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A NOTE ON HAMMERSLEY’S INEQUALITY FOR ESTIMATING
THE NORMAL INTEGER MEAN

RASUL A. KHAN

Received 7 August 2002

Let X1,X>,...,Xn be a random sample from a normal N(0,0?2) distribution with
an unknown mean 0 = 0,+1,+2,.... Hammersley (1950) proposed the maximum
likelihood estimator (MLE) d = [X; ], nearest integer to the sample mean, as an
unbiased estimator of € and extended the Cramér-Rao inequality. The Hammer-
sley lower bound for the variance of any unbiased estimator of 6 is significantly
improved, and the asymptotic (as n — o) limit of Fraser-Guttman-Bhattacharyya
bounds is also determined. A limiting property of a suitable distance is used to
give some plausible explanations why such bounds cannot be attained. An almost
uniformly minimum variance unbiased (UMVU) like property of d is exhibited.

2000 Mathematics Subject Classification: 62F10, 62F12.

1. Introduction. Let X1,X>,...,X;, be a random sample from a normal N (6,
02) distribution with an unknown integer mean 6 = 0,+1,+2,.... Hammers-
ley [3] proposed the maximum likelihood estimator (MLE) d = [X,, ], nearest
integer to the sample mean, as an unbiased estimator of 0. He extended the
Crameér-Rao variance inequality for any unbiased estimator t = t(X,...,X,)
and showed that

1
2 _
O-t(e)zexp(n/ -1 =H. (1.1)

He noticed that d does not achieve this bound (even asymptotically) and raised
the question whether H is a greatest lower bound, that is, if there is any estima-
tor attaining this bound. The bound H is improved to the extent that the new
bound is almost twice the size of H. However, even the improved bound cannot
be attained. The asymptotic limit (as n — o) of Fraser-Guttman-Bhattacharyya
bounds is also determined although 4 still fails to achieve the asymptotic limit.
We consider a suitable distance and use its limiting property to shed some light
on the reasons why such bounds are unattainable. An intriguing behavior of d
is observed as follows. Define the loss functions

Li(5,0) =16—-0|XI{6 0}, k=0,1,2, (1.2)
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where I is the usual indicator function. Let Ry (1) = EgLi(d,0) be the risk
functions of d when k = 0,1,2. Then

[Q52
Ri(n) ~ %exp(—%) asn— o, k=0,1,2. (1.3)

Hammersley [3] proved (1.3) when k = 2. The interesting observation is that
Ry (n) has the same asymptotic behavior when k = 0, 1. In Section 2, we prove
(1.3), improve the bound (1.1), and also determine the asymptotic limit of
Bhattacharyya bounds. Also, we use a suitable distance and its limiting prop-
erty to show the reason why such bounds cannot be attained even asymptot-
ically. Such apparent anomalies seem to stem from the restricted parameter
space. Some other properties (such as admissibility and minimaxity etc.) of d
have been explored by Khan [4, 5, 6], Ghosh and Meeden [2], and Kojima et
al. [7]. However, the main focus of this paper is to settle some of the ques-
tions raised by Hammersley [3] himself regarding his bound, its attainment,
and its relevance to his estimator. His problem is revisited for theoretical in-
terest. A by-product of this pursuit is the conclusive observation that d = [X,,]
is the best estimator even though d fails to achieve any bound. In fact, at the
end of Section 2, we show that d is almost like uniformly minimum variance
unbiased (UMVU) estimator in a restricted sense.

2. The main results. In what follows, Py denotes the probability under 6
and Ey denotes the corresponding expectation (P; and E; have similar mean-
ings). Let ®(x) be the standard normal distribution function, and ¢(x) =
(21r) V2 exp(—x?/2). The nearest integer to y is denoted by [y] through-
out the paper without any further mention. It follows from the definition of
d = [X,] that

Pi<d—i=j>:Po<d=j>:¢(
JAG-1/2)
—o(HE)

\/ﬁ(j+1/2)>
o
(2.1)
=f(), j=0,£1,%2,....
Clearly, f(—j) = f(j) with maximum at j = 0, and
P;(error) = P;i(d # i) = EiLo(d,i) = Ro(n) = 1 - P;(d = 1)

