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We study a family of diffusion models for risk reserves which account for the in-
vestment income earned and for the inflation experienced on claim amounts. After
we defined the process of the conditional probability of ruin over finite time and
imposed the appropriate boundary conditions, classical results from the theory
of diffusion processes turn the stochastic differential equation to a special class
of initial and boundary value problems defined by a linear diffusion equation.
Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic
solutions of the diffusion models (possibly degenerate) governing the conditional
probability of ruin over a finite time in terms of interest rate.
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1. Introduction. The diffusion-type modeling for risk reserves is one of the

most popular methods for the valuing of the investment income earned and

for the inflation experienced on claim amounts in studying insurance models.

The basic assumption is that the risk reserve is modeled as one-dimensional

diffusion process. In a continuous time aspect of the system under study, dif-

fusion process is an arbitrary strong Markov process with continuous sample

paths, or even more specifically, diffusion process is given as a strong solution

of a stochastic differential equation driven by the underlying Brownian mo-

tion. This approach, which uses an appropriate diffusion process to approx-

imate the actual claims process, has been examined by many authors during

the past, including Garrido [5, 6], Harrison [8], Iglehart [9], Willmot and Yang

[13], Moller [10], Young and Zariphopoulou [14], and many others during the

late 80s to 2000. Garrido [5] studied a family of diffusion models for risk re-

serves, he obtained an explicit solution of the stochastic differential equation

for the distribution of the time to ruin for the linear case. Willmot and Yang

studied a modified diffusion models by allowing the variance to depend on the

size of the reserve, which made the model more realistic. They provided some

solutions for the partial differential equations obtained from the stochastic dif-

ferential equations in some special cases. Young and Zariphopoulou studied

the distorted probabilities for the nondegenerate diffusion processes. In this

paper, we focus on the solutions of diffusion models with possibly degenerate

diffusion, that is, we allow the case of vanishing viscosity. Our first effort is to
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impose the appropriate boundary condition for the diffusion models for risk

reserves, then the classical results from the theory of diffusion processes and

linear partial differential equations yield a special class of initial and boundary

value problems defined by an unsteady linear diffusion equation. This is par-

ticularly important because although the study of partial differential equations

in complete generality is a vast undertaking, almost all the partial differential

equations encountered in financial applications belong to a much more man-

ageable subset of the whole second-order linear parabolic equations [3]. By

allowing the possibly dependencies of the diffusion process, our second focus

is on providing the asymptotic solutions of the linear diffusion equations at

the opened upper half of vertical axis

∂φ
∂t
+(α+rβeA(t))∂φ

∂r
+ 1

2
σ 2 ∂2φ
∂r 2

= 0, (1.1)

φ(t,r)= 1, r < 0, (1.2)

φ(T,r)= 0, r > 0, (1.3)

whereφ∈ C2([0,T )×R), 0≤ t ≤ T <∞, α is a constant, the interest rate β > 0,

the diffusion coefficient σ > 0, and A(t) is a continuous function in the given

domain. Although numerical solutions of boundary value problems of partial

differential equations often use a variety of finite difference or finite element

formulations of differential equations, it is also quite common to convert given

problems into integral equations, from which boundary element methods can

be applied to obtain numerical approximations. Moreover, we notice that the

boundary condition (1.2) is defined on the left-half opened space r < 0. The

analytic solution of (1.1), (1.2), and (1.3) is unlikely to be obtained because of

such initial and boundary conditions. Using asymptotic analysis and perturba-

tion theory, we obtain the conditional probability of ruin φ(t,r) over a finite

time by providing the asymptotic solutions of the diffusion equations in terms

of interest rate β and the volatility (diffusion coefficient) σ . Our aim is to un-

derstand the asymptotic behavior of the conditional probability of ruinφ(t,r)
between time t and T with reserve r at time t. Our results show that when the

difference α of the aggregate rate π(t,r) at which premiums are cashed at

that time and the average aggregated claim rate µ(t) at time t is greater than

zero, there are boundary layer and parabolic corner layer behavior in the so-

lutions of when volatility coefficient σ is degenerated, the interest rate β has

little impact to the asymptotic solutions in this case whether it is small or not.

For α≤ 0, no boundary layer or corner layer occurs, the asymptotic solutions

of (1.1), (1.2), and (1.3) can be obtained in terms of the interest rate and it is

uniformly valid for the whole domain. We hope the explicit asymptotic solu-

tions are useful to illustrate the general behavior of the solutions for more

complicated case such as the multiple portfolios case.

