
IJMMS 2003:34, 2147–2156
PII. S016117120320822X

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

A NOTE ON HAMMERSLEY’S INEQUALITY FOR ESTIMATING
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Let X1,X2, . . . ,Xn be a random sample from a normal N(θ,σ2) distribution with
an unknown mean θ = 0,±1,±2, . . . . Hammersley (1950) proposed the maximum
likelihood estimator (MLE) d = [Xn], nearest integer to the sample mean, as an
unbiased estimator of θ and extended the Cramér-Rao inequality. The Hammer-
sley lower bound for the variance of any unbiased estimator of θ is significantly
improved, and the asymptotic (as n→∞) limit of Fraser-Guttman-Bhattacharyya
bounds is also determined. A limiting property of a suitable distance is used to
give some plausible explanations why such bounds cannot be attained. An almost
uniformly minimum variance unbiased (UMVU) like property of d is exhibited.
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1. Introduction. Let X1,X2, . . . ,Xn be a random sample from a normal N(θ,
σ 2) distribution with an unknown integer mean θ = 0,±1,±2, . . . . Hammers-

ley [3] proposed the maximum likelihood estimator (MLE) d = [Xn], nearest

integer to the sample mean, as an unbiased estimator of θ. He extended the

Cramér-Rao variance inequality for any unbiased estimator t = t(X1, . . . ,Xn)
and showed that

σ 2
t (θ)≥

1
exp

(
n/σ 2

)−1
=H. (1.1)

He noticed that d does not achieve this bound (even asymptotically) and raised

the question whetherH is a greatest lower bound, that is, if there is any estima-

tor attaining this bound. The bound H is improved to the extent that the new

bound is almost twice the size ofH. However, even the improved bound cannot

be attained. The asymptotic limit (as n→∞) of Fraser-Guttman-Bhattacharyya

bounds is also determined although d still fails to achieve the asymptotic limit.

We consider a suitable distance and use its limiting property to shed some light

on the reasons why such bounds are unattainable. An intriguing behavior of d
is observed as follows. Define the loss functions

Lk(δ,θ)= |δ−θ|kI{δ≠ θ}, k= 0,1,2, (1.2)
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where I is the usual indicator function. Let Rk(n) = EθLk(d,θ) be the risk

functions of d when k= 0,1,2. Then

Rk(n)∼
√

8σ 2

nπ
exp

(
− n

8σ 2

)
as n �→∞, k= 0,1,2. (1.3)

Hammersley [3] proved (1.3) when k= 2. The interesting observation is that

Rk(n) has the same asymptotic behavior when k= 0,1. In Section 2, we prove

(1.3), improve the bound (1.1), and also determine the asymptotic limit of

Bhattacharyya bounds. Also, we use a suitable distance and its limiting prop-

erty to show the reason why such bounds cannot be attained even asymptot-

ically. Such apparent anomalies seem to stem from the restricted parameter

space. Some other properties (such as admissibility and minimaxity etc.) of d
have been explored by Khan [4, 5, 6], Ghosh and Meeden [2], and Kojima et

al. [7]. However, the main focus of this paper is to settle some of the ques-

tions raised by Hammersley [3] himself regarding his bound, its attainment,

and its relevance to his estimator. His problem is revisited for theoretical in-

terest. A by-product of this pursuit is the conclusive observation that d= [Xn]
is the best estimator even though d fails to achieve any bound. In fact, at the

end of Section 2, we show that d is almost like uniformly minimum variance

unbiased (UMVU) estimator in a restricted sense.

2. The main results. In what follows, Pθ denotes the probability under θ
and Eθ denotes the corresponding expectation (Pi and Ei have similar mean-

ings). Let Φ(x) be the standard normal distribution function, and φ(x) =
(2π)−1/2 exp(−x2/2). The nearest integer to y is denoted by [y] through-

out the paper without any further mention. It follows from the definition of

d= [Xn] that

Pi(d−i= j)= P0(d= j)= Φ
(√

n(j+1/2)
σ

)

−Φ
(√

n(j−1/2)
σ

)
= f(j), j = 0,±1,±2, . . . .