=1—f(0)=2(1—<1><?)>_ (2.2)

Moreover, for k = 1,2, we have

Ri(d,i) = EiL(d,i) =2 > j*f(j) = Re(n)

J=1

o e (YRGFL/2)N (A -1/2)
oS o) (B 112

o (o

(2.3)
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Since d is integer-valued, hence

Ro(n) = 2(1—@(%)) <Ri(n) =Eld-il <Eyd* =035 =R,(n). (2.4)

Since 1 —®(x) ~ x 1¢p(x) as x — oo, (2.2) implies (1.3) when k = 0. The case
k = 2 in the asymptotic (1.3) was shown by Hammersley [3]; hence, (2.4) implies
(1.3) when k = 1.

We now consider the problem of improving the bound (1.1). Let X1, X>,..., X,
be i.i.d. N(0,0?), where 0 is not necessarily integer, and let f,,(0) be the joint
density of (Xi,...,Xy). Letting T = > X;, we have

fn(m—exp(g—;ﬁ)g(xl,...,xn), (2.5)
where
noy?
g(X1,...,Xn) = Rm) 2o "exp (—; 2(;2>. (2.6)
It is easy to verify that
Eefn(?f]%)g)(ez) e (n(e1 92+920—29(91 +92))>_ 2.7)

Let t(X1,...,X,) be an unbiased estimator of 6, and let h + 0 (h is an integer
if 0 is an integer). Then, E¢t(X1,...,X,) = 0 implies that

%z@ih, Eot(X1,...,Xn)S =2h,  (2.8)

where S = (f(0+h) - f(0—-h))/fu(0).
Since EpS = 0, (2.8) implies that covy(t,S) = 2h. Consequently, Cauchy-
Schwarz inequality gives

Eot(X1,...,Xn)

4h?
of (0) = EoS2 (2.9)
Using (2.7), we obtain
. f2(0+h) f2(0-h) fn(0+h) fr(0—h)
E¢S% = Ep2 EoZn —2F
e T I 1) ¢ 12(0)
nh? nh? nh?
-on(3) e () 200 (- 41)
nh? nh?
=2(ep (%) ~ew (- 7))
Thus
2
ot (0) = 2h =By (h). (2.11)

(exp (nh?/0?) —exp (-nh?/0?))
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It is easily seen that limy_¢B; (h) = 02 /n (the usual bound). However, in our
case under consideration, 0 is an integer so that h + 0 must be an integer
to make (2.8) and subsequent equations valid. Hence, maximizing the bound
B (h) over integers h + 0, we obtain

5 2

Oy ey py ey a2 (2.12)

It is easy to see that B > H and B/H — 2 as n — oo. Thus, the bound in (1.1)
is not the best possible and there can be no estimator achieving (1.1) even
asymptotically, and the question raised by Hammersley [3] is resolved.
Motivated by the preceding improvement, it is tempting to determine the
limit of the kth Fraser-Guttman-Bhattacharyya bound By as k — oo. For integers
h + 0, define the generalized difference operator (cf. Feller [1, page 220]) by

S = AR fn(0) = Z ( )( D™ £, (0 +1h). (2.13)
Let Sy = S}/ fn(0), m = 1,2,.... Since Zﬁo(—l)m”('{‘) = 0, we note that

EpSy =0, and

hm+kCOV9 (Sm,Sk)
- m mak+itg Jn(0+ih) fn(0+jh)> (2.14)
g Z( )( >( Y COV9< fa@) 7 fu(e) )

Using (2.7), one verifies that

fal0+iR) fo(0+jh)
C°V9< Fa0) " fu(0) )

C(fal@ih) N[ fal0+jR)
‘E"< 7u(0) 1)( 7u(0) 1)

(2.15)
(fn(9+lh)fn(9+1h fn(9+lh)fn(9))
fi(0)
.10
- oxp (M)
Hence
m K nijh?
hm+kCOV9 Sm,Sk ZZ( )( )( 1)m+k+1+1<exp( OJ-Z )_1).
i=1j=1
(2.16)

Moreover, it is easy to check that for any unbiased estimator t = t(X,...,Xy)
of 0,