In Section 2, we state some basic definitions and results from the classi-

cal theory of stochastic processes and derive a family of the linear diffusion
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equation with its initial and boundary conditions. Some useful results from as-

ymptotic analysis are given before we close this section. In Section 3, we study

the asymptotic behavior of solutions of (1.1), (1.2), and (1.3) under different

behavior of σ and α. Some results are illustrated by the graphs of the asymp-

totic solutions at the end of the section. The final conclusion and remarks will

be discussed in Section 4.

2. Preliminaries and boundary conditions of the parabolic equation. In

this section, we start with a brief review from the fundamental results of the

theory of stochastic calculus, then we impose appropriate boundary condi-

tions to the partial differential equations obtained from the diffusion models.

Some useful results from asymptotic analysis will be stated before we close

the section. Most of the results can be found in [1, 2, 4, 5, 7, 11, 12, 13].

Definition 2.1. Let R(t) be the risk reserve level at time t and let Ft =
σ{Ws : 0≤ s ≤ t} be the σ field generated by a standard Brownian motion Wt .
Then, the following definitions can be stated.

(a) The conditional probability φ(t,r) defined by

φ(t,r)= P
(

inf
t≤s≤T

R(s) < 0 | R(t)= r
)

(2.1)

is called the probability of ruin between t and T given the reserve r at

time t.
We notice that ruin could happen, for instance, if the company pays out pen-

sion, or if it invests its reserve and gets a negative outcome of its investments.

By definition (a), the probability of ruin is one when the reserve becomes neg-

ative, that is, φ(t,r) = 1, r < 0, with 0 ≤ t < T ≤∞ and the initial probability

of ruin is zero at time t = T when the reserve is positive. Therefore, we obtain

condition (1.3).

(b) The time τ defined by

τ = inf
{
t ≥ 0 | R(t) < 0

}
(2.2)

is the first time that the reserve level becomes negative and is called

the time of ruin.

(c) A process S is called a martingale with respect to a measure P and a

family of σ -field Fi if

Ep
(
Sj | Fi

)= Si, ∀i≤ j. (2.3)

Theorem 2.2. Suppose that g is a function of class C2(Rk,R) and the pro-

cesses Xi is in the class of all real-valued continuous semimartingales on the

probability space for i = 1,2, . . . ,k, then the following form of Ito’s formula
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is valid:

g(X)−g(X0
)= k∑

i=1

∫ t
0

∂g
∂xi

(
Xu
)
dXiu

+ 1
2

k∑
i,j=1

∫ t
0

∂2g
∂xixj

(
Xu
)
d
(〈
Xi,Xj

〉
u
)
.

(2.4)

Theorem 2.3. If φ(t∧τ,R(t∧τ)) is an Ft∧τ martingale, that is,

φ
(
t∧τ,R(t∧τ))= E(I(τ < T) | Ft∧τ), (2.5)

where t∧τ =min{t,τ}, then the conditional probability of ruinφ(t,r) satisfies

the parabolic equation

∂φ
∂t
+γ(t,r)∂φ

∂r
+ 1

2
σ 2(t,r)

∂2φ
∂r 2

= 0, (2.6)

where γ(t,r)= [π(t,r)+β(t)r −µ(t)] is defined as in (2.7).

Now, consider the risk reserves accumulated for a particular line of busi-

ness. The risk reserve level R(t) satisfies the following stochastic differential

equation:

dR(t)= [π(t,R(t))+β(t)R(t)−µ(t)]dt+σ(t,R(t))dWt,
R(0)= r0 ≥ 0.

(2.7)

Here, π(t,R(t)) is the aggregate rate at which premiums are cashed at time t,
µ(t) is the average aggregated claim rate at time t, β(t) is assumed the known

force of interest at that time, and Wt is a standard Brownian motion. Since

the coefficients of the stochastic differential equation (2.7) depend only on the

history through R(t), therefore, the reserve process R(t) is a Markov process.

The strong Markovian property of R(t) implies that φ(t∧τ,R(t∧τ)) is an

Ft∧τ martingale. Thus, φ(t ∧ τ,R(t ∧ τ))−φ0(0,r0) is a zero initial-valued

martingale, and it is square integrable. Apply Ito’s formula in Theorem 2.2,

then the following linear diffusion equation can be obtained by Theorem 2.3:

∂φ
∂t
+[π(t,r)+β(t)r −µ(t)]∂φ

∂r
+ 1

2
σ 2 ∂2φ
∂r 2

= 0. (2.8)

Let π(t,r)−µ(t) = α be a constant; σ(t) = σ > 0, β(t) = βeA(t) with β > 0,

and A(t) = ∫ t
0 λ(s)ds, where λ(t) acts as a functional force of inflation on

claims and premiums. Then we obtain the linear diffusion equation (1.1). By

the definition of φ(t,r) in (a) and the previous discussion, the conditional

probability of ruin φ(t,r) satisfies the initial and boundary conditions (1.2)

and (1.3) where 0≤ t ≤ T <∞.
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We notice that there is no boundary condition defined along r = 0. We will

discuss the asymptotic solutions of (1.1), (1.2), and (1.3) across the disconti-

nuity r = 0 in Section 3.

