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For every hyperbolic group Γ with Gromov boundary ∂Γ , one can form the cross
product C∗-algebra C(∂Γ) � Γ . For each such algebra, we construct a canonical
K-homology class. This class induces a Poincaré duality map K∗(C(∂Γ) � Γ) →
K∗+1(C(∂Γ)�Γ). We show that this map is an isomorphism in the case of Γ = F2,
the free group on two generators. We point out a direct connection between our
constructions and the Baum-Connes conjecture and eventually use the latter to
deduce our result.
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1. Introduction. The aim of this paper is to point out a connection between

the Baum-Connes conjecture with coefficients for the free group F2 on two gen-

erators and a Poincaré duality result for the “noncommutative space” ∂F2/F2,

where ∂F2 is the Gromov boundary of F2, acted upon minimally by F2 through

homeomorphisms.

In order to formulate what Poincaré duality should mean for a noncom-

mutative space such as ∂F2/F2, one passes to the C∗-algebra cross product

C(∂F2)�F2 and to K-theory and K-homology for C∗-algebras. A Poincaré du-

ality for ∂F2/F2 then means an isomorphism between the K-theory and K-

homology of C(∂F2) � F2, induced by cap product with a fixed K-homology

class.

More generally, one can speak of C∗-algebras having Poincaré duality, or,

as we call them in this paper, Poincaré duality algebras. It seems that such

algebras are in some sense noncommutative analogs of spinc manifolds. For it

is well known that if M is a compact spinc manifold, the C∗-algebra C(M) of

continuous functions on M is a Poincaré duality algebra. Such a manifold has,

corresponding to the spinc structure, a canonical elliptic operator on it—the

Dirac operator—and thus (see, e.g., [9]) a canonical K-homology class. The cap

product with this class induces the Poincaré duality isomorphism.

Various noncommutative examples of Poincaré duality C∗-algebras have

been produced by Connes [3]; the first of which was the irrational rotation

algebra Aθ . Several other examples now exist, but all have the same charac-

ter insofar as they are in some sense deformations of actual spinc manifolds.

http://dx.doi.org/10.1155/S0161171203209169
http://dx.doi.org/10.1155/S0161171203209169
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


2426 HEATH EMERSON

Our example is somewhat different. The geometric data underlying ∂F2/F2 is

highly singular: the space ∂F2 is not a homology manifold, and the group F2 is

not a Poincaré duality group. It turns out to be true, however, that in factoring

the space by the action of the group, that is, by forming the cross product

C∗-algebra C(∂F2)�F2, the resulting noncommutative space satisfies Poincaré

duality.

A part of our goal is thus to point out this example and also to place it in its

proper context: that of hyperbolic groups acting on their Gromov boundaries.

The second part is to show, as mentioned above, a connection between our

constructions and the Baum-Connes conjecture for F2.

We begin by constructing—in the full generality of hyperbolic groups—the

K-homology class cap product with which we will induce our Poincaré dual-

ity isomorphism. It turns out that with Gromov hyperbolic groups Γ , in gen-

eral there is a certain duality between functions continuous on the Gromov

boundary ∂Γ of Γ and right translation operators on l2Γ . Using this duality,

we produce an algebra homomorphism C(∂Γ)� Γ ⊗C(∂Γ)� Γ → �(l2Γ), where

�(l2Γ) = �(l2Γ)/�(l2Γ) denotes the Calkin algebra of l2Γ , and where Γ is an

arbitrary hyperbolic group. SinceC(∂Γ)�Γ is nuclear [1], such an algebra homo-

morphism yields via the Stinespring construction a class ∆∈KK1(C(∂Γ)�Γ ⊗
C(∂Γ)�Γ ,C), that is, a class ∆ in the K-homology of C(∂Γ)�Γ⊗C(∂Γ)�Γ . Kas-

parov product with ∆ gives the required “cap-product” map ∩∆ : K∗(C(∂Γ)�
Γ)→K∗+1(C(∂Γ)�Γ).