(2.1)

Clearly, f(−j)= f(j) with maximum at j = 0, and

Pi(error)= Pi(d≠ i)= EiL0(d,i)= R0(n)= 1−Pi(d= i)

= 1−f(0)= 2
(

1−Φ
(√

n
σ

))
.

(2.2)

Moreover, for k= 1,2, we have

Rk(d,i)= EiLk(d,i)= 2
∞∑
j=1

jkf (j)= Rk(n)

= 2
∞∑
j=1

jk
(
Φ
(√

n(j+1/2)
σ

)
−Φ

(√
n(j−1/2)

σ

))
.

(2.3)
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Since d is integer-valued, hence

R0(n)= 2
(

1−Φ
(√

n
2σ

))
≤ R1(n)= Ei|d−i| ≤ E0d2 = σ 2

d = R2(n). (2.4)

Since 1−Φ(x) ∼ x−1φ(x) as x → ∞, (2.2) implies (1.3) when k = 0. The case

k= 2 in the asymptotic (1.3) was shown by Hammersley [3]; hence, (2.4) implies

(1.3) when k = 1.

We now consider the problem of improving the bound (1.1). LetX1,X2, . . . ,Xn
be i.i.d. N(θ,σ 2), where θ is not necessarily integer, and let fn(θ) be the joint

density of (X1, . . . ,Xn). Letting T =∑n
1 Xi, we have

fn(θ)= exp

(
θT
σ 2

− nθ
2

2σ 2

)
g
(
X1, . . . ,Xn

)
, (2.5)

where

g
(
X1, . . . ,Xn

)= (2π)−n/2σ−n exp

(
−

n∑
1

X
2

i
2σ 2

)
. (2.6)

It is easy to verify that

Eθ
fn
(
θ1
)
fn
(
θ2
)

f 2
n(θ)

= exp
(
n
(
θ1θ2+θ2−θ(θ1+θ2

))
σ 2

)
. (2.7)

Let t(X1, . . . ,Xn) be an unbiased estimator of θ, and let h ≠ 0 (h is an integer

if θ is an integer). Then, Eθt(X1, . . . ,Xn)= θ implies that

Eθt
(
X1, . . . ,Xn

)fn(θ±h)
fn(θ)

= θ±h, Eθt
(
X1, . . . ,Xn

)
S = 2h, (2.8)

where S = (fn(θ+h)−fn(θ−h))/fn(θ).
Since EθS = 0, (2.8) implies that covθ(t,S) = 2h. Consequently, Cauchy-

Schwarz inequality gives

σ 2
t (θ)≥

4h2

EθS2
. (2.9)

Using (2.7), we obtain

EθS2 = Eθ f
2
n(θ+h)
f 2
n(θ)

+Eθ f
2
n(θ−h)
f 2
n(θ)

−2Eθ
fn(θ+h)fn(θ−h)

f 2
n(θ)

= exp
(
nh2

σ 2

)
+exp

(
nh2

σ 2

)
−2exp

(
− nh

2

σ 2

)

= 2
(

exp
(
nh2

σ 2

)
−exp

(
− nh

2

σ 2

))
.

(2.10)

Thus

σ 2
t (θ)≥

2h2(
exp

(
nh2/σ 2

)−exp
(−nh2/σ 2

)) = B1(h). (2.11)
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It is easily seen that limh→0B1(h) = σ 2/n (the usual bound). However, in our

case under consideration, θ is an integer so that h ≠ 0 must be an integer

to make (2.8) and subsequent equations valid. Hence, maximizing the bound

B1(h) over integers h≠ 0, we obtain

σ 2
t (θ)≥

2
exp

(
n/σ 2

)−exp
(−n/σ 2

) = B. (2.12)

It is easy to see that B > H and B/H → 2 as n → ∞. Thus, the bound in (1.1)

is not the best possible and there can be no estimator achieving (1.1) even

asymptotically, and the question raised by Hammersley [3] is resolved.