Before closing this section, we introduce a useful lemma and a theorem in

asymptotic analysis.

Lemma 2.4. For −∞<x <∞,

1√
πε

∫ x
−∞

exp
(
− η

2

ε

)
dη= 1− 1

2
erfc

(
x
ε

)
,

1√
πε

∫∞
x

exp
(
− η

2

ε

)
dη= 1

2
erfc

(
x
ε

) (2.9)

for all ε > 0.

Theorem 2.5. The integral Ia(x,t) defined by

Ia(x,t)=
√

2
πσ 2

∫ (x+αt)/2√t
−∞

Ω(η;x,t)exp
(
− η2

σ 2/2

)
dη (2.10)

can be expanded as

Ia(x,t)= I(0)a (t,x)+σI(1)a (x,t)+σ 2I(2)a (x,t), (2.11)

where

I(0)a (x,t)=Ω(0;x,t)− 1
2
Ω
(
x+αt
2
√
t

;x,t
)

erfc
(
x+αt
σ
√

2t

)
,

I(1)a (x,t)=
√
t

x+αt
(
Ω(0;x,t)−Ω

(
x+αt
2
√
t

;x,t
))

ierfc
(
x+αt
σ
√

2t

)
,

I(2)a (x,t)=
1

σ
√

2π

∫ (x+αt)/2√t
−∞

Ω(2)(η;x,t)exp
(
− η2

σ 2/2

)
dη,

(2.12)

with

Ω(2)(η;x,t)= d
dη

(
1
η
{
Ω(η;x,t)−Ω(0;x,t)

})
. (2.13)

The integral Ib(x,t) defined by

Ib(x,t)=
√

2
πσ 2

∫∞
(x−αt)/2√t

Ω(η;x,t)exp
(
− η2

σ 2/2

)
dη (2.14)

can be expanded as

Ib(x,t)= I(0)b (x,t)+σI(1)b (x,t)+σ 2I(2)b (x,t), (2.15)
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where α< 0, 0<σ � 1,

I(0)b (x,t)=
1
2
Ω
(
x−αt
2
√
t

;x,t
)

erfc
(
x−αt
σ
√

2t

)
,

I(1)b (x,t)=
√
t

x−αt
(
Ω
(
x−αt
2
√
t

;x,t
)
−Ω(0;x,t)

)
ierfc

(
x−αt
σ
√

2t

)
,

I(2)b (x,t)=
1

σ
√

2π

∫∞
(x−αt)/2√t

Ω(2)(η;x,t)exp
(
− η2

σ 2/2

)
dη,

(2.16)

where

erfc(x)= 2√
π

∫∞
x
e−s

2
ds ∼ 1

x
√
π

exp
(−x2), as x �→∞, (2.17)

ierfc(x)= 1√
π

exp
(−x2)−x erfc(x)∼ 1

2x2
√
π

exp
(−x2), as x �→∞.

(2.18)

Moreover, if Ω(η;x,t) is a polynomial of degree n in η, then Ω(2)(η;x,t) is a

polynomial of degree n−2 in η.

These results can be found in [12] and will be used in our later sections.

3. Asymptotic solutions of the diffusion equations. Consider the linear

parabolic differential equation

∂φ
∂t
+(α+rβeA(t))∂φ

∂r
+ 1

2
σ 2 ∂2φ
∂r 2

= 0 (3.1)

subject to initial and boundary conditions

φ(t,r)= 1, r < 0,

φ(T ,r)= 0, r > 0,
(3.2)

where 0≤ t ≤ T ≤∞. Letting τ = T −t, and making change of variables in (3.1)

and (3.2), we have

∂φ
∂τ

= (α+rβeA(τ))∂φ
∂r

+ 1
2
σ 2 ∂2φ
∂r 2

, (3.3)

φ(τ,r)= 1, r < 0, (3.4)

φ(0,r )= 0, r > 0. (3.5)

Since the boundary condition (3.4) is defined for r < 0, in order to obtain a

smooth transition for the asymptotic solutions of (3.3), (3.4), and (3.5) across

the discontinuity boundary r = 0, we use the boundary layer theory to deter-

mine the asymptotic behavior of solution of (3.2), (3.3), (3.4), and (3.5) in the

neighborhood of r = 0. Define the stretched variable ξ along r = 0 by

ξ = r
εk
, (3.6)
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insert (3.6) into (3.3), and evaluate the coefficient of ∂φ/∂r at r = 0. This gives,

with ψ=ψ(τ,ξ),

∂ψ
∂τ

= ε−kα∂ψ
∂ξ

+ 1
2
σ 2ε−2k ∂2ψ

∂ξ2
. (3.7)

We now divide our discussions into two Cases (I) α> 0 and (II) α≤ 0.