We next wish to prove that a cap product with ∆ as above gives an iso-

morphism in the case of Γ = F2, the general case of hyperbolic groups be-

ing beyond the scope of this paper. To this end, we observe that a sort of

geodesic flow on the Cayley graph of F2 may be used to construct a dual el-

ement to ∆, this time in the K-theory of C(∂F2) � F2 ⊗C(∂F2) � F2, playing

the same role in this context as does the Thom class of the normal bundle

of M in M×M in the commutative setting. We obtain a putative inverse map

K∗(C(∂F2)�F2)→K∗+1(C(∂F2)�F2).
We then set about calculating the composition of these two maps. The con-

nection with the Baum-Connes conjecture appears in that the composition

K∗(C(∂F2)� F2) → K∗(C(∂F2)� F2) turns out to be multiplication by the γ-

element constructed by Julg and Valette [7].

As mentioned, the construction of our fundamental class ∆makes sense for

a general hyperbolic group acting on its boundary, and in fact several of our

other constructions have their counterparts for arbitrary hyperbolic groups;

thus for instance, it is possible by means of the work of Gromov [5] to make

sense of “geodesic flow” for an arbitrary hyperbolic group. Furthermore, al-

though the statement γ = 1 for general hyperbolic groups is false due to the

possible presence of property T , it is nevertheless true by the work of Tu [11]

that γ∂Γ�Γ = 1C(∂Γ), where γ∂Γ�Γ is the γ-element for the amenable groupoid

∂Γ �Γ and this weaker statement is sufficient for our purposes. Nevertheless,
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the arguments for the general case, being substantially more involved, will

be dealt with in a later paper. We have chosen to emphasize the free-group

case for two reasons: firstly, the relationship to the Baum-Connes conjecture

is extremely explicit, and secondly, the geometry of our constructions is par-

ticularly visible.

Finally, we note that our arguments tend to suggest that the phenomenon of

Poincaré duality for amenable groupoid algebras constructed from boundary

actions of discrete groups is relatively common. Specifically, we expect similar

results for uniform lattices in semisimple Lie groups acting on their Fursten-

berg boundaries, and for discrete, cocompact isometry groups of affine build-

ings acting on the boundaries of these buildings. Along these lines, we draw the

attention of the reader to the work of Kaminker and Putnam on Cuntz-Krieger

algebras (see [8]); indeed, our result (in the case of the free group of two gen-

erators) can be deduced from theirs. In fact, our work was partly motivated by

the idea of finding a geometric explanation for theirs.

2. Geometric preliminaries. In this section, we work on the generality of

a Gromov hyperbolic group Γ (see [4] or [5]). So, let Γ be such. Thus, we have

fixed a generating set S for Γ and the corresponding metric d(γ1,γ2)= |γ−1
1 γ2|,

where | · | denotes the word length of a group element with respect to S, and

with this metric, Γ is hyperbolic in the sense of Gromov as a metric space. Note

that the metric is clearly invariant under left translation.

Recall that with the hypothesis of hyperbolicity, the group Γ viewed as a

metric space can be compactified by addition of a boundary; thus, there exists

a compact metrizable space Γ̄ = Γ ∪ ∂Γ such that Γ sits densely in Γ̄ and Γ̄
is compact. The compactification is Γ -equivariant in the sense that the left

translation action of Γ extends to an action by homeomorphisms on Γ̄ .
There turns out to be an interesting duality between functions on Γ which

extend continuously to the Gromov compactification Γ̄ , and a certain class of

operators on l2Γ as follows. First, we recall a definition. For what follows, let

ex , ey , and so forth denote the standard basis vectors in l2Γ corresponding

to points x,y ∈ Γ . Also, if f̃ is a function on Γ , we will denote by Mf̃ the

corresponding multiplication operator on l2Γ .

Definition 2.1. An operator T ∈ �(l2Γ) has finite propagation if there

exists R > 0 such that 〈T(ex),ey〉 = 0 whenever d(x,y)≥ R.

The duality we have alluded to is stated in the following lemma.

Lemma 2.2. If f̃ is a function on Γ which extends continuously to Γ̄ , then

[Mf̃ ,T] is a compact operator for all finite propagation operators T on l2Γ .