EptS1 =1 <= Ep(t—-0)S, =1, Eg(t—-0)S1=0 Vj=2. (2.17)
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Thus, y" = (1,0,0,...,0) is a vector of covariances between t and Si,...,Sk.
Let X = (covg (S, Sm’))kxk be the covariance matrix of $1,S>,...,Sk. Then, the
kth Bhattachayyra bound is Bx(h) = y'S"ly. A general expression for By (h)
is intractable although its asymptotic limit is discussed below. But, we first
evaluate B, (h). Letting y = exp(nh?/c?), it is easily seen from (2.16) that

(y-1) (y-1)2
h?2 h3
o 2.18
(y-1? (y-D(»*+2y-1) 19
h3 h4

and B2 (h) = y'S7ly = h2(y?+2y -1)/y(y*-1).
Maximizing B> (h) over integers, we obtain

) _exp(2n/o?)+2exp(n/o?) -1
i (0) = B2 = exp (n/o?)(exp (2n/o?2)—1)

> H, (2.19)

where H is the bound in (1.1). However, B, ~ H ~ exp(-n/c?) as n — . In
fact, we will show that By ~ exp(—n/o?) (as n — «) even when k — oo,

It is clear from (2.16) that covy(S;,,Sk) is a polynomial in x = exp(Ay)(A =
n/o?, v = h?) of degree mk with leading coefficient 1. Therefore, asymptot-
ically (as n — ), covg(Sm,Sk) ~ x™k/h™+k Thus, in view of the asymptotic
consideration, we replace = by A = (x*/h*F) .k, &, B = 1,2,...,k, and the
bound By is replaced by B} = y’A~ly = |Ay;]/|Al, where Ay, is the (1,1) co-
factor of A. Note that Bi(h) and B} (h) both depend on n, and By (h) ~ B} (h)
as n — oo, Fortunately, the determinants |A| and |A;;| are related to Vander-
monde determinant. Consider the k x k Vandermonde determinant whose ith
row is (xi7 1, x5!, ..,xl7Y), i = 1,2,...,k. Then, it is well known that the Van-
dermonde determinant V (x1,...,Xxk) is given by

Vixi,x2,.xi) = [ (x5—xi). (2.20)

1<i<j<k

Setting x; = x'/h, i=1,2,...,k, it is easy to see that

xk(k+1)/2
|Al = mv(xl,---,xk)
xk(k+1)/2 i i
= pkrkkr1)/2 (f‘ﬁ)
l=<i<j=<k
k(k+1)/2 (2.21)
X . .
=—— [] x/(1-x")
hk+kk+1)/2+(3) L<i<j<k

xk<k+1)/2+z$;(}i(i+1) ( T
= 1-x"Y7Y).
k
hk+kk+1)/2+(3) L<i<j<k
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Setting p(k) = >¥ 2 = k(k+1)(2k +1)/6 and noting that

k-1
[T (-x"U=) =] (1-x"H)*" (2.22)
1<i<j<k i=1
we obtain
xp k) k=l e
Al=————F+ 1-x71 . 2.23
|Al hk+k(k+1)/2+<’2<) E( ) (2.23)

Next, we note that A;; is (k—1) X (k—1) determinant given by

X4 X6 ka
ht kS hke2
|A11 | — . .. z
2k 3k k
XX X 2.24
hk+2  pk+3 T pek (2:24)
DY

= sy V(XX Xier),
where x; = x2/h, x> =x3/h,..., xx_1 = x¥/h.
Since 4+5+---+(k+2) =5~ ,i+2(k—1) = k(k+1)/2 + 2k — 3, we have
2xk
X J . .
J+1l _ i+l
k(k+1)/2+2k-3+(%51) [ & x)

l<i<j<k
e e (2.25)
X2 ijzyrzizl i(i+2)

A =
h

| — D)
k=1 (1-x ).
hkk+1)/2+2k=3+(%3") L<i<j<k

Also, since 2 Z§:2j+ Z’f;lz i(i+2) = p(k)—1, we obtain

A xP k-1 e 1 x-iyk1-i 99
| Anl = ke 2+2k-3+ (551 ﬂ( -x7) : (2.26)

Recalling the definition x = exp(Ay), A = n/o?, y = h?, from (2.23) and (2.26),
we have

. | A | h?
Bk (y) = = k-1 _i
|A| xHiZl (1_X ) (227)
= y .
exp(Ay) H'f;ll (1-exp(-Ayi))

Now, B{ (v) is to be maximized over y = h? = 1,4,9,.... First, consider B3 ().