Case (I) (α > 0). If σ is small, without loss of generality, let O(σ) ∼ O(ε),
then we choose k= 2 in (3.7) to balance the leading term, this gives the bound-

ary layer equation

2ε2 ∂ψ
∂τ

= 2α
∂ψ
∂ξ

+ ∂
2ψ
∂ξ2

, (3.8)

which replaces (3.3). Withψ expended in powers of ε and withψ0 as its leading

term, we find that

ψ0(τ,ξ)= a(τ)+b(τ)e−2αξ, (3.9)

where a and b are arbitrary functions to be determined using the matching

condition and the boundary condition so that a boundary layer of widthO(σ 2)
can be located near r = 0. On the other hand, leading term of the outer solution

of (3.3) satisfies the reduced equation

∂φ0

∂τ
= 0, 0= (α+βeA(τ))∂φ0

∂r
, r > 0, (3.10)

which implies

φ0(τ,r)= 0, r > 0. (3.11)

Using the method of matching with the matching condition and the boundary

conditions

lim
ξ→0
ψ(τ,ξ)= lim

r→0
φ(τ,r)−φ0(τ,0)= 1,

lim
ξ→∞

ψ(τ,ξ)= 0,
(3.12)

we have the boundary layer solution of O(σ 2),

ψ0(τ,ξ)= e−2αξ, ξ > 0. (3.13)

To determine if there is a corner layer near origin (0,0), we introduce a stretch

variable ς along t = 0, defined by

ς = τ
ε2
, (3.14)
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and the corner layer ϕ(ς,ξ) to (3.8), we obtain a corner layer equation which

is a linear parabolic partial differential equation of the form

∂ϕ
∂ς

=α∂ϕ
∂ξ

+ 1
2
∂2ϕ
∂ξ2

(3.15)

for 0< ξ <∞, 0< ς <∞ subject to the initial and boundary conditions

ϕ(0,ξ)=−ψ0(0,ξ)=−e2αξ, ξ > 0,

ϕ(ς,0)= 0, ς > 0,

lim
ξ→∞

ϕ(ς,ξ)= 0, ς > 0.
(3.16)

Solving (3.15) and (3.16), we obtain the parabolic corner layer solution of width

O(σ 2),

ϕ(ς,ξ)=−e−2αξ−α2ς/2 erf
(
ξ√
2ς

)
, (3.17)

where the error function erf is defined by

erf(x)= 2√
π

∫ x
0
e−s

2
ds. (3.18)

If, in addition, β is small, assume thatO(βs)∼O(σ) for some s > 0, we have

the boundary layer and parabolic corner layer as

ψ0(τ,ξ)= e−2αξ, ξ = r
β2s , (3.19)

ϕ(ς,ξ)=−e−2αξ−α2ς/2 erf
(
ξ√
2ς

)
, ς = τ

β2s . (3.20)

Therefore, we have the following theorem.

Theorem 3.1. If α > 0 and O(σ) is a small positive parameter, the asymp-

totic solution, as σ → 0+, of (1.1), (1.2), and (1.3) has the following form:

φ(t,r)≈ e−2αr/σ2

×
(

1−e−α2(T−t)/2σ2
erf

(
r

σ
√

2(T −t)
))
, r > 0, 0< t ≤ T <∞,

φ(t,r)= 1, r < 0.
(3.21)
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If, in addition, O(βs) ∼ O(σ) for some s > 0, then the asymptotic solution, as

β→ 0+, of (1.1), (1.2), and (1.3) has the following form:

φ(t,r)≈ e−2αr/β2s

×
(

1−e−α2(T−t)/2β2s
erf

(
r

βs
√

2(T −t)
))
, r > 0, 0< t ≤ T <∞,

φ(t,r)= 1, r < 0.
(3.22)

Remark 3.2. For a noise problem of (3.7), we replace σ by the noise co-

efficient σε with ε → 0+ and we can obtain a similar result using the above

techniques to obtain the asymptotic solutions of (3.1) and (3.2).

Case (II) (α ≤ 0). (i) For the case O(σ) ∼ O(ε), no boundary layer occurs

since the exponential term decreases as ξ decreases in (3.9), but φ(τ,r) = 1

for r < 0.