Motivated by the preceding improvement, it is tempting to determine the

limit of the kth Fraser-Guttman-Bhattacharyya bound Bk as k→∞. For integers

h≠ 0, define the generalized difference operator (cf. Feller [1, page 220]) by

S∗m =∆mh fn(θ)= h−m
m∑
i=0

(
m
i

)
(−1)m+ifn(θ+ih). (2.13)

Let Sm = S∗m/fn(θ), m = 1,2, . . . . Since
∑m
i=0(−1)m+i

(
m
i

)
= 0, we note that

EθSm = 0, and

hm+k covθ
(
Sm,Sk

)

=
m∑
i=0

k∑
j=0

(
m
i

)(
k
j

)
(−1)m+k+i+j covθ

(
fn(θ+ih)
fn(θ)

,
fn(θ+jh)
fn(θ)

)
.

(2.14)

Using (2.7), one verifies that

covθ

(
fn(θ+ih)
fn(θ)

,
fn(θ+jh)
fn(θ)

)

= Eθ
(
fn(θ+ih)
fn(θ)

−1

)(
fn(θ+jh)
fn(θ)

−1

)

= Eθ
(
fn(θ+ih)fn(θ+jh)−fn(θ+ih)fn(θ)

)
f 2
n(θ)

= exp
(
nijh2

σ 2

)
−1.

(2.15)

Hence

hm+k covθ
(
Sm,Sk

)= m∑
i=1

k∑
j=1

(
m
i

)(
k
j

)
(−1)m+k+i+j

(
exp

(
nijh2

σ 2

)
−1

)
.

(2.16)

Moreover, it is easy to check that for any unbiased estimator t = t(X1, . . . ,Xn)
of θ,

EθtS1 = 1⇐⇒ Eθ(t−θ)S1 = 1, Eθ(t−θ)S1 = 0 ∀j ≥ 2. (2.17)
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Thus, γ′ = (1,0,0, . . . ,0) is a vector of covariances between t and S1, . . . ,Sk.
Let Σ = (covθ(Sm,Sm′))k×k be the covariance matrix of S1,S2, . . . ,Sk. Then, the

kth Bhattachayyra bound is Bk(h) = γ′Σ−1γ. A general expression for Bk(h)
is intractable although its asymptotic limit is discussed below. But, we first

evaluate B2(h). Letting y = exp(nh2/σ 2), it is easily seen from (2.16) that

Σ=



(y−1)
h2

(y−1)2

h3

(y−1)2

h3

(y−1)
(
y2+2y−1

)
h4


 (2.18)

and B2(h)= γ′Σ−1γ = h2(y2+2y−1)/y(y2−1).
Maximizing B2(h) over integers, we obtain

σ 2
t (θ)≥ B2 = exp

(
2n/σ 2

)+2exp
(
n/σ 2

)−1
exp

(
n/σ 2

)(
exp

(
2n/σ 2

)−1
) >H, (2.19)

where H is the bound in (1.1). However, B2 ∼ H ∼ exp(−n/σ 2) as n → ∞. In

fact, we will show that Bk ∼ exp(−n/σ 2) (as n→∞) even when k→∞.

It is clear from (2.16) that covθ(Sm,Sk) is a polynomial in x = exp(λy)(λ=
n/σ 2, y = h2) of degree mk with leading coefficient 1. Therefore, asymptot-

ically (as n → ∞), covθ(Sm,Sk) ∼ xmk/hm+k. Thus, in view of the asymptotic

consideration, we replace Σ by A = (xαβ/hα+β)k×k, α,β = 1,2, . . . ,k, and the

bound Bk is replaced by B∗k = γ′A−1γ = |A11|/|A|, where A11 is the (1,1) co-

factor of A. Note that Bk(h) and B∗k (h) both depend on n, and Bk(h)∼ B∗k (h)
as n→∞. Fortunately, the determinants |A| and |A11| are related to Vander-

monde determinant. Consider the k×k Vandermonde determinant whose ith
row is (xi−1