For the proof, we need to use the following fact about the Gromov compact-

ification of a hyperbolic group (see [4]): note that here and elsewhere in this

paper, Br (x), for r > 0 and x ∈ Γ , denotes the ball of word-metric radius r
centered at x.
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Lemma 2.3. If f̃ is a continuous function on Γ̄ , then for every R > 0,

lim
x→∞sup

{∣∣f(x)−f(y)∣∣ |y ∈ BR(x)
}= 0. (2.1)

Proof of Lemma 2.2. Let T be a finite propagation operator with propa-

gation R and f̃ be a bounded function on Γ which extends continuously to Γ̄ .
Then

[
Mf̃ ,T

](
ex
)=

∑

y∈BR(x)

(
f̃ (x)− f̃ (y))Txyey, (2.2)

where Txy denotes as usual 〈T(ex),ey〉. Therefore, 〈[Mf̃ ,T](ex),ey〉 = 0 if

d(x,y)≥ R, and equals (f̃ (x)−f̃ (y))Txy else. The result follows immediately

from Lemma 2.3.

Let γ ∈ Γ , and let ρ(γ) denote the unitary l2Γ → l2Γ induced from right

translation by γ, ρ(γ)ex = exγ−1 . The relevance of the above remarks to us lies

in the following observation.

Lemma 2.4. If γ ∈ Γ , then ρ(γ) has a finite propagation.

Proof. One hasd(x,xγ−1)≤|γ| from which the result follows withR = |γ|.

Corollary 2.5. If γ ∈ Γ and f̃ is a function on Γ which extends continuously

to Γ̄ , then [ρ(γ),Mf̃ ] is a compact operator.

Now, consider the unitary I : l2Γ → l2Γ induced from inversion ι : Γ → Γ . Then

Iρ(γ)I = λ(γ), where λ(γ) denotes left translation by γ, and IMf̃ I = Mf̃◦ι.
The following corollary follows from conjugating the commutator expression

appearing in Corollary 2.5 by the unitary I.

Corollary 2.6. The commutator [λ(γ),Mf̃◦ι] is a compact operator for

every γ ∈ Γ and f̃ a function on Γ extending continuously to Γ̄ .

In Section 3, we show how the above constructions can be organized to pro-

duce a K-homology class inducing a Poincaré duality isomorphism.

3. KK-theoretic preliminaries. In this section, we recall some basic facts

from Kasparov theory (KK-theory). For further details, we refer the reader to

[2, 9].

The category KK. Kasparov theory can be understood categorically (see

[6]): there is a category KK whose objects are separable, nuclear C∗-algebras

and whose morphisms A → B are the elements of KK(A,B). There is a func-

tor from the category of C∗-algebras to the category KK. If φ : A → B is

an algebra homomorphism A → B, we denote its image under this functor
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as [φ]. There is a composition or intersection product operation KK(A,D)×
KK(D,B) → KK(A,B) which we denote by (α,β) � α⊗D β. If φ : A → B is

an algebra homomorphism and D is any C∗-algebra, we thus have a map

φ∗ : KK(D,A) → KK(D,B) given by α � α⊗A [φ]. Similarly, we have a map

φ∗ :KK(B,D)→KK(A,D) given by β� [φ]⊗B β.

We will sometimes use the notations φ∗([β]) and [φ]⊗B β interchangeably,

as is warranted by the clarity of notation. Similarly with φ∗.

If D is a C∗-algebra, there is a natural map KK(A,B) → KK(A⊗D,B⊗D),
α�α⊗1D , and similarly a map KK(A,B)→KK(D⊗A,D⊗B).

Graded commutativity. There are higher KK groups KKi(A,B) for all

i∈ Z, defined byKKi(A,B)=KK(A,B⊗Ci), whereCi is the ith complex Clifford

algebra, and one of the features of the theory is that the intersection product

is graded commutative. If A1, . . . ,An are C∗-algebras, let σij denote the map

A1⊗···Ai⊗···Aj⊗···⊗An �→A1⊗···Aj⊗···Ai⊗···⊗An (3.1)

obtained by flipping the two factors. Then by graded commutativity, we mean

the following: if α∈KKi(A1,B1) and β∈KKj(A2,B2), then

(
α⊗1A2

)⊗B1⊗A2

(
1B1⊗β

)

= (−1)ij
(
σ12

)
∗σ

∗
12

((
β⊗1A1

)⊗(1B2⊗α
))∈KK(A1⊗A2,B1⊗B2

)
.

(3.2)

K-theory and K-homology. For any C∗-algebra A, KKi(C,A)=Ki(A) is

the topological K-theory of A and KKi(A,C) = Ki(A) is the K-homology of A
by definition.

