk→ l[A,P](E) and y = (l,l, l, . . .).
Proof. Since xk → l[A,P](E),

∑
kank‖xx − l‖pk converges for each k ∈ N

and tends to 0 as n→∞. So it follows that limr→∞ supn∈N
∑
k≥r ank‖xk−l‖pk =

0. Since limn→∞ank = 0 for each k ∈ N, zk ∈ [A,P](E) for each z ∈ E. Also

y ∈ [A,P](E) implies that x−y −∑r
k=1(xk− l)k ∈ [A,P](E) for each r ∈ N,

where (xk− l)k denotes the sequence whose kth term is xk− l and all other

terms are 0. Hence,

g


(x−y)− r∑

k=1

(
xk−l

)k= sup
n∈N


∑
k≥r
ank

∥∥xk−l∥∥pk



1/M

�→ 0 (4.2)

as r →∞, which implies that

x−y =
r∑
k=1

(
xk−l

)k, f (x)= f(y)+
∑
k
f
(
xk−l

)k
for each f ∈ [A,P]∗(E).

(4.3)
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To show the continuity of each linear function fk on Ek, for any fixed k∈N,

define fk : E → C by fk(z) = f(zk) for any z ∈ E. Since f is continuous, for

ε > 0, there exists δ > 0 such that |f(x)| < ε, whenever g(x) < δ. Now, let

‖z‖ < (δM)1/pk/Tk, where Tk = supnank for each k and M =max(1,supkpk).
It follows that

g
(
zk
)= sup

n

(
ank

∥∥zk∥∥pk)1/M ≤ T 1/M
k

∥∥zk∥∥pk/M < δ (4.4)

so that |fk(z)| = |f(zk)| < ε, which proves our assertion. The required repre-

sentation in (4.1) follows from this. To prove the uniqueness of the functionals

fk, note that for

f(x)= f(y)+
∑
k
fk
(
xk−l

)= f(y)+∑
k
gk
(
xk−l

)
, (4.5)

where xk→ l[A,P](E), we havey = (0,0,0, . . .)when x = zk. Therefore, fk = gk
for all k.

This completes the proof of Theorem 4.1.

Theorem 4.2. If P = (pk) and A as in Theorem 4.1, then each f ∈ [A,
P]∗0 ((Ek)) has a unique representation of the form

f(x)=
∑
k
fk
(
xk
)
, (4.6)

where fk ∈ E∗k are uniquely defined functionals determined by f only.

The proof of Theorem 4.2 is omitted since it can be proved following the

same line of argument as in Theorem 4.1.

The following results are due to Maddox [8] who calculated the representa-

tion formulae for elements in C∗(E) and C∗0 (E). Note that C(E) (resp., C0(E))
is a special case of [A,P](E) (resp., [A,P]0(E)) obtained by substituting A= I
and pk = 1 for all k∈N.

Corollary 4.3 [8, Proposition 6.14]. The general form of each f ∈ C∗(E)
is f(x) = f(y)−∑k fk(l)+

∑
k fk(xk) for every x ∈ C(E), where xk → l, y =

(l,l, l, . . .), fk ∈ E∗, and
∑
k‖fk‖<∞.

Corollary 4.4 [8, Proposition 6.15]. The general form of each f ∈ C∗0 (E)
is f(x)=∑k fk(xk) for every x ∈ C0(E), where fk ∈ E∗ and

∑
k‖fk‖<∞.

In the special case, when matrix A = D, a topological isomorphism has

been established between [D,P]∗0 ((Ek)) and [D,Q]0((E∗k )) for 1 < infkpk in

Theorem 4.5, while in Theorem 4.10, a similar result is established for the

topological dual of [D,P]0((Ek)) for 0 < pk ≤ 1. Note that [D,P]0((Ek)) =
l(P,(Ek)).
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Köthe [3] has calculated the topological dual of lp((Ek)) in the special case

when pk = p ≥ 1 for all k. Later, Maddox [6] calculated l∗(P) for pk ≥ 1 for all

k. The following theorem generalizes and unifies both these results.