Obviously, By () = »/(exp(Ay)—1) is decreasing in v, hence max,- By () =
BF(1).



A NOTE ON HAMMERSLEY’S INEQUALITY ... 2153

Moreover, we note that

B (y)

* —
By (y) = = exp(-Aky)’ (2.28)
and by induction, it is easy to see that B; () is decreasing in y. Thus
exp(—A) n
maxB; (y) =B (1) = , A= —. (2.29)
g kLY k 1%} (1 —exp(-Ai)) o?
It is easy to verify that [];7, (1 —exp(—Ai)) is convergent, and hence
: exp (-n/o?)
lim B (1) = —% : 2.30
P = T (- exp (— nifo?)). (230

Clearly, By (1) and limy_ B (1) are both similar to exp(-n/o?) ~H (asn —
o), and hence the asymptotic limit of Bhattacharyya bounds does not improve
the Hammersley bound.

Now, the question arises: why such bounds are unattainable? To see the
reason, we define a suitable distance and examine its limit. Let f,,(6) be the
joint density of (Xi,...,X;) under Py relative to a o-finite measure p,, where
0 € Q (not necessarily normal). Let 01, 60; € Q, and define

Do = [ 1£1(60) = £(02) |y,

(2.31)
pu(01,02) = [\ (01) 2 (02) b

We need the following elementary lemma of independent and general interest.

LEMMA 2.1. The upper and lower bounds for D,, are given by 2(1-p, (61, 62))
<Dy <2:1-pi(61,02).

PROOF. C(learly,

Dy = Ep,

Sn(62) Sn(62)
1+\an(91)Hl_$fn(01)‘ (2 32)

N R A
_E91<1 fn(Gl)) =2(1-pn(601,02)),

proving the first half of the inequality. Moreover, by Cauchy-Schwarz inequal-
ity, we have

2 fn(92) ’ ( _ fn(92)>2
D"—E"l(“ fnw]))E"l L\ (o)

=2(1+pn(01,02)) - 2(1 - pn(01,02)),

(2.33)

and the lemma is proved. ]



2154 RASUL A. KHAN

In the normal case N (60, 0?2), recall the density (2.5) and note that

2
\Sn(01) fn(02) _fn<9“2L92>exp(—"(%;fZ)>, (2.34)

and hence p,,(0;,02) = p" = exp(—n(6; —0-)2/802).
Let 0; # 0>, and set h = 6, — 0,. Then, the inequality in Lemma 2.1 becomes

2 2
Z(Ifexp(f%»sDnsZ 1fexp(f%), ,llian"ZZ' (2.35)

However, in the process of using Cauchy-Schwarz inequality to obtain Ham-
mersley’s bound (1.1) (although there is no escape from it), the following in-
equality occurs in disguise:

; 2 2
DisE91<1—fn(92)) :exp<%)—1. (2.36)

Sn(61) o?

This very weak inequality is the cause of poor lower bound when 6 is restricted
to integers (h + 0 is restricted to integers as well).

Now, we compute D,, exactly in the normal case. First, suppose that 0, > 6.
Letting h = 6> — 6, > 0, we have

_ Jn(02) _ hS, nh?
R, = (00 = exp( o2 2g2) (2.37)

where S, = 3.1 (X;— 01) ~ N(0,n0?) under Py, . Since R, > 1 < S, > nh/2, it
is easy to verify that

Dyp=Ep, |1-Ry| =4q><%)—2. (2.38)

In general, for any 6; + 0, and h = 6, — 0;, we have

\/ﬁlh|>_2’

20
1 1 (80?2 nh?
1—§Dn~w n—neXp<—m> as n — oo,

In particular, if 0 is restricted to integers and |h| = 1, then

D, = 4<I><
(2.39)