Description of even cycles. Let �(�) denote bounded operators on a

Hilbert module �, �(�) denote compact operators, and �(�) denote the Calkin

algebra �(�)/�(�). The quotient map �(�) → �(�) will always be denoted

by π .

Following Kasparov [9], if � is a Hilbert B-module and A acts on � by a

homomorphism A→�(�), we will refer to � as a Hilbert (A,B)-bimodule.

Because all the algebras in this paper are ungraded—or alternatively, have

trivial grading—we can make certain simplifications in the definitions of the

KK groups (see [2]). With such ungraded A and B, cycles for KK(A,B) are given

simply by pairs (�,F), where � is an (A,B)-bimodule, F commutes modulo

compact operators with the action of A, and a(F∗F −1) and a(FF∗ −1) are

compact for every a∈A.

Description of odd cycles. Cycles forKK1(A,B) are given by pairs (�,P)
for which P is an operator on the (A,B)-bimodule � satisfying the three con-

ditions [a,P], a(P2−P), and a(P−P∗) are compact for all a∈A.

Let (�,P) be an odd cycle. Then we obtain a homomorphism A → �(�) by

the formula a�π(PaP).
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Conversely, let τ : A → �(�) be a homomorphism. Under the assumption

of nuclearity of all algebras concerned, there exists a potentially larger Hilbert

B-module �̃, a representation of A on �̃, an isometry U : �→ �̃, and an operator

P on �̃ such that a(P2−P), [a,P], and a(P −P∗) are compact for all a ∈ A,

and π(U∗PaPU) = τ(a) for all a ∈ A (see [2]). The data (�̃,P) makes up an

odd cycle. The process of constructing a �̃, U , and P , from an extension, we

will refer to as the Stinespring construction.

As a consequence, for A and B nuclear, we may regard KK1(A,B) as given

by classes of maps τ : A → �(�), where � is a right Hilbert B-module. This

description of KK1-classes will be particularly appropriate to our purposes.

Bott periodicity. Recall that KK−1(C,C0(R))
 Z and is generated by the

class [d̂R] of the multiplier f(x) = x/√1+x2 of C0(R), suitably interpreted

in terms of the Clifford gradings. The class [d̂R] allows us to identify, for any

C∗-algebras A and B, the groups KK1(C0(R)⊗A,B) and KK(A,B) by the map

KK1(C0(R)⊗A,B) → KK(A,B), x � [d̂R]⊗C∗(R) x. We will need to compute

this map at the level of cycles in several simple cases.

Let ψ be the function ψ(t) = −2i/(t+ i) in C0(R); it has the property that

ψ+1 is unitary in C0(R)+. We begin by stating the simplest version of what

we will need.

Lemma 3.1. Let τ be a homomorphism C0(R)→ �(H) to the Calkin algebra

of some Hilbert space H. Let [τ] denote the class in KK1(C0(R),C) correspond-

ing to τ . Then the class [d̂R]⊗C0(R) [τ] ∈ KK(C,C) is represented by the cycle

(H,U+1), where U is any operator on H such that π(U)= τ(ψ).
The significance of this simple lemma is that in the given setting, it is not

necessary to explicitly represent [τ] as aKK-cycle (i.e., perform the Stinespring

construction) in order to calculate the Kasparov product of [d̂R] and [τ]. This

is true also for the situation in the following lemma, which will be of direct use

to us.

Lemma 3.2. Let A1 and A2 be C∗-algebras and � be a right Hilbert A2-

module. Let h be a homomorphism C0(R)⊗A1 → Q(�) and [h] be its class,

regarded as an element of KK1(C0(R)⊗A1,A2). Assume that h has the form

x⊗a1 � h′(x)h′′(a1), where h′ and h′′ are homomorphisms. Suppose that the

homomorphism h′′ lifts to a homomorphism h̃′′ : A1 → �(�). Then it follows

that the class [d̂R]⊗C0(R) [h] ∈ KK(A1,A2) is represented by the following cy-

cle. The module is � with its original right A2-module structure and the left

A1-module structure given by the homomorphism h̃′′. The operator is given by

U+1, where U is any operator on � such that π(U)= h′(ψ).
The proof of both lemmas involves an application of the axioms for the

intersection product, and is omitted (see [9]).

