
IJMMS 2003:38, 2389–2400
PII. S0161171203302212

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

TECHNIQUES OF THE DIFFERENTIAL SUBORDINATION
FOR DOMAINS BOUNDED BY CONIC SECTIONS

STANISŁAWA KANAS

Received 24 February 2003

We solve the problem of finding the largest domain D for which, under given ψ
and q, the differential subordination ψ(p(z),zp′(z)) ∈ D ⇒ p(z) ≺ q(z), where
D and q(�) are regions bounded by conic sections, is satisfied. The shape of the
domain D is described by the shape of q(�). Also, we find the best dominant
of the differential subordination p(z)+ (zp′(z)/(βp(z)+γ)) ≺ pk(z), when the
function pk (k∈ [0,∞)) maps the unit disk onto a conical domain contained in a
right half-plane. Various applications in the theory of univalent functions are also
given.
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1. Introduction. For k∈ [0,∞) define the domain Ωk as follows:

Ωk =
{
u+iv :u2 > k2(u−1)2+k2v2}. (1.1)

For fixed k the above domain represents the conic region bounded, succes-

sively, by the imaginary axis (k= 0), the right branch of a hyperbola (0< k< 1),

a parabola (k = 1), and an ellipse (k > 1). Also we note that, for no choice of

parameter k (k > 1),Ωk reduces to a disk. We present below the univalent func-

tions mapping the unit disk � ontoΩk, denoted by pk, such that pk(0)= 1 and

p′k(0) > 0:

pk(z)=



1+z
1−z , for k= 0,

1+ 2
1−k2

sinh2 (
A(k)arctanh

√
z
)
, for k∈ (0,1),

1+ 2
π2

log2 1+√z
1−√z , for k= 1,

1+ 2
k2−1

sin2
(
π

2�(t)
�

(√
z√
t
,t

))
, for k > 1,

(1.2)

where A(k) = (2/π)arccosk, �(w,t) is the Legendre elliptic integral of the

first kind,

�(w,t)=
∫w

0

dx√
1−x2

√
1−t2x2

, �(t)=�(1, t), (1.3)

and t ∈ (0,1) is chosen such that k= cosh(π�′(t)/(2�(t))).
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The function p0 is well known; an explicit form of p1 is due to Rønning [16]

and independently Ma and Minda [11]; the remaining cases belong to Kanas [5]

and Kanas and Wísniowska [8].

We also note that the function pk(z) = p(k,z) is continuous as regards

k,k∈ [0,∞) and has real coefficients for k∈ [0,∞) (cf. [4, 5]).

Let � denote the well-known Carathéodory class of functions, analytic in

the unit disk with positive real part there, so that � = {p : p analytic in �,

p(0)= 1, Rep(z) > 0}. Denote by �(pk) the subclass of the class � consisting

of all functions p such that p(�)⊂ pk(�).
Suppose that functions g and G are analytic in the unit disc �. The func-

tion g is said to be subordinate to G, written g ≺ G (or g(z) ≺ G(z), z ∈ �),

if G is univalent in �, g(0) = G(0), and g(�) ⊂ G(�). If the function g(z) =
ψ(p(z),zp′(z)) with ψ, p being analytic and having appropriate normaliza-

tion, then the subordination is called the first-order differential subordination.

The theory of differential subordinations was developed by Miller and Mocanu

in their numerous works (cf., e.g., [12, 13, 14]) and by Eenigenburg et al. [1]

and has wide applications in the theory of univalent functions.

We briefly recall one of the problems that characterizes this theory. For more

details the reader should consult [13, 14]. Assume that p is analytic in � and

such that p(0) = a and p(z) �≡ a. Also, let ψ : C2 � C be analytic and such

that ψ(p(0),0) = a. Given ψ and univalent function q, q(0) = p(0), find the

“largest” domain D, such that a∈D, and the relation

ψ
(
p(z),zp′(z)

)∈D �⇒ p(z)≺ q(z) (1.4)

holds. The second important problem of this theory is finding the “smallest”

function q, when D and ψ are given, and (1.4) holds.

Now, we recall some results from the theory of differential subordinations

(cf., e.g., [12, 13, 14]) useful for further investigation (by �r we denote the open

disk centred at the origin and with the radius r ).