(ii) When σ is not a small parameter if we retain the stretching variables

ξ = r/βk and substitute into (3.3) with ψ = ψ(τ,ξ) = φ(τ,r), the boundary

layer equation becomes

β2k ∂ψ
∂τ

= βkα∂ψ
∂ξ

+ 1
2
σ 2 ∂2ψ
∂ξ2

. (3.23)

We find that the leading term ψ0 is again given by

ψ0(τ,ξ)= a(τ)+b(τ)ξ, (3.24)

therefore, no boundary layer effect or corner layer effect occurs near r = 0

since there is no exponential decay. In this case, (3.3), (3.4), and (3.5) are a

regular perturbation problem.

In order to derive a uniformly valid asymptotic solution for this case, we

expand the solution φ(τ,r) of (3.3), (3.4), and (3.5) in terms of interest rate β
as a perturbation series

φ(τ,r)=
∞∑
n=0

φn(τ,r)βn. (3.25)

Making the substitution of (3.25) into (3.3), (3.4), and (3.5) and equating the co-

efficients of like power of β, we convert the original equations to the following

equations:

∂φ0

∂τ
=α∂φ0

∂r
+ 1

2
σ 2 ∂2φ0

∂r 2
= 0,

φ0(τ,r)= 1, r < 0,

φ0(0,r )= 0, r > 0

(3.26)
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and for n≥ 1, we have the following equations:

∂φn
∂τ

−α∂φn
∂r

− 1
2
σ 2 ∂2φn

∂r 2
= reA(τ) ∂φn−1

∂r
,

φn(τ,r)= 0, r < 0,

φn(0,r )= 0, r > 0.

(3.27)

The solution φ0(τ,r) of (3.26) employing the Green’s function representation

has the form

φ0(τ,r)

= 1−(1−H(−r))
[∫∞

0

1

σ
√

2πτ
exp

(
− (r +ατ−ξ)

2

2σ 2τ

)
dξ

−
∫∞

0

1

σ
√

2πτ
exp

(
2αξ
σ 2

)
exp

(
− (r +ατ+ξ)

2

2σ 2τ

)
dξ
]
,

(3.28)

where function H is the Heaviside function defined by

H(x)=

1, if x > 0,

0, if x < 0.
(3.29)

We can simplify (3.28) to obtain

φ0(τ,r)= 1− 1
2

(
1−H(−r))(1−e(−2rα/σ2)+erf

(
(r +ατ)
σ
√

2τ

)

−e(−2rα/σ2) erf
(
(ατ−r)
σ
√

2τ

))
.

(3.30)

Solution φn(τ,r) of (3.27) for n≥ 1 has the form

φn(τ,r)=
∫ τ

0

∫∞
0

∂φn−1(u,ξ)
∂ξ

ξeA(u)G(r ,τ ;ξ,u)dξdu, (3.31)

where G(r ,τ ;ξ,u) is the Green’s function representation of the form

G(r ,τ ;ξ,u)= 1

σ
√

2π(τ−u) exp

(
−
(
r +α(τ−u)−ξ)2

2σ 2(τ−u)

)

−exp
(

2αξ
σ 2

)
1

σ
√

2π(τ−u) exp

(
−
(
r +α(τ−u)+ξ)2

2σ 2(τ−u)

)
.

(3.32)
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In order to simplify (3.31), we let

Ψn−1(ξ)= ∂φn−1(u,ξ)
∂ξ

ξeA(u),

t̂ = τ−u.
(3.33)

Then, for n≥ 1, the integral

I =
∫∞

0

∂φn−1(ξ)
∂ξ

ξeA(u)G(r ,τ ;ξ,u)dξ

=
∫∞

0
Ψn−1(u,ξ)

[
1

σ
√

2πt̂
exp

(
− (r +αt̂−ξ)

2

2σ 2t̂

)

−exp
(

2αξ
σ 2

)
1

σ
√

2πt̂
exp

(
− (r +αt̂+ξ)

2

2σ 2t̂

)]
dξ

=
∫ r
−∞
Ψn−1(r −s)
σ
√

2πt̂
exp

(
− (s+αt̂)

2

2σ 2t̂

)
ds

−exp
(
− αr
σ 2

)∫∞
r

Ψn−1(s−r)
σ
√

2πt̂
exp

(
− (s−αt̂)

2

2σ 2t̂

)
ds.

(3.34)

Let η= (s+αt̂)/2
√
t̂, then we have

I =
∫∞

0

∂φn−1(u,ξ)
∂ξ

ξeA(u)G(r ,τ ;ξ,u)dξ

= I1(r , t̂)−I2(r , t̂)exp
(
− αr
σ 2

)
,

(3.35)

where

I1(r , t̂)=
√

2
πσ 2

∫ (r+αt̂)/2√t̂
−∞

Ψn−1

(
r +αt̂−2η

√
t̂
)

exp
(
− η2

σ 2/2

)
dη,

I2(r , t̂)=
√

2
πσ 2

∫∞
(r−αt̂)/2

√
t̂
Ψn−1

(
αt̂+2η

√
t̂−r

)
exp

(
− η2

σ 2/2

)
dη.