Equivariant KK. If Γ is a group acting on C∗-algebras A and B, we have,

in addition to the group KK(A,B), an equivariant group KKΓ (A,B). We will
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discuss this group briefly in connection with the γ-element and the work of

Julg and Valette. It is sufficient to say that the cycles for KKΓ (A,B) consist of

the same cycles as for KK(A,B), but with the following extra conditions:

(1) Γ acts as linear isometric maps on the Hilbert (A,B)-module � in such

a way that γ(aξb)= γ(a)γ(ξ)γ(b) for a∈A, b ∈ B, and ξ ∈ �;

(2) the operator F satisfies the condition that γ(F)−F is compact for all

γ ∈ Γ .
Regarding KKΓ as a category in its own right, with morphisms A→ B the ele-

ments of KKΓ (A,B), and objects Γ -C∗-algebras, there is a functor λ :KKΓ (A,B)
→ KK(A� Γ ,B � Γ) called descent. The map λ : KKΓ (A,B) → KK(A� Γ ,B � Γ)
can be explicitly calculated on cycles; the formulas are given in [9]. Since λ is

a functor, it takes the unit 1A ∈ KKΓ (A,A) to the unit 1A�Γ ∈ KK(A�Γ ,A�Γ),
which is a fact we will make use of.

4. Construction of the fundamental class. For this section, we will return

to the generality of a hyperbolic group Γ . Since Γ acts by homeomorphisms on

∂Γ , we can consider the cross product C∗-algebra C(∂Γ)�Γ , which is our main

object of interest in this paper. Note that the cross product we are referring

to is the reduced cross product; however, by the proof of the following lemma

(whose proof can be found in [1]), the reduced and max cross products are in

fact the same.

Lemma 4.1. The algebra C(∂Γ)�Γ is nuclear and separable.

Our goal is to construct an element of theK-homology of the algebra C(∂Γ)�
Γ ⊗C(∂Γ) � Γ ; specifically, an element of KK1(C(∂Γ) � Γ ⊗C(∂Γ) � Γ ,C). This

element will be presented as an extension, that is, as a map C(∂Γ)�Γ⊗C(∂Γ)�
Γ → �(H) for some Hilbert space H. By our remarks in the previous section

and Lemma 4.1, such a map does produce a canonical class in KK1(C(∂Γ)�Γ⊗
C(∂Γ)�Γ ,C).

We construct two commuting maps λ,ρ : C(∂Γ)�Γ → �(l2Γ). Let f ∈ C(∂Γ),
and let f̃ denote any extension of f to a continuous function on Γ̄ . Let Mf̃
denote as above the multiplication operator on l2Γ corresponding to f̃ , and let

λ(f) be the image in �(l2Γ) of the operatorMf̃ . Let λ(γ) be the image in �(l2Γ)
of the unitaryuγ corresponding to left translation by γ :uγ(ex)= eγx , x ∈ Γ . It

is easy to check that the assignments f → λ(f) and γ → λ(γ) define a covariant

pair for the C∗-dynamical system (C(∂Γ),Γ), and so a homomorphism

λ : C(∂Γ)�Γ �→ �
(
l2Γ
)
. (4.1)

Next, define

ρ : C(∂Γ)�Γ �→ �
(
l2Γ
)

(4.2)
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by ρ(a) = Iλ(a)I, where I is as at the end of Section 2. Thus, ρ(f) is the

image in �(l2Γ) of the multiplication operator Mf̃◦ι, and ρ(γ) is the image in

�(l2Γ) of right translation by γ, ex � exγ−1 . The following theorem follows

from Corollaries 2.5 and 2.6.

Theorem 4.2. The homomorphisms λ,ρ : C(∂Γ)�Γ → �(l2Γ) commute, and

so define a homomorphism C(∂Γ)�Γ⊗C(∂Γ)�Γ → �(l2Γ) by a⊗b→ λ(a)ρ(b).
Definition 4.3. Let ∆ ∈ KK1(C(∂Γ) � Γ ⊗ C(∂Γ) � Γ ,C) denote the class

corresponding to the above homomorphism C(∂Γ)�Γ ⊗C(∂Γ)�Γ → �(l2Γ).