1 ,xi−1
2 , . . . ,xi−1

k ), i = 1,2, . . . ,k. Then, it is well known that the Van-

dermonde determinant V(x1, . . . ,xk) is given by

V
(
x1,x2, . . . ,xk

)= ∏
1≤i<j≤k

(
xj−xi

)
. (2.20)

Setting xi = xi/h, i= 1,2, . . . ,k, it is easy to see that

|A| = xk(k+1)/2

hk+k(k+1)/2V
(
x1, . . . ,xk

)

= xk(k+1)/2

hk+k(k+1)/2

∏
1≤i<j≤k

(
xj

h
− x

i

h

)

= xk(k+1)/2

hk+k(k+1)/2+(k2)

∏
1≤i<j≤k

xj
(
1−xi−j)

= x
k(k+1)/2+∑k−1

i=0 i(i+1)

hk+k(k+1)/2+(k2)

∏
1≤i<j≤k

(
1−x−(j−i)).

(2.21)
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Setting p(k)=∑k
i=1 i2 = k(k+1)(2k+1)/6 and noting that

∏
1≤i<j≤k

(
1−x−(j−i))= k−1∏

i=1

(
1−x−i)k−i, (2.22)

we obtain

|A| = xp(k)

hk+k(k+1)/2+
(
k
2

) k−1∏
i=1

(
1−x−i)k−i. (2.23)

Next, we note that A11 is (k−1)×(k−1) determinant given by

∣∣A11

∣∣=
∣∣∣∣∣∣∣∣∣∣∣

x4

h4

x6

h5
··· x2k

hk+2

··· ··· ··· ···
x2k

hk+2

x3k

hk+3
··· xk2

h2k

∣∣∣∣∣∣∣∣∣∣∣

= x2
∑k
j=2 j

h4+5+···+(k+2) V
(
x1,x2, . . . ,xk−1

)
,

(2.24)

where x1 = x2/h, x2 = x3/h,. . . , xk−1 = xk/h.

Since 4+5+···+(k+2)=∑k
i=2 i+2(k−1)= k(k+1)/2+2k−3, we have

∣∣A11

∣∣= x2
∑k
j=2 j

hk(k+1)/2+2k−3+(k−1
2 )

∏
1≤i<j≤k

(
xj+1−xi+1)

= x2
∑k
j=2 j+

∑k−2
i=1 i(i+2)

hk(k+1)/2+2k−3+(k−1
2 )

∏
1≤i<j≤k

(
1−x−(j−i)).

(2.25)

Also, since 2
∑k
j=2 j+

∑k−2
i=1 i(i+2)= p(k)−1, we obtain

∣∣A11

∣∣= xp(k)−1

hk(k+1)/2+2k−3+(k−1
2 )

k−2∏
i=1

(
1−x−i)k−1−i. (2.26)

Recalling the definition x = exp(λy), λ=n/σ 2, y = h2, from (2.23) and (2.26),

we have

B∗k (y)=
∣∣A11

∣∣
|A| = h2

x
∏k−1
i=1

(
1−x−i)

= y
exp(λy)

∏k−1
i=1

(
1−exp(−λyi)) .

(2.27)

Now, B∗k (y) is to be maximized over y = h2 = 1,4,9, . . . . First, consider B∗2 (y).
Obviously, B∗2 (y)=y/(exp(λy)−1) is decreasing iny , hence maxy≥1B∗2 (y)=
B∗2 (1).
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Moreover, we note that

B∗k+1(y)=
B∗k (y)

1−exp(−λky) , (2.28)

and by induction, it is easy to see that B∗k (y) is decreasing in y . Thus

max
k≥1

B∗k (y)= B∗k (1)=
exp(−λ)∏k−1

i=1

(
1−exp(−λi)) , λ= n

σ 2
. (2.29)

It is easy to verify that
∏∞
i=1(1−exp(−λi)) is convergent, and hence

lim
k→∞

B∗k (1)=
exp

(−n/σ 2
)

∏∞
i=1

(
1−exp

(−ni/σ 2
))
.