Lemma 1.1 (see [13]). Let f be analytic in �, and let g be analytic and univa-

lent on �̄, with f(0)= g(0). If f is not subordinate to g, then there exist points

z0 ∈�, ζ0 ∈ ∂�, and m≥ 1 for which

f
(
�|z0|

)⊂ g(
�|z0|

)
, f

(
z0

)= g(
ζ0

)
, z0f ′

(
z0

)=mζ0g′
(
ζ0

)
. (1.5)

Lemma 1.2 (see [13]). Let ψ : C2 → C be an analytic function in a domain

D ⊂ C2, and let p(z)= a+pnzn+··· be analytic in �, such that

ψ
(
p(z),zp′(z)

)≺ h(z), z ∈�, (1.6)
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where h is analytic and univalent in � with ψ(p(0),0)= h(0). If

ψ
(
h
(
ζ0

)
,mζ0h′

(
ζ0

))
∉ h(�) when m≥n, z ∈�,

∣∣ζ0

∣∣= 1, (1.7)

then p ≺ h in �.

The univalent function q is called a dominant of the solution of the differential

subordination

ψ
(
p(z),zp′(z)

)≺ h(z), (1.8)

or more simply a dominant if p ≺ q for all p satisfying (1.8). A dominant q̃
that satisfies q̃ ≺ q for all dominants q of (1.8) is said to be the best dominant

of (1.8). (Note that the best dominant is unique up to the rotation of �.)

Lemma 1.3 (see [1, 12, 14]). Let β and γ be complex constants, and let h be

convex (univalent) in �, with Re(βh(z)+γ) > 0. Also, suppose that the differ-

ential equation

q(z)+ zq′(z)
βq(z)+γ = h(z) (1.9)

has a univalent solution q, which satisfies q ≺ h. If p is analytic in � with

p(0)= h(0) and satisfies

p(z)+ zp′(z)
βp(z)+γ ≺ h(z), (1.10)

then p ≺ q ≺ h in �, and q is the best dominant of (1.10).

Lemma 1.4 (see [14, page 97]). Let β,γ ∈ C , β ≠ 0, and Re(β+γ) > 0. Let q
be analytic in �, with q(0)= h(0)= 1 and (1.9) is satisfied. If Re(βh(z)+γ) > 0

and h is convex in �, then the solution q of (1.10) is univalent and q is the best

dominant of (1.10).

In fact, the above lemmas appear in a more general form, but the above

form is sufficient for our considerations. Lemmas 1.3 and 1.4 characterize

properties of subordination, known as the subordination of the Briot-Bouquet

type, described in detail by Miller and Mocanu in [12, 14] and by Eenigenburg

et al. in [1].

Numerous subordination results concerning various choices of function q
and the domain D in (1.4) appeared in the literature. Most of functions q map

the unit disk onto the right half-plane or more general half-plane, the disk

and the sector contained in the right half-plane with the vertex at the origin

(cf., e.g., [2, 3, 12, 13, 14]). The special case of the subordination related to

conical domains did not receive the attention it deserves, but some results in

this direction are known (cf. [6, 10]). In both papers only cases ψ(p,zp′) =
p+γzp′ ≺ h, where function h maps the unit disk onto the region bounded
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by parabolas and hyperbolas, were considered although the other forms of

the function ψ seem to be more useful. For instance, when we put p(z) =
zf ′(z)/f(z) and ψ(p,zp′) = p+zp′/p, then the relation ψ(p(z),zp′(z)) ∈
D ⇒ p(z) ≺ q(z), for various choices of functions q and D, gives inclusion

relations between subclasses of convex and subclasses of starlike functions.

Hence, in this case, the functionψ in the formψ(p,zp′)= p+γzp′ is useless.

Our principal goal in this paper is to develop the theory of the first-order dif-

ferential subordinations towards subordinations in conic domains. Such kind

of domains is closely related to k-uniformly convex and k-starlike functions

(cf. [7, 8, 9]). We employ geometric techniques to obtain certain differential in-

clusions when the functions ψ and q (or ψ and a domain D) are given. Mainly,

we discuss the case ψ(p,zp′) = p+zp′/p and the function h mapping the

unit disk onto a domain bounded by a parabola.