Theorem 4.5. Let 1 < infkpk = L and pk =O(1). Then for every f ∈ l∗(p,
(Ek)), there exist uniquely defined functionals fk ∈ E∗k for each k such that

f(x) = ∑k fk(xk) for all x ∈ l(P,(Ek)). Moreover, (fk)∗ ∈ l(Q,(E∗k )) and the

map T :f→(fk) is a topological isomorphism between l∗(P,(Ek)) and l(Q,(E∗k )).

Proof. By Theorem 4.2, each f ∈ l∗(P,(Ek)) can be uniquely expressed as

f(x)=∑k fk(xk) for all x = (xk)∈ l(P,(Ek)). To prove that (fk)∈ l(Q,(E∗k )),
assume the contrary. So there exists integers k0 < k1 < k2 < ··· such that

Ms =
ks∑

k=ks−1

∥∥fk∥∥qk > 1 (4.7)

for all s ∈N. Since fk ∈ E∗k , there exists zk ∈Uk such that

∥∥fk∥∥≤ 2
∣∣fk(zk)∣∣. (4.8)

Define a sequence x = (xk) such that

xk =

s

−1M−1
s
∣∣fk(zk)∣∣qk−1

sgn
(
fk
(
zk
))
zk, if ks−1 < k≤ ks,

0, otherwise.
(4.9)

Then,

ks∑
k=ks−1+1

∥∥xk∥∥pk ≤
ks∑

k=ks−1+1

s−pkM−pk
s

∣∣fk(zk)∣∣qk∥∥zk∥∥pk

≤
ks∑

k=ks−1+1

s−LM−1
s
∥∥fk∥∥qk ≤ s−L

(4.10)

for each s ∈ N. Since L > 1, x ∈ l(P,(Ek)). But
∑
k fk(xk) diverges since, for

each s ∈N,

∣∣∣∣∣∣
ks∑

k=ks−1+1

fk
(
xk
)∣∣∣∣∣∣= s−1M−1

s

ks∑
k=ks−1

∣∣fk(zk)∣∣qk

≤ 2−Hs−1M−1
s

ks∑
k=ks−1

∥∥fk∥∥qk = 2−Hs−1,

(4.11)

where supk qk=H. This leads to a contradiction and therefore (fk)∈l(Q,(E∗k )).
Next, define a map T : l∗(P,(Ek))→ l(Q,(E∗k )) by T(f)= (fk). Using Lemmas

3.1 and 3.2, one can easily show that T is linear and bijective. So it remains to

establish the continuity of T and T−1 at the zero elements of l∗(P,(Ek)) and
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l(Q,(E∗k )), respectively. Note that l∗(P,(Ek)) is endowed with the topology of

uniform convergence, while l(Q,(E∗k )) has the usual paranorm topology. To

prove the continuity of T−1, let ε > 0 and y = (yk)∈ S(δ), the closed δ-ball in

l(P,(Ek)). Also let 0 < h(fk) < min(1,ε)(δM +1)−1, where h is the paranorm

on l(Q,(E∗k )). It follows from Lemma 3.1 that

∣∣f(y)∣∣=
∣∣∣∣∣
∑
k
fkyk

∣∣∣∣∣=
∑
k

∥∥fk∥∥
h
(
fk
)∥∥yk∥∥h(fk)

≤
{∑

k

∥∥yk∥∥pk+∑
k

∥∥fk∥∥qk[h(fk)]−qk
}
h
(
fk
)

≤
{∑

k

∥∥yk∥∥pk+∑
k

∥∥fk∥∥qk[h(fk)]−H
}
h
(
fk
)

≤ [gM(y)+1
]
h
(
fk
)
< ε,

(4.12)

which implies the continuity of T−1.