(2.30)

Clearly, B∗k (1) and limk→∞B∗k (1) are both similar to exp(−n/σ 2) ∼H (as n→
∞), and hence the asymptotic limit of Bhattacharyya bounds does not improve

the Hammersley bound.

Now, the question arises: why such bounds are unattainable? To see the

reason, we define a suitable distance and examine its limit. Let fn(θ) be the

joint density of (X1, . . . ,Xn) under Pθ relative to a σ -finite measure µn, where

θ ∈Ω (not necessarily normal). Let θ1,θ2 ∈Ω, and define

Dn =
∫ ∣∣fn(θ1

)−fn(θ2
)∣∣dµn,

ρn
(
θ1,θ2

)=
∫ √
fn
(
θ1
)
fn
(
θ2
)
dµn.

(2.31)

We need the following elementary lemma of independent and general interest.

Lemma 2.1. The upper and lower bounds forDn are given by 2(1−ρn(θ1,θ2))
≤Dn ≤ 2

√
1−ρ2

n(θ1,θ2).

Proof. Clearly,

Dn = Eθ1

∣∣∣∣∣1+
√√√fn(θ2

)
fn
(
θ1
)
∣∣∣∣∣
∣∣∣∣∣1−

√√√fn(θ2
)

fn
(
θ1
)
∣∣∣∣∣

≥ Eθ1

(
1−

√√√fn(θ2
)

fn
(
θ1
)
)2

= 2
(
1−ρn

(
θ1,θ2

))
,

(2.32)

proving the first half of the inequality. Moreover, by Cauchy-Schwarz inequal-

ity, we have

D2
n ≤ Eθ1

(
1+

√√√fn(θ2
)

fn
(
θ1
)
)2

Eθ1

(
1−

√√√fn(θ2
)

fn
(
θ1
)
)2

= 2
(
1+ρn

(
θ1,θ2

))·2(1−ρn(θ1,θ2
))
,

(2.33)

and the lemma is proved.
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In the normal case N(θ,σ 2), recall the density (2.5) and note that

√
fn
(
θ1
)
fn
(
θ2
)= fn

(
θ1+θ2

2

)
exp

(
− n

(
θ1−θ2

)2

8σ 2

)
, (2.34)

and hence ρn(θ1,θ2)= ρn = exp(−n(θ1−θ2)2/8σ 2).
Let θ1 ≠ θ2, and set h= θ1−θ2. Then, the inequality in Lemma 2.1 becomes

2
(

1−exp
(
− nh

2

8σ 2

))
≤Dn ≤ 2

√
1−exp

(
− nh

2

8σ 2

)
, lim

n→∞Dn = 2. (2.35)

However, in the process of using Cauchy-Schwarz inequality to obtain Ham-

mersley’s bound (1.1) (although there is no escape from it), the following in-

equality occurs in disguise:

D2
n ≤ Eθ1

(
1− fn

(
θ2
)

fn
(
θ1
)
)2

= exp
(
nh2

σ 2

)
−1. (2.36)

This very weak inequality is the cause of poor lower bound when θ is restricted

to integers (h≠ 0 is restricted to integers as well).

Now, we compute Dn exactly in the normal case. First, suppose that θ2 > θ1.

Letting h= θ2−θ1 > 0, we have

Rn = fn
(
θ2
)

fn
(
θ1
) = exp

(
hSn
σ 2

− nh
2

2σ 2

)
, (2.37)

where Sn =
∑n

1 (Xi−θ1) ∼ N(0,nσ 2) under Pθ1 . Since Rn ≥ 1� Sn ≥ nh/2, it

is easy to verify that

Dn = Eθ1

∣∣1−Rn
∣∣= 4Φ

(√
nh

2σ

)
−2. (2.38)

In general, for any θ1 ≠ θ2 and h= θ2−θ1, we have

Dn = 4Φ
(√

n|h|
2σ

)
−2,

1− 1
2
Dn ∼ 1

|h|

√
8σ 2

nπ
exp

(
− nh

2

8σ 2

)
as n �→∞.