In Section 2, we solve the problem of finding the largest domain D for that,

under given ψ and q, the condition (1.4) is satisfied. The shape of the domain

D is described by the shape q(�). In Section 3, we present the best dominant

of the differential subordination (1.10). Various applications in the theory of

univalent functions are given in Section 4.

2. Subordination results related to conic domains. Consider first the re-

gion bounded by a parabola u = v2/2+ 1/2 that is the domain p1(�) with

p1 given by (1.2). Next, we consider the family described by the equality u =
v2/2+(2a+1)/2, a < 1/2, that consists of parabolas with the vertex at w =
(2a+1)/2, symmetric about the real axis (our previous case corresponds to

a= 0). The family of domains containing point 1 inside and bounded by those

parabolas may be characterized as

�a =
{
w : Re(w−a) > |w−1−a|}, (2.1)

or equivalently

�a =
{
w =u+iv : 2u> v2+2a+1

}
. (2.2)

Note that �0 =Ω1.

Theorem 2.1. Letp be a function analytic in the unit disk such thatp(0)= 1.

Also, let a< 1/2. If

p(z)+ zp
′(z)

p(z)
∈�a, (2.3)

then

p(z)≺ 1+ 2
π2

log2 1+√z
1−√z := p1(z), (2.4)

where �a is given by (2.1) and a≥ a0 =−1/π .
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Proof. Suppose, on the contrary, that p �≺ p1. Then, by Lemma 1.1, there

exist points z0 ∈ �, ζ0 ∈ ∂�, ζ0 ≠ 1, and m ≥ 1 such that p(z0) = p1(ζ0),
p(|z| < |z0|) ⊂ p1(�), and z0p′(z0) = mζ0p′1(ζ0). Setting p1(z) = 1 +
(2/π2) log2q(z) with q(z)= (1+√z)/(1−√z), q(0)= 1, we obtain

zp′1(z)
p1(z)

= 4
π2

zq′(z)
q(z)

logq(z)
1+(

2/π2
)
log2q(z)

. (2.5)

Note that for ζ0 = eiθ , θ ∈ (0,2π), we have q(ζ0) = icot(θ/4) = ix, x > 0,

and ζ0q′(ζ0)/q(ζ0)= iy = i(x+1/x)/4. Thus

p
(
z0

)= p1
(
ζ0

)= 1+ 2
π2

log2(ix)= 1
2
+ 2
π2

log2x+i 2
π

logx,

z0p′
(
z0

)
p
(
z0

) = mζ0p′1
(
ζ0

)
p1

(
ζ0

)
= 4miy

π2

logx+i(π/2)
(1/2)+(

2/π2
)
log2x+i(2/π) logx

= 4my
π2

 (1/π) logx−(π/4)+i logx
(
(3/2)+(

2/π2
)
log2x

)
(
(1/2)+(

2/π2
)
log2x

)2+(
4/π2

)
log2x

.
(2.6)

From the above we have

Re

(
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) )

= 1
2
+ 2
π2

log2x−my π/4−(1/π) log2x

log2x+
(
π/4+(1/π) log2x

)2 ,

Im

(
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) )

= logx

 2
π
+my 3/2+(

2/π2
)
log2x

log2x+
(
π/4+(1/π) log2x

)2

.

(2.7)

Observe, by the definition of �a, that we will be led to a contradiction if we

show that

Im2

(
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) )
−2Re

(
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) )
+2a+1≥ 0, (2.8)
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which, after necessary reductions, is equivalent to

m2y2 log2x

(
3/2+(

2/π2
)
log2x

)2

(
log2x+(

π/4+(1/π) log2x
)2

)2

+ 4m
π
y log2x

3/2+(
2/π2

)
log2x

log2x+
(
π/4+(1/π) log2x

)2

+2my
π/4−(1/π) log2x

log2x+
(
π/4+(1/π) log2x

)2 +2a≥ 0.

(2.9)

Set t = log2x, t ≥ 0. Then the above inequality can be rewritten as

m2y2t
(
3/2+(

2/π2
)
t
)2(

t+(
π/4+(1/π)t)2

)2

+my
(
8/π3

)
t2+(4/π)t+π/2

t+(
π/4+(1/π)t)2 +2a≥ 0.