To prove the continuity of T , it is enough to show that |h(fk)|H(M−1) < δ−1/M ,

whenever sup{|f(x)| | x ∈ S(δ)}< 1, for any δ1−1/M > 2. Choose zk ∈Uk with

|fk(zk)| ≥ (1/2)‖fk‖, for each k∈N. Then, for each n∈N, define a sequence

xn = (xnk ) by

xnk =




2M/pk sgn
(
fk
(
zk
))∥∥fk∥∥qk−1δ1/pkzk

h
(
fk
)H/pk∣∣h(fk)∣∣ , if 1≤ k≤n,

0, if k >n.
(4.13)

Note that xn ∈ S(δ) since g(xn) ≤ 2δ1/M([
∑n
k=1‖fk‖qk]1/M/h(fk)H/M) ≤

2δ1/M < δ. This implies that 1 ≥ |f(xn)| ≥ ∑n
k=1δ1/pk[h(fk)]−H/pk‖fk‖qk for

each n≥ 1, whenever sup{|f(x)| | x ∈ S(δ)}< 1. Also, since δ1/M ≤ δ1/pk ,

δ−1/M ≥
∑
k

∥∥fk∥∥qk[h(fk)]−H/pk

≥
∑
k

∥∥fk∥∥qk
[∑

r

∥∥fr∥∥qr
]−1/pk

≥
∑
k

∥∥fk∥∥≥
[∑

k

∥∥fk∥∥qk
]1/H

,

(4.14)

which shows that h(fk) ≤ 1. So, δ−1/M ≥ [h((fk))]−H/M[h((fk))]H , that is,

h(fk)≤ δ1/H(−M+1), and therefore, T is continuous.

This completes the proof of Theorem 4.5.

Corollary 4.6 [3]. If 1< p <∞, 1/p+1/q = 1, and Ek are Banach spaces,

then l∗p((Ek))= lq((E∗k )) and l∗1 ((Ek))= l∞((E∗k )).
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Corollary 4.7 [6, Theorem 4]. If infkpk > 1 and pk =O(1), then l∗(P) is

linearly homeomorphic to the space l(Q).

If the condition infkpk > 0 is removed from the statement of Theorem 4.5,

then in that case we have the following partial result which gives a unique

representation of each linear functional on l(P,(Ek)).

Theorem 4.8. Let pk > 1 and (pk) = O(1). Then each f ∈ l∗(P,(Ek)) can

be uniquely expressed as f(x)=∑k fk(xk) for all x = (xk)∈ l(P,(Ek)), where

(fk)∈M1(P,(E∗k )). Moreover, the map T : l∗(P,(Ek))→M1(P,(E∗k )), defined by

T(f)= (fk), is a linear homomorphism.

Proof. Following the same line of argument as in Theorem 4.2, it can be

shown that each f ∈ l∗(P,(Ek)) can be uniquely expressed as f(x) =∑
k fk(xk) for all x = (xk) ∈ l(P,(Ek)), where fk ∈ E∗k . To show that (fk) ∈

M1(P,(E∗k )), assume the contrary. So there exists integers 1< k0 < k1<k2<···
such that Ms =

∑ks
k=ks−1+1‖fk‖qks−qk/pk > 1 for each s ≥ 1. Also, we can find

zk ∈ Uk such that ‖fk‖ ≤ 21/qk |fk(zk)|, for each k ≥ 1. Define a sequence

x = (xk) by

xk =

s

(−1+qk)/pkM−1
s
∣∣fk(zk)∣∣qk−1

sgn
(
fk
(
zk
))
zk, if ks−1 ≤ k≤ ks,

0, otherwise,
(4.15)

which obviously belongs to l(P,(Ek)). However, since

∣∣∣∣∣∣
ks∑

k=ks−1+1

fk
(
xk
)∣∣∣∣∣∣=

∣∣∣∣∣∣
ks∑

k=ks−1+1

s(−1+qk)/pkM−1
s

∣∣∣∣∣∣fk
(
zk
)∣∣qk∣∣

≥M−1
s 2−1s−1

ks∑
k=ks−1+1

∥∥fk∥∥qks−qk/pk = 1
2s

(4.16)