(3.36)

For n≥ 1, we have the solution φn(τ,r) of (3.31)

φn(τ,r)=
∫ τ

0

[
I1(r , t̂)−I2(r , t̂)exp

(
− αr
σ 2

)]
dt̂, (3.37)
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where I1(r , t̂) and I2(r , t̂) are defined in (3.36), t̂ = T −t =u, and

Ψn−1(ξ)= ∂φn−1(u,ξ)
∂ξ

ξeA(u). (3.38)

Therefore, we have the following theorem.

Theorem 3.3. For α ≤ 0, the asymptotic solution φn(t,r) of (3.1) and (3.2)

has the following form:

φ(t,r)=φ0(t,r)+
∞∑
n=1

φn(t,r)βn (3.39)

with

φ0(t,r)= 1− 1
2

(
1−H(−r))(1−e(−2rα/σ2)+erf

((
r +α(T −t))
σ
√

2(T −t)
)

−e(−2rα/σ2) erf
((
α(T −t)−r)
σ
√

2(T −t)
))
,

(3.40)

and φn(t,r) for n≥ 1, as defined in (3.37), is uniformly valid in the domain of

r and t.

For the case σ is small, since the integrals I1(r , t̂) and I2(r , t̂) are of the

same forms as in (2.11) and (2.15) in Theorem 2.5, respectively, we can apply

Theorem 2.5 to (3.35) repeatedly and obtain

I =
∫∞

0

∂φn−1(u,ξ)
∂ξ

ξeA(u)G(r ,τ ;ξ,u)dξ

=
m−1∑
k=0


σ 2k

{
1
4k
Ω(k)1 (0;r , t̂)− 1

22k+1
Ω(k)1

(
r +αt̂
2
√
t̂

)
erfc

(
r +αt̂
σ
√

2t̂

)

− 1
22k+1

Ω(k)2

(
r −αt̂
2
√
t̂

)
e(−2αr/σ2) erfc

(
r −αt̂
σ
√

2t̂

)}

+σ 2k+1



√
t̂
2

(
Ω(k)1 (0;r , t̂)−Ω(k)1

(
(r +αt̂)/2

√
t̂;r , t̂

)
2k(r +αt̂) ierfc

(
r +αt̂
σ
√

2t̂

)

+ Ω
(k)
2 (0;r , t̂)−Ω(k)2

(
(r −αt̂)/2

√
t̂;r , t̂

)
2k(r −αt̂)

×e(−2αr/σ2) ierfc

(
r −αt̂
σ
√

2t̂

))




+σ 2m 1
4m

{
I(m)1 (r , t̂)−I(m)2 (r , t̂)exp

(
− αr
σ 2

)}
,

(3.41)
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where

Ω(k)1 (0;r , t̂)= lim
s→0

Ω(k)1 (s;r , t̂), (3.42)

Ω(k)2 (0;r , t̂)= lim
s→0

Ω(k)2 (s;r , t̂), (3.43)

Ω(k)1 (s;r , t̂)=



Ψn−1

(
r +αt̂−2s

√
t̂
)
, if k= 0,

d
ds

[
1
s

{
Ω(k−1)

1 (s;r , t̂)−Ω(k−1)
1 (0;r , t̂)

}]
, if k≥ 1,

(3.44)

Ω(k)2 (s;r , t̂)=



Ψn−1

(
−r +αt̂+2s

√
t̂
)
, if k= 0,

d
ds

[
1
s

{
Ω(k−1)

2 (s;r , t̂)−Ω(k−1)
2 (0;r , t̂)

}]
, if k≥ 1,

(3.45)

I(m)1 (r , t̂)=
√

2
πσ 2

∫ (r+αt)/2√t̂
−∞

Ω(m)1 (η;r , t̂)exp
(
− η2

σ 2/2

)
dη, (3.46)

I(m)2 (r , t̂)=
√

2
πσ 2

∫∞
(r+αt)/2

√
t̂
Ω(m)2 (η;r , t̂)exp

(
− η2

σ 2/2

)
dη. (3.47)

Therefore, together with (3.30), we have the solutionφn(τ,r) of (3.27) in terms

of an asymptotic uniform expansion in σ

φn(τ,r)

=
m−1∑
k=0


σ 2k

{
1
4k

∫ τ
0
Ω(k)1 (0;r , t̂)dt̂

− 1
22k+1

∫ τ
0

[
Ω(k)1

(
r +αt̂
2
√
t̂

)
erfc

(
r +αt̂
σ
√

2t̂

)