(2.10)

Since m ≥ 1, “coefficients” of y2 and y are both nonnegative, and y = (x+
1/x)/4= (e

√
t+e−

√
t)/4= [cosh

√
t]/2, condition (2.10) will be fulfilled if

cosh2
√
t

t
(
3/2+(

2/π2
)
t
)2(

t+(
π/4+(1/π)t)2

)2

+2cosh
√
t
(
8/π3

)
t2+(4/π)t+(π/2)

t+(
π/4+(1/π)t)2 +8a≥ 0.

(2.11)

Observe now that

cosh2
√
t

t
(
3/2+(

2/π2
)
t
)2(

t+(
π/4+(1/π)t)2

)2

+2cosh
√
t
(
8/π3

)
t2+(4/π)t+π/2

t+(
π/4+(1/π)t)2 +8a

≥ 2

(
8/π3

)
t2+(4/π)t+π/2

t+(
π/4+(1/π)t)2 +8a

= 16
π

[
1− t
t+(

π/4+(1/π)t)2

]
+8a

≥ 8
π
+8a.

(2.12)

Indeed, the maximum of the function of w(t) = t/[t+ (π/4+ (1/π)t)2] on

the interval [0,∞) is attained at t0 = π2/4 and equals 1/2; from this the last
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inequality follows. Hence

Im2
{
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) }
−2Re

{
p
(
z0

)+ z0p′
(
z0

)
p
(
z0

) }
+2a+1≥ 0 (2.13)

if and only if 8/π +8a ≥ 0, that is, when a ≥ a0 = −1/π ≈ −0.318309 that

leads to the contradiction. The proof is completed.

Now, we extend the result of Theorem 2.1 to the case when p(z) +
zp′(z)/(βp(z)+ γ) ∈ �a implies p ≺ p1. Since the method of the proof is

the same as in Theorem 2.1, we omitted the details.

Theorem 2.2. Let β,γ ∈ R be such that β > γ ≥ 0, β ≠ 0, a < 1/2, and let

p ∈�. If

p(z)+ zp′(z)
βp(z)+γ ∈�a, (2.14)

then

p(z)≺ 1+ 2
π2

log2 1+√z
1−√z , (2.15)

where �a is given by (2.1) and

a≥− 2
πβ

+ 2
π2
r
(
t0

)=: a1, (2.16)

where

r(t)=
(
2(2β+γ)/π)

t+πγ(β+2γ)/2β(
4β2/π2

)
t+(

(β+2γ)/2+(
2β/π2

)
t
)2 ,

t0 =
π2

[
2β

√
β(β+2γ)

(
β2−γ2

)−γ(β+γ)]
4β(2β+γ) .

(2.17)

Reasoning in the other direction we consider the function

Qb(z)= 1+ 2(1−b)
π2

log2 1+√z
1−√z , b < 1, (2.18)

that maps the unit disk analytically and univalently onto the parabolic region

Ω̃b = {u+iv : 2u> v2/(1−b)+1+b} having a vertex at w = (1+b)/2. When

b grows, the parabola becomes narrower until it degenerates for b = 1. The

functionQb was defined by Rønning in [15]. Define now the family of domains,

having 1 inside and creating from Ω̃b by a translation through the vector (a,0)
as follows:

�a,b =
{
w =u+iv : 2(u−a) > v2

1−b +1+b
}
. (2.19)
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Reasoning along the same lines as in Theorem 2.1, in this case, we obtain the

following theorem.

Theorem 2.3. Let a < (1−b)/2, b < 1, and let p be a function analytic in

the unit disk such that p(0)= 1. If

p(z)+ zp
′(z)

p(z)
∈�a,b, (2.20)

then p(z)≺Qb(z), where �a,b is given by (2.19), Qb(z) is given by (2.18), and

a≥− 2
π
+ 2(1−b)

π2
r
(
t0

)=: a2, (2.21)

where

r(t)=
(
2(2−b)/π)

t+πb(1+b)/2(1−b)(
4(1−b)2/π4

)
t2+(

2(1−b)(3+b)/π2
)
t+(1+b)2/4 ,

t0 =
π2

[√
(1−2b)

(
1−b2

)−b(1+b)]
2(2−b)(1−b) .