(2.39)

In particular, if θ is restricted to integers and |h| = 1, then

1− 1
2
Dn = 2

(
1−Φ

(√
n

2σ

))
∼
√

8σ 2

nπ
exp

(
− n

8σ 2

)
as n �→∞, (2.40)

which is the asymptotic (1.3) noted earlier.
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2.1. An almost UMVU property of d. It has been shown by Khan [5] that un-

der squared-error loss function, d= [Xn] is admissible in the class of integer-

valued estimators �, while Ghosh and Meeden [2] proved its admissibility in �

under a more general loss function. It has been further observed by Khan [6]

that d is the best invariant estimator in the class � and that it is admissible un-

der a generalized version of 0-1 loss function. Here, we show that d is almost

like UMVU estimator in �. Thus, we conclude the discussion about Hammers-

ley’s estimator with the following interesting observation. It should be noted

that the statistic d1 =Xn continues to be sufficient for θ ∈ �= {0,±1,±2, . . .}
although it is not complete for the obvious reason that d−d1 is unbiased es-

timator of 0 but d1−d ≠ 0 with positive probability. Moreover, σ 2
d , σ 2

d1
, and

cov(d,d1) are independent of θ. This fact was exploited in Khan [4] to deter-

mine the best unbiased estimatordα =αd+(1−α)d1 (0≤α≤ 1)which strictly

dominates d and d1. However, in view of sufficiency, one considers estimators

of the form t = t(Xn), and we further restrict this class to integer-valued unbi-

ased estimators of the form T = f(Xn), where f is an integer-valued function

on the real line. Also, it is logical to assume that f(i) = i, i ∈ �, and f is

nondecreasing. Under these conditions, we will show that σ 2
f (θ) ≥ σ 2

d(θ) for

all θ and for any unbiased f(Xn). Thus, d is the best unbiased estimator in

this class and this makes it almost like UMVU estimator. The proof of this

elementary fact now follows. Let K = √n/2πσ 2, and let f = f(Xn), where f
is integer-valued with the above properties. It then follows from the assumed

unbiasedness of f that

σ 2
f =K

∫∞
−∞

(
f(y)−i)2

exp
(
− n

2σ 2
(y−i)2

)
dy

=K
∫∞
−∞

(
f(i+u)−i)2

exp

(
− nu

2

2σ 2

)
du.

(2.41)

We note that |f(i+u)−i| is minimized for all i if and only if f(u)= [u], that

is, inff |f(i+u)−i| = |[u]|. In fact, since [u+i] = i+[u], letting η = u−[u]
(|η| ≤ 1/2), we see that if |η|< 1/2, then

∣∣(f(i+u)−i)−[u]∣∣= ∣∣f ([i+u]+η)−[i+u]∣∣= 0 (2.42)

if and only if f(u)= [u]. On the other hand, if η=±1/2, then

∣∣(f(i+u)−i)−[u]∣∣= ∣∣f ([i+u]+η)−[u+i]∣∣= 1 (2.43)

if and only if f(u)= [u]. Alternatively, we have

∣∣f(i+u)−i∣∣= ∣∣f ([i+u]+η)−i∣∣≥ ∣∣f ([i+u])−i∣∣= ∣∣[u]∣∣. (2.44)
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Hence, it follows from the above that

σ 2
f ≥K

∫∞
−∞

∣∣[u]∣∣2
exp

(
− nu

2

2σ 2

)
du= σ 2

d . (2.45)

Thus, d is the best unbiased estimator in the class of integer-valued estimators

which are functions of sufficient statistic.
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