+Ω(k)2

(
r −αt̂
2
√
t̂

)
e(−2αr/σ2) erfc

(
r −αt̂
σ
√

2t̂

)]
dt̂
}

+σ 2k+1
∫ τ

0



√
t̂
2

[
Ω(k)1 (0;r , t̂)−Ω(k)1

(
(r+αt̂)/2

√
t̂;r , t̂

)
2k(r +αt̂) ierfc

(
r+αt̂
σ
√

2t̂

)

+ Ω
(k)
2 (0;r , t̂)−Ω(k)2

(
(r −αt̂)/2

√
t̂;r , t̂

)
2k(r −αt̂)

×e(−2αr/σ2) ierfc

(
r −αt̂
σ
√

2t̂

)]
dt̂




+σ 2mR(m)(r , t̂;σ),
(3.48)

with erfc and ierfc as defined in (2.16) and (2.17); the remainder term

R(m)(r , t̂;σ)= 1
4m

∫ τ
0

{
I(m)1 (r , t̂)−I(m)2 (r , t̂)

}
dt̂, (3.49)

where I(m)1 (r , t̂) and I(m)2 (r , t̂) are as defined in (3.46) and (3.47), respectively.
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Therefore, we have the following theorem.

Theorem 3.4. For α≤ 0 and σ � 1, the solution φn(t,r) of (3.3), (3.4), and

(3.5) is

φ(t,r)=φ0(t,r)+
∞∑
n=1

φn(t,r)βn (3.50)

with φ0(t,r) as given in (3.40), and φn(t,r) for n≥ 1 as defined in (3.47). The

expansion (3.50) is uniformly valid in the whole domain for all β, σ > 0 and

φn(t,r)

∼
m−1∑
k=0

[
σ 2k

4k

∫ T−t
0

Ω(k)1 (0;r , t̂)dt̂

− σ 2k+2

22k+1
√
π

∫ τ
0

exp

(
− (r +αt̂)

2

2σ 2t̂

)[
Ω(k)1

(
r +αt̂
2
√
t̂

;r , t̂
)(

t̂
r +αt̂

)

+Ω(k)2

(
r −αt̂
2
√
t̂

;r , t̂
)(

t̂
r −αt̂

)]
dt̂

+σ 2k+3
∫ τ

0

{
t̂3/2√

2
exp

(
− (r +αt̂)

2

2σ 2t̂

)

×
[
Ω(k)1 (0;r , t̂)−Ω(k)1

(
(r +αt̂)/2

√
t̂;r , t̂

)
2k(r +αt̂)2

+ Ω
(k)
2 (0;r , t̂)−Ω(k)2

(
(r −αt̂)/2

√
t̂;r , t̂

)
2k(r −αt̂)2

]}
dt̂
]

+σ 2mR(m)(r , t̂;σ).
(3.51)

We now plot some results to illustrate the asymptotic behavior of the solu-

tions (1.1), (1.2), and (1.3) with different values of the interest rate β and the

diffusion coefficient σ .

When α= 1, T = 1, and interest rate β= 0, for (I) σ = 0.0005 and (II) σ = 1,

the asymptotic behavior of the conditional ruin probability are illustrated by

the following figures.

We notice in Figures 3.1 and 3.2 that the conditional probability of ruin

φ(t,r) reaches zero much faster in Case (I) (reserve r ≈ 10−6) than in Case (II)

(reserve r ≈ 1.6).

For other fixed parameters, Figure 3.3 shows the behavior of the conditional

ruin probability as time decreases. Figure 3.4 shows the behavior of the ruin

probability as the reserve level decreases. Figure 3.5 shows that the conditional

ruin probability decreases as the interest rate increases.

Figures 3.6 and 3.7 show that the conditional ruin probability decreases as

the variance σ decreases.
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Figure 3.1. Probability of ruin for case (I).

0
0.2

0.4
0.6

0.8
1

Time

0
0.2
0.4
0.6
0.8

1

R
u

in
p

ro
b

ab
il

it
y

2
1.5

1
0.5

0

Reserve level

Figure 3.2. Probability of ruin for case (II).