1 Jn 802 n
1—§Dn—2<1—<1><20>)~ prpen exp(—SUZ) as n — oo, (2.40)

which is the asymptotic (1.3) noted earlier.
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2.1. An almost UMVU property of d. It has been shown by Khan [5] that un-
der squared-error loss function, d = [ X, ] is admissible in the class of integer-
valued estimators %, while Ghosh and Meeden [2] proved its admissibility in $
under a more general loss function. It has been further observed by Khan [6]
that d is the best invariant estimator in the class $ and that it is admissible un-
der a generalized version of 0-1 loss function. Here, we show that d is almost
like UMVU estimator in $. Thus, we conclude the discussion about Hammers-
ley’s estimator with the following interesting observation. It should be noted
that the statistic d; = X,, continues to be sufficient for 6 € % = {0, +1,+2,...}
although it is not complete for the obvious reason that d —d; is unbiased es-
timator of 0 but d; —d + 0 with positive probability. Moreover, o, 0, and
cov(d,d,) are independent of 6. This fact was exploited in Khan [4] to deter-
mine the best unbiased estimator dy = xd+ (1 - x)d; (0 < & < 1) which strictly
dominates d and d,. However, in view of sufficiency, one considers estimators
of the form t = t(X,,), and we further restrict this class to integer-valued unbi-
ased estimators of the form T = f(X,), where f is an integer-valued function
on the real line. Also, it is logical to assume that f(i) = i, i € %, and f is
nondecreasing. Under these conditions, we will show that (f}(@) > (73(0) for
all 0 and for any unbiased f(X,). Thus, d is the best unbiased estimator in
this class and this makes it almost like UMVU estimator. The proof of this
elementary fact now follows. Let K = yn/2mo?, and let f = f(X,), where f
is integer-valued with the above properties. It then follows from the assumed
unbiasedness of f that

o =k[ (- ew (-5 -i?)dy

N , (2.41)
:KJ_OO (fi+u)—i) exp (—;ﬁg)du.

We note that | f(i+u) —i| is minimized for all i if and only if f(u) = [u], that
is, inf¢ | f(i+u) —i| = [[u]l. In fact, since [u+1i] = i+ [u], letting n = u —[u]
(Inl =1/2), we see that if |n| < 1/2, then

|[(fi+uw) i) —[ul| = [f(li+ul+n)-[i+ul| =0 (2.42)
if and only if f(u) = [u]. On the other hand, if n = +1/2, then

|(fl+w) i) —[ul] = [f(li+ul+n) - lu+il[ =1 (2.43)
if and only if f(u) = [u]. Alternatively, we have

|fa+w) —i] = [f(li+ul+n)—i] = [f([i+ul)-i| = [[ul].  (2.44)
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Hence, it follows from the above that

(o) 2
UfzKJ |[u]|2exp(1;g2>du=<7§. (2.45)

Thus, d is the best unbiased estimator in the class of integer-valued estimators
which are functions of sufficient statistic.

REFERENCES

[1]  W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John
Wiley & Sons, New York, 1966.

[2] M. Ghosh and G. Meeden, Admissibility of the MLE of the normal integer mean,
Sankhya Ser. B 40 (1978), no. 1-2, 1-10.

[3] J. M. Hammersley, On estimating restricted parameters, J. Roy. Statist. Soc. Ser. B
12 (1950), 192-240.

[4] R. A. Khan, On some properties of Hammersley’s estimator of an integer mean,
Ann. Statist. 1 (1973), 756-762.

[S] |, A note on the admissibility of Hammersley’s estimator of an integer mean,
Canad. J. Statist. 6 (1978), no. 1, 113-119.
[6] ___, A note on Hammersley’s estimator of an integer mean, J. Statist. Plann.

Inference 88 (2000), no. 1, 37-45.

[7] Y. Kojima, H. Morimoto, and K. Takeuchi, Two “best” unbiased estimators of nor-
mal integral mean, Statistics and Probability: Essays in Honor of C. R. Rao
(G. Kallianpur, P. R. Krishnaiah, and J. K. Ghosh, eds.), North-Holland, New
York, 1982, pp. 429-441.

Rasul A. Khan: Department of Mathematics, Cleveland State University, 2121 Euclid
Avenue, RT 1515, Cleveland, OH 44115, USA
E-mail address: khan@math.csuohio.edu


mailto:khan@math.csuohio.edu