We will refer to the class ∆ as the fundamental class of the algebra C(∂Γ)�Γ .
Before proceeding, we note the following: let σ12 : C(∂Γ)� Γ ⊗C(∂Γ)� Γ →

C(∂Γ)� Γ ⊗C(∂Γ)� Γ be the homomorphism which interchanges factors and

let σ∗12 : KK1(C(∂Γ)� Γ ⊗C(∂Γ)� Γ ,C) → KK1(C(∂Γ)� Γ ⊗C(∂Γ)� Γ ,C) be the

corresponding homomorphism of KK groups. The following rather simple ob-

servation reflects a common property of “fundamental classes,” that is, those

classes implementing by cap product Poincaré duality isomorphisms; the au-

thor knows of no case, either commutative or not, where the fundamental class

does not have it.

Lemma 4.4. The class ∆ satisfies σ∗12(∆)=∆.

Proof. Forσ∗12(∆) is the class corresponding to the mapC(∂Γ)�Γ⊗C(∂Γ)�
Γ → �(l2Γ), a⊗b� ρ(a)λ(b). But this is unitarily conjugate to the map a⊗b�
λ(a)ρ(b) via the symmetry I.

We can now define the “cap-product map” interchanging the K-theory and

K-homology of C(∂Γ)�Γ , which we are going to show is an isomorphism when

Γ = F2. Specifically, define

∩∆ :K∗
(
C(∂Γ)�Γ

)
�→K∗+1(C(∂Γ)�Γ) (4.3)

by the formula

x � �→ (x⊗1C(∂Γ)�Γ
)⊗C(∂Γ)�Γ⊗C(∂Γ)�Γ ∆. (4.4)

Our main theorem is as follows.

Theorem 4.5. For Γ = F2 and ∆ as in Definition 4.3, the map ∩∆ is an iso-

morphism.

5. Connes’ notion of Poincaré duality. In order to prove that the map∩∆ of

the previous section is an isomorphism, we will use some ideas due to Connes.

Theorem 5.1. Let A be a separable, nuclear C∗-algebra and ∆ be a class in

KKi(A⊗A,C). Suppose that there exists a class ∆̂ ∈ KK−i(C,A⊗A) such that
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the following equations hold:

(
∆̂⊗1A

)⊗A⊗A⊗A
(
1A⊗σ∗12∆

)= 1A, (5.1)
((
σ12

)
∗∆̂⊗1A

)⊗A⊗A⊗A
(
1A⊗∆

)= (−1)i1A. (5.2)

Then the map

∩∆ :Kj(A) �→Kj+i(A) (5.3)

defined previously is an isomorphism with inversing (up to sign) the map

Kj(A)→Kj−i(A),

y � �→ ∆̂⊗A⊗A
(
1A⊗y

)
. (5.4)

If A is as above, with classes ∆ and ∆̂ satisfying (5.1) and (5.2), respectively,

we will call A a Poincaré duality algebra.

Proof. The hypotheses imply the two equations

(
∆̂⊗1A

)⊗A⊗A⊗A
(
1A⊗σ∗12(∆)

)= 1A,
((
σ12

)
∗
(
∆̂
)⊗1A

)⊗A⊗A⊗A
(
1A⊗∆

)= (−1)i1A.
(5.5)

We show that as a consequence of these two equations,

∆̂⊗A⊗A
(
1A⊗(y∩∆)

)= (−1)ijy, y ∈KKj(C,A). (5.6)

Expanding the product involved in (5.6), we obtain

∆̂⊗A⊗A
(
1A⊗y⊗1A

)⊗A⊗A⊗A
(
1A⊗∆

)
. (5.7)

Consider the term (1A⊗y⊗1A)⊗A⊗A⊗A (1A⊗∆). It is easy to check that this

is the same as (1A⊗1A⊗y)⊗A⊗A⊗A (1A⊗σ∗12(∆)). Returning to the original

product (5.6), we see that the latter can be written as

(
∆̂⊗A⊗A

(
1A⊗A⊗y

))⊗A⊗A⊗A
(
1A⊗σ∗12(∆)

)
. (5.8)

Now, by skew-commutativity of the external tensor product,

∆̂⊗A⊗A
(
1A⊗A⊗y

)= (−1)ij
(
σ23

)
∗
(
σ12

)
∗
(
y⊗A

(
1A⊗∆̂

))

= (−1)ijy⊗A
(
σ23

)
∗
(
σ12

)
∗
(
1A⊗∆̂

)
.