4. Conclusion and remarks. In study of diffusion models for risk reserves,

a special class of initial boundary value problem of linear diffusion equations

(1.1), (1.2), and (1.3) is obtained. Using asymptotic analysis and perturbation

theory, we provide the asymptotic behavior of the conditional probability of

ruin over finite time for different cases. Our results show that when the differ-

ence α of the aggregate rate π(t,r) at which premiums are cashed at that time

and the average aggregated claim rate µ(t) at time t is greater than zero, there

are boundary layer and parabolic corner layer occur if volatility coefficient σ
is small, or it is order of the small interest rate. In this case, inflation has

little effect on the asymptotic behavior of the ruin probability φ(t,r). How-

ever, there is no boundary layer or corner layer behavior when α ≤ 0, then

the asymptotic solutions of (1.1), (1.2), and (1.3) can be obtained in terms of



2236 S. SHAO

0.2

0.4

0.6

0.8

1

R
u

in
p

ro
b

ab
il

it
y

0 0.5 1 1.5 2
Reserve level

τ = 1

τ = 0.5

τ = 0.001 τ = 3

Figure 3.3

0.2

0.4

0.6

0.8

1

R
u

in
p

ro
b

ab
il

it
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

r = 0

r = 0.5

r = 3

Figure 3.4

interest rate β, which is uniformly valid in the given domain. The result also

provides us with some insight of the asymptotic behavior of the conditional

ruin probability for a more general model (2.8) where π(t,r)−µ(t) = rg(t).
The similar techniques can be applied to obtain the asymptotic behavior of

the solutions by converting (2.8) into the heat equation via a transformation

in both independent variables t and r .

In addition, our approach to the reserve process which is described by a

single stochastic differential equation in the above sections can be extended

to a vector form of stochastic differential equation. In fact, a company may

hold different portfolios. If we assume that there aren portfolios, then the risk
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asset and risk-free asset will follow the different dynamics, and the governing

equations of probability of ruin are described by (4.1). In this case, the vector

reserve processes can be described by a vector form of (2.7). Similar techniques

can provide a family of parabolic partial differential equation

∂φ
∂t
+

n∑
i=1

∂φ
∂ri
ai(t,r)+ 1

2
σ 2

n∑
i=1

m∑
j=1

[
∂2φ
∂rirj

(t,r)+ ∂φ
∂ri

∂f
∂rj
(t,r)

]
bij(t,r)= 0,

φ(t,r)= 1, f (r) < 0, φ(T ,r)= 0, f (r) > 0,
(4.1)
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where f : Rn → R is a C2 function and the probability of ruin φ(t,r) of the

total reserves

φ(t,r)= P
(

inf
t≤s≤T

f
(
R(s)

)
< 0 | f (R(t))= f(r)). (4.2)

The study of such equations will be discussed in somewhere else.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, National Bureau of Standards Ap-
plied Mathematics Series, vol. 55, U.S. Government Printing Office, Wash-
ington, DC, 1964.

[2] R. J. Elliott, Stochastic Calculus and Applications, Applications of Mathematics,
vol. 18, Springer-Verlag, Berlin, 1982.

[3] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity So-
lutions, Applications of Mathematics, vol. 25, Springer-Verlag, New York,
1993.

[4] M. Freidlin, Functional Integration and Partial Differential Equations, Annals of
Mathematics Studies, vol. 109, Princeton University Press, New Jersey,
1985.

[5] J. Garrido, Diffusion premiums for claim severities subject to inflation, Insurance
Math. Econom. 7 (1988), no. 2, 123–129.

[6] , Stochastic differential equations for compounded risk reserves, Insurance
Math. Econom. 8 (1989), no. 3, 165–173.

[7] J. Grandell, Aspects of Risk Theory, Springer Series in Statistics: Probability and
Its Applications, Springer-Verlag, New York, 1991.

[8] J. M. Harrison, Ruin problems with compounding assets, Stochastic Processes
Appl. 5 (1977), no. 1, 67–79.

[9] D. L. Iglehart, Diffusion approximations in collective risk theory, J. Appl. Probabil-
ity 6 (1969), 285–292.



ASYMPTOTIC SOLUTIONS OF DIFFUSION MODELS FOR RISK RESERVES 2239

[10] C. M. Moller, Stochastic differential equations for ruin probabilities, J. Appl.
Probab. 32 (1995), no. 1, 74–89.

[11] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Appli-
cations of Mathematics, vol. 36, Springer-Verlag, Berlin, 1997.

[12] S.-D. Shih, A novel uniform expansion for a singularly perturbed parabolic prob-
lem with corner singularity, Methods Appl. Anal. 3 (1996), no. 2, 203–227.

[13] G. E. Willmot and H. Yang, A partial differential equations satisfied by the condi-
tional ruin probability, unpublished manuscript, 1995.

[14] V. R. Young and T. Zariphopoulou, Computation of distorted probabilities for
diffusion processes via stochastic control methods, Insurance Math. Econom.
27 (2000), no. 1, 1–18.

S. Shao: Department of Mathematics, Cleveland State University, Cleveland, OH
44115, USA

E-mail address: s.shao@csuohio.edu

mailto:s.shao@csuohio.edu