for each s ≥ 1,
∑
k fk(xk) diverges, which leads to a contradiction. So it follows

that (fk)∈M1(P,(E∗k )).
Clearly, the map T is linear and injective. To show that T is also surjec-

tive, let (fk) ∈ M1(P,(E∗k )), that is, there exists an r ∈ N, r > 1, such that∑
k‖fk‖qkr−qk/pk <∞. It follows from Lemma 3.1 that for any x ∈ l(P,(Ek)),

∑
k

∣∣fk(xk)∣∣≤∑
k

∥∥fk∥∥
r

∥∥xk∥∥r
≤
∑
k

[∥∥fk∥∥qkr−qk+rpk∥∥xk∥∥pk]

≤ r−1
∑
k

∥∥fk∥∥qkr−qk/pk+rM∑
k

∥∥xk∥∥pk <∞.
(4.17)
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Let f(x)=∑k fk(xk). Observe that

∣∣fk(xk)∣∣
rg(x)

≤
∥∥fk∥∥
g(x)

∥∥xk∥∥
r

≤
(∥∥fk∥∥

r

)qk
+
(∥∥xk∥∥
g(x)

)pk

≤ ∥∥fk∥∥qkr−qk+∥∥xk∥∥pk[g(x)]−M,
(4.18)

whenever g(x)≤ 1. Therefore,

∣∣f(x)∣∣≤ rg(x)
{∑

k

∥∥fk∥∥qkr−qk+∥∥xk∥∥pk[g(x)]−M
}

= g(x)
[∑

k

∥∥fk∥∥qkr−qk/pk+N
]
,

(4.19)

which establishes the continuity of f . This proves Theorem 4.8.

The following result of Maddox [6, Theorem 3] is an immediate consequence

of Theorem 4.8.

Corollary 4.9. If pk > 1 and (pk)=O(1), then l∗(P) is linearly homomor-

phic to the space M1(P).

Note that if we impose the extra condition 1< infkpk in Corollary 4.9, then

the space M1(P) coincides with l(Q).
Next, we investigate the topological dual of l(P,(Ek)) for 0 < pk ≤ 1. Köthe

[3] calculated l∗1 ((Ek)), and later, Simons [11] established a representation the-

orem for continuous linear functionals on l(P) for 0 < pk ≤ 1. The following

theorem generalizes these results by establishing a topological isomorphism

between l∗(P,(Ek)) and l∞(P,(E∗k )) for 0<pk ≤ 1, for all k∈N.

Theorem 4.10. Let 0 < pk ≤ 1 for all k ∈ N. Then for each f ∈ l∗(P,(Ek)),
there exist uniquely defined functionals fk ∈ E∗k , for all k∈N, such that f(x)=∑
k fk(xk), where x = (xk) ∈ l(P,(Ek)). Moreover, (fk) ∈ l∞(P,(E∗k )) and the

map T : f � (fk) is a topological isomorphism between l∗(P,(Ek)) and l∞(P,
(E∗k )).

Proof. Following the same argument as in Theorem 4.2, one can show that

f(x)=∑k fk(xk) is the unique representation of f(x), where fk ∈ E∗k , for all

k and x = (xk) ∈ l(P,(Ek)). To show that (fk) ∈ l∞(P,(E∗k )), assume the con-

trary, that is, there exist integers 1< k1 < k2 < k3 < ··· such that ‖fks‖pks > s2

for each s ∈N. For each k∈N, choose zk ∈Uk such that ‖fk‖ ≤ 2|fk(zk)| and
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define a sequence x = (xk) by

xk =




sgnfk
(
zk
)

∥∥fk∥∥ zk, if k= ks for each s ∈N,
0, otherwise.