(2.22)

3. Problem of the best dominant. The second problem of the theory of

differential subordinations, mentioned in the introduction, is the problem of

finding the “smallest” function q such that (1.9) and (1.10) imply p ≺ q ≺ h.

This problem was posed by Miller and Mocanu in [13], repeated among others

in [14] and completely solved with reference to Briot-Bouquet differential sub-

ordination, although, an explicit form of the best dominant was found only for

the functions mapping the unit disk onto a half-plane or a disk (given in term

of hypergeometric functions). In this section, employing Miller and Mocanu re-

sults, we provide the form of the best dominant of Briot-Bouquet differential

subordination in the case when the function h≡ pk.
In this instance we have the following proposition.

Proposition 3.1. Let 0 ≤ k < ∞. Also, let β,γ ∈ C be such that β ≠ 0 and

Re(βk/(k+1)+γ) > 0. If p is analytic in �, p(0)= 1, p satisfies

p(z)+ zp′(z)
βp(z)+γ ≺ pk(z), (3.1)

and q is an analytic solution of

q(z)+ zq′(z)
βq(z)+γ = pk(z), (3.2)

then q is univalent, p ≺ q ≺ pk, and q is the best dominant of (3.1).

Proof. Since for each k ∈ [0,∞) the function pk is convex in �, and

Re(βpk(z)+γ) > 0, the assumptions of Lemma 1.4 are satisfied, that guar-

antees the univalence of a solution of the differential equality (3.2). Moreover,
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the solution q is the best dominant of the subordination (3.1). Such a solution

is given by

q(z)=
[
zγ+β

(
exp

∫ z
0

((
pk(t)−1

)
/t

)
dt

)β][
β

∫ z
0 uβ+γ−1

(
exp

∫u
0

((
pk(x)−1

)
/x

)
dx

)βdu] − γ
β
, (3.3)

or equivalently

q(z)=
β∫ 1

0

(
tβ+γ−1 exp

∫ tz
z

pk(u)−1
u

du
)β
dt

−1

− γ
β

(3.4)

(cf. [12, 14]). Thus, by making use of Lemma 1.3, we have p ≺ q ≺ pk with q
being the best dominant.

In particular, for β= 1 and γ = 0, one obtains

q(z)=
[
zexp

∫ z
0

pk(t)−1
t

dt
][∫ z

0

(
exp

∫ u
0

pk(x)−1
x

dx
)
du

]−1

, (3.5)

or equivalently

q(z)=
[∫ 1

0

(
exp

∫ tz
z

pk(u)−1
u

du
)
dt

]−1

. (3.6)

In the case when k > 1 we may approximate the domain, being an elliptical

domain, by a circular domain. An ellipse must be contained in the disk which is

tangent to the ellipse at points common with the real axis. The case of subordi-

nations related to disks is completely solved in the literature. The first attempt

was given by Jakubowski and Kamiński [3], but a final result is due to Miller

and Mocanu (cf., e.g., [14, page 110]). Since the ellipse intersects the real axis

at points k/(k+1) and k/(k−1), then such a circle K(S,R) has the center at

S = k2/(k2−1) and a radius R = k/(k2−1) and contains the point z = 1 inside.

Then the function ϕ : �→ K(S,R) has a form ϕ(z)= k/(k−z), and therefore

Proposition 3.1 with β= 1 and γ = 0 yields the following proposition.

Proposition 3.2. Let 1< k<∞ and let p be analytic in �, p(0)= 1, and p
satisfies (3.1). Then p(z)≺ z/[(z−k) log(1−z/k)] and

Rep(z) >
1

(k+1) log(1+1/k)
. (3.7)

Proof. Since p satisfies (3.1) and for each fixed k, pk(z) ≺ k/(k−z), then

p(z)+zp′(z)/p(z)≺ k/(k−z) in �. In view of (3.6), insertingϕ(z)= k/(k−z)
in place of pk, we obtain p(z)≺ q(z)= z/[(z−k) log(1−z/k)]. Then we have

q(−1)= 1/[(k+1) log(1+1/k)], and the assertion follows.
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Remark 3.3. Making use of Proposition 3.2, for instance, for the case k= 2,

one obtains that if p(z)+ zp′(z)/p(z) ≺ p2(z) = 1/(1− z/2) (it is obvious

that then Re(p(z)+ zp′(z)′p(z)) > 2/3) implies Rep(z) > 1/[3log(3/2)] ≈
0.813 . . . .