(4.20)

Then

∑
k

∥∥xk∥∥pk =∑
s

∥∥zks∥∥pks∥∥fks∥∥pks ≤
∑
s

1∥∥fks∥∥pks <
∑
s
s−2 <∞ (4.21)

so that x ∈ l(P,(Ek)). However,

∑
k

∣∣fk(xk)∣∣=∑
s

∣∣fks (zks )∣∣∥∥fks∥∥ >
1
2

∑
s

1, (4.22)

which contradicts that
∑
k fk(xk) converges. Therefore, (fk)∈ l∞(P,(E∗k )).

Next, we show that T : l∗(P,(Ek))→ l∞(P,(E∗k )), defined by T(f)= (fk), is a

topological isomorphism. Clearly, T is linear and one to one. To show that T
is also surjective, let (fk) ∈ l∞(P,(E∗k )) and y = (yk) ∈ l(P,(Ek)). Then there

exists α > 0 such that ‖fk‖pk ≤ α for all k, and there exists k0 ∈ N such that

‖yk‖pk < 1/α, for all k≥ k0, so that |fk(yk)|pk < 1, for all k≥ k0. Then

∑
k≥k0

∣∣fk(yk)∣∣≤ ∑
k≥k0

∣∣fk(yk)∣∣pk ≤α ∑
k≥k0

∥∥yk∥∥pk <∞, (4.23)

which implies that
∑
k fk(yk) converges. Let f(y) =∑k fk(yk). The map f is

linear and continuous since, by Lemma 3.3, |f(y)|≤αg(y). So, f ∈l∗(P,(Ek)),
which implies that T is surjective.

It remains to show the continuity of T and T−1 with respect to the topol-

ogy of uniform convergence on the closed balls of l(P,(Ek)) and the usual

paranorm topology on l∞(P,(E∗k )), respectively. To prove the continuity of

T−1, let ε > 0 and x ∈ S(β), the closed β-ball in l(P,(Ek)). Since |f(x)| ≤∑
k‖fk‖‖xk‖ ≤ δβ < ε, whenever supk‖fk‖pk < δ, where δ = min(1,ε)/β, it

follows that T−1 is continuous.

To prove the continuity of T , choose zk ∈ Uk for each k ≥ 1 such that

(1/2)‖fk‖ ≤ |fk(zk)|, and for each n∈N, define a sequence tn = (tnk ) by

tnk =




sgn
(
fk
(
zk
))

2−1
∥∥fk∥∥δ1/pk

fk
(
zk
) , if k=n,

0, otherwise.
(4.24)



TOPOLOGICAL DUALS OF SOME PARANORMED . . . 1893

Then, for each n∈N, tn ∈ s(δ) since

g
(
tn
)=∑

k

∥∥tnk ∥∥pk ≤ δ2−pn
∥∥fn∥∥pn∣∣fn(zn)∣∣pn < δ. (4.25)

So it follows that 1 > |f(tn)| = 2−1δ1/pn‖fn‖ for each n ∈ N, whenever

sup{|f(x)| | x ∈ S(δ)} < 1. This implies that T((fk)) < 2δ−1, which proves

the continuity of T−1.

This completes the proof of Theorem 4.10.

The following result is an immediate consequence of Theorem 4.10.

Corollary 4.11 [11, Theorem 7]. If 0 < pk ≤ 1, then the following state-

ments are equivalent:

(1) the map (xk)�
∑
kakxk is a linear functional on l(P);

(2)
∑
kakxk is convergent for all x = (xk)∈ l(P);

(3) (ak)∈ l∞(P).
Since l(P) admits the Schauder basis [7] (ek), f(x) =∑k f (ek)xk, for each

x = (xk) ∈ l(P). So this result amounts to saying that l∗(P) = l∞(P) when

0<pk ≤ 1, which is a special case of Theorem 4.10.