4. Applications. Functions pk and the class �(pk) were constructed with

reference to the subclass of the class of univalent functions, called k-uniform-

ly convex, and denoted k-��� (cf. [7, 8, 9]), so that every domain appeared in

Section 2 is strictly related with the class �(pk) and, obviously, with k-���.

It should be mentioned that the class k-��� was defined pure geometrically

as the class of such functions that map every circular arc, with the center

ζ, |ζ| ≤ k, (0 ≤ k <∞) contained in �, onto a convex arc. With reference to

the class k-���, Kanas and Wísniowska defined the class k-�	= {g ∈
 : g =
zf ′, f ∈ k-���}, called the class of k-starlike functions. Here 
 denotes the

class of functions analytic in the unit disk and such that f(0)= f ′(0)−1= 0.

One of the most important cases of k-��� functions is the uniformly convex

functions case which corresponds to the choice k = 1. In this case, condition

(1.1), when setting u+ iv = 1+zf ′′(z)/f ′(z), z ∈ �, means that the range

of the expression 1+zf ′′(z)/f ′(z) is the region bounded by a parabola u =
v2/2+1/2.

Theorem 4.1. Let f ∈
 and let 1+zf ′′(z)/f ′(z)∈�a, where �a given in

(2.1) and a≥−1/π . Then

zf ′(z)
f(z)

≺ 1+ 2
π2

log2 1+√z
1−√z , (4.1)

or equivalently f ∈ 1-�	.

Proof. Assume that 1+zf ′′(z)/f ′(z) ∈ �a. Setting p(z) = zf ′(z)/f(z),
we have p(0)= 1, and the above condition can be rewritten as

p(z)+ zp
′(z)

p(z)
∈�a (4.2)

in �. Now, applying Theorem 2.1, we conclude the assertion.

Applying Theorem 2.2 and proving similarly as above, we obtain the follow-

ing theorem.

Theorem 4.2. Let β,γ ∈R, β≠ 0, β > γ ≥ 0, and let f ∈
. If

1+zf ′′(z)/f ′(z)−zf ′(z)/f(z)
β+γ(

f(z)/zf ′(z)
) ∈�a, (4.3)

where �a is given in (2.1) and a satisfies (2.16), then f ∈ 1-�	.

Making use of Theorem 2.3 by a simple substitution, like in the proof of

Theorem 4.1, we have the following theorem.
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Theorem 4.3. Leta< 1/2, andb < 1. Also, let f ∈
 and 1+zf ′′(z)/f ′(z)∈
�a,b, where �a,b is given by (2.19) and a ≥ a1 (the value a1 is described by

(2.21)). Then zf ′(z)/f(z)≺Qb(z) with Qb given by (2.18).

Conversely to the presented applications we may assume that

f ∈ k-���⇐⇒ 1+ zf
′′(z)

f ′(z)
≺ pk(z), (4.4)

and from this, by making use of results of Section 3, we conclude the contain-

ment results about k-�	.

On applying Proposition 3.1 (for β = 1 and γ = 0) and Proposition 3.2, we

have the following relations between the classes k-��� and k-�	 below.

Proposition 4.4. Let 0 ≤ k <∞. Also, let f ∈ k-���. Then zf ′(z)/f(z)≺
q(z)≺ pk(z), where q is given by (3.6).

Proposition 4.5. Let 1 < k < ∞ and let f ∈ k-���. Then zf ′(z)/f(z) ≺
z/[(z−k) log(1−z/k)] and

Re
zf ′(z)
f(z)

>
1

(k+1) log(1+1/k)
. (4.5)

We presented applications of results of Sections 3 and 4 only for k-���

and k-�	 functions. However, by setting p(z)= f(z)/z, p(z)= f ′(z), p(z)=
2f(z)/z− 1, p(z) = 2zf ′(z)/f(z)− 1, p(z) = 2

√
f ′(z)− 1, and so forth, in

the propositions and the theorems of the mentioned sections, we may obtain

many more results related to conical domains.
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