The next theorem deals with the special case when A = (C,1), the Cesaro

matrix. The structure of the topological dual of [(C,1),P](E)=w(P,E) is dis-

cussed for 0<pk ≤ 1. The calculation of topological dual ofw(P,E), forpk > 1,

still remains open.

Borwein [1] determined the structure of the continuous linear functionals

on wp for 1≤ p <∞. Later, Maddox [4, 5] investigated w∗(P) and w∗
0 (P), for

0<pk ≤ 1.

Theorem 4.12. Let 0 < infkpk ≤ pk ≤ 1. Then, every f ∈ w∗(P,E) can be

uniquely expressed as

f(x)= f(y)+
∑
k
fk
(
xk
)−∑

k
fk(l), (4.26)

where xk → l[w(P,E)], y = (l,l, l, . . .), and fk ∈ E∗ for all k. Moreover, (fk) ∈
M2(P,E∗) and the map f � (fk) is a linear homomorphism between the spaces

w∗(P,E) and M2(P,E∗).

Proof. By Theorem 4.1, for each f ∈w∗(P,E), there exist uniquely defined

functionals fk ∈ E∗ such that (4.26) holds for each x = (xk)∈w(P,E), where

xk� l[w(P,E)]. To show that (fk)∈M2(P,E∗), assume the contrary, that is,

∑
r≥0

max
r

2r/pk
∥∥fk∥∥=∞. (4.27)
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Then, by Dini’s theorem [12, page 403], there exists a decreasing null se-

quence (εk) such that
∑
r≥0 εr maxr 2r/pk‖fk‖ = ∞. Choose zk ∈ U such that

‖fk‖ ≤ 2|fk(zk)| and let Nr be the integer such that maxr 2r/pk‖fk‖ =
2r/pNr ‖fNr ‖.

Define a sequence b = (bk) by

bk =

2r/pNr εNr zNr sgn

(
fNr

(
zNr

))
, if k=Nr , for each r ≥ 0,

0, otherwise.
(4.28)

Since

2−r
2r+1∑
k=2r

∥∥bk∥∥pk = 2−r2r εpNrNr

∥∥zNr ∥∥pNr NLr �→ 0 as r �→∞, (4.29)

we can define f(b)=∑k fk(bk). On the other hand,

2r+1∑
k=2r

fk
(
bk
)= εNr 2r/pNr

∣∣fNr (zNr )∣∣

≥ 1
2
εNr 2r/pNr

∥∥fNr ∥∥, for each r ≥ 0,

(4.30)

which implies that

∑
r≥0

2r+1∑
k=2r

∣∣fk(bk)∣∣≥ ∑
r≥0

1
2
εNr 2r/pNr

∥∥fNr ∥∥

= 1
2

∑
r≥0

εNr max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥

≥ 1
2

∑
r≥0

εr max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥.

(4.31)

So, it follows from (4.27) that
∑
k fk(bk) diverges, which leads to a contra-

diction. Therefore, (fk)∈M2(P,E∗).
Since

∑
k fk(xk−l) converges and

∑
k

∣∣fk(l)∣∣≤ ‖l‖∑
r≥0

2r+1∑
k=2r

∥∥fk∥∥

≤ ‖l‖
∑
r≥0

max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥

2r+1∑
k=2r

2r/pk

≤ ‖l‖
∑
r≥0

max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥<∞,

(4.32)

for each x = (xk)→ l[w(P,E)],
∑
k fk(xk) converges. This shows that the rep-

resentation in (4.26) is valid.
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Next, define the map T :w∗(P,E)→M2(P,E∗) by T(f) = (fk). Clearly, T is

linear and injective. To show that T is continuous, define a map t :w(P,E)→ E
by t(x)= l, where x = (xk)→ l[w(P,E)]. Clearly, t is well defined and linear.

Next, let s =min(‖l‖,‖l‖pk). So, for ε > 0,

s ≤ 2−r
2r+1∑
k=2r

‖l‖pk ≤ 2−r
2r+1∑
k=2r

∥∥l−xk∥∥pk+2−r
2r+1∑
k=2r

∥∥xk∥∥pk ≤ g(x)+ε, (4.33)

which implies that ‖t(x)‖ = ‖l‖ ≤ (1/2)[g(x)+g(x)1/L] and therefore t is

continuous. Then define two maps h1 and h2 on w(P,E) by h1(x) =
∑
k fk(l)

and h2(x)=
∑
k fk(xk), respectively. The map h1 is continuous since

∣∣h1(x)
∣∣= ‖l‖∑

k

∥∥fk∥∥= ‖l‖∑
r≥0

max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥

≤ β
2

[
g(x)+g(x)1/L],

(4.34)

where β=∑r≥0 max2r≤k≤2r+1 2r/pk‖fk‖. To prove the continuity of h2, let α=
max(1,g(x)). Then since

2r+1∑
k=2r

( ∥∥xk∥∥
2r/pkα1/l

)pk
≤ g(x)
α1/l ≤

g(x)
α

≤ 1, (4.35)

it follows that

2r+1∑
k=2r

∣∣fk(xk)∣∣≤α1/L max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥

2r+1∑
k=2r

∥∥xk∥∥2−r/pkα1/l

< α1/l max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥g(x)α

(4.36)

and therefore

∣∣h2(x)
∣∣≤ ∑

r≥0

2r+1∑
k=2r

∣∣fk(xk)∣∣

≤α−1+1+/L
[∑
r≥0

max
2r≤k≤2r+1

2r/pk
∥∥fk∥∥

]
g(x)

≤ βα−1+1+/Lg(x),

(4.37)

which shows that h2 is continuous. Hence f is continuous.

This completes the proof of Theorem 4.12.
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The following two results are special cases of Theorem 4.12.

Corollary 4.13 [4, Theorem 6]. Let 0 < infkpk ≤ pk ≤ 1. Then, for arbi-

trary α, a = (ak) ∈ M2(P), and x = (xk) ∈ w(P) with xk → �[w(P)], f(x) =
�α+∑kakxk defines an element ofw∗(P). Conversely, every element ofw∗(P)
can be represented in this form.

Corollary 4.14 [4, Theorem 7]. If 0 < pk ≤ 1, for all k, then f(x) =∑
kakxk defines an element ofw∗

0 (P), for each x = (xk)∈w0(P), where (ak)∈
M2(P). If, in addition, 0 < infkpk, then f(x) =∑kakxk is a continuous linear

functional on w0(P) if and only if (ak)∈M2(P).

We have not been able to obtain anything more satisfactory than linear ho-

momorphism for w∗(P,E), when pk = p > 1 for all k.

Theorem 4.15. Let 1 < p < ∞. Then, every f ∈ w∗
p (E) can be uniquely

expressed as

f(x)= f(y)+
∑
k
fkxk−

∑
k
fk(l), (4.38)

where xk → �[wp(E)], y = l, l, l, . . ., and fk ∈ E∗ for each k. Moreover, (fk) ∈
M3(p,E∗) and the map T : f � (fk) is a linear homomorphism between the

spaces w∗
p (E) and M3(p,E∗).

The proof of the above theorem is analogous to a result given by Maddox

[4] for the corresponding special case wp .

The topological dual of w(P,E), for pk > 1, still remains to be determined.

The space [A,P]∗∞((Ek)) has also been excluded from the current discussion

because even in the special case of l∞, the topological dual is a function space,

which will be discussed in a subsequent paper. The study of the three spaces

[A,P]∞((Ek)), [A,P]0((Ek)), and [A,P]((E)) using techniques of functional

analysis generalizes and unifies many of the existing results on sequence spac-

es. Much more has to be investigated on the duals of these spaces. Stated oth-

erwise, topological duals of sequence spaces by matrix transformation can be

studied with a new approach and insight with the introduction of these three

spaces.
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