(5.9)

Furthermore, (σ23)∗(σ12)∗(1A⊗∆̂)= ∆̂⊗1A. Hence, putting back into the main

product, we see that (5.6) can be written as

(−1)ijy⊗A
((
∆̂⊗1A

)⊗A⊗A⊗A
(
1A⊗σ∗12(∆)

))= (−1)ijy, (5.10)

where the last equality follows from (5.1).
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Remark 5.2. We note that if we happen to have ∆ and ∆̂ as above, and

σ∗12(∆)=∆,
(
σ12

)
∗(∆̂)= (−1)i ∆̂, (5.11)

then the two equations (5.1) and (5.2) would be the same, and it would suffice

to show that one of them holds. This is the case in the commutative setting

of a compact spinc manifold and will be the case for us also, part of which we

have already proven (Lemma 4.4).

We now set about proving Theorem 4.5 in the case of Γ = F2 by verifying

(5.1) and (5.2) of Theorem 5.1, with A = C(∂F2)�F2 and ∆ the fundamental

class of Definition 4.3. We need first produce an element ∆̂∈KK−1(C,C(∂F2)�
F2⊗C(∂F2)�F2) playing the role of the dual element in Theorem 5.1. We will

then verify (5.1), the other being rendered superfluous as a consequence of

Remark 5.2, which is applicable in this case.

It will turn out, rather surprisingly, that (5.1) can be shown to be equivalent

to the equation

γ∂F2�F2 = 1C(∂F2), (5.12)

where γ∂F2�F2 is the γ-element for the groupoid ∂F2�F2. Since this latter equa-

tion has been established by Julg and Valette, and also by Tu, we will, by this

device, that is, by means of the Baum-Connes conjecture, be done.

6. Construction of a dual element. In this section, as for the rest of this

paper, we specialize to the free group F2 on two generators. We are going

to define an element ∆̂ ∈ KK−1(C,C(∂F2) � F2 ⊗ C(∂F2) � F2) serving as an

“inverse” to ∆.

The class ∆̂ will be constructed by use of the fact that any two points of ∂F2

may be connected by a unique geodesic.

By “geodesic,” we mean an isometric map r : Z→ F2. Topologize the collec-

tion of such r by means of the metric

dGF2

(
r1,r2

)=
∑
n∈Z

2−|n|d
(
r1(n),r2(n)

)
, (6.1)

and denote the resulting metric space by GF2 (we follow [5]). Both F2 and Z
act freely and properly on GF2, the former by translation (γr)(n) = γr(n)
and the latter by flow (gnr)(k)= r(k−n). These actions commute. Note that

GF2/F2 is compact, whereas GF2/Z may be identified with the F2-space

∂2F2 =
{
(a,b)∈ ∂F2×∂F2 | a �= b

}
. (6.2)

All these observations are easy to check. As a consequence of them, the C∗-

algebras C(GF2/F2)�Z and C0(∂2F2)�F2 are strongly Morita equivalent (see

[10]). Let [E] denote the class of the strong Morita equivalence bimodule. It is

an element of KK(C(GF2/F2)�Z,C0(∂2F2)�F2).
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On the other hand, if u is the generator of Z ⊂ C∗(Z) ⊂ C(GF2/F2)�Z, we

obtain a natural homomorphism C0(R)→ C(GF2/F2)�Z by the formula ψ�
u−1 where, recall,ψ is a specified generator ofC0(R) satisfyingψ+1∈ C0(R)+

is unitary.

We denote the class in KK(C0(R),C(GF2/F2)�Z) of this homomorphism by

[u−1].
It will be convenient for our later computations to define an auxiliary class

[D], which will lie in KK−1(C,C0(∂2F2)�F2), as follows.

Definition 6.1. The class [D]∈KK−1(C,C0(∂2F2)�F2) will be defined by

[D]= [d̂R
]⊗C0(R) [u−1]⊗C(GF2/F2)�Z [E]. (6.3)

Next, note that the cross product C0(∂2F2)�F2 may be regarded as a subal-

gebra of C(∂F2)�F2⊗C(∂F2)�F2 via the composition of inclusions

C0
(
∂2F2

)
�F2 �→ C

(
∂F2×∂F2

)
�F2


 (C(∂F2
)⊗C(∂F2

))
�F2 �→ C

(
∂F2

)
�F2⊗C

(
∂F2

)
�F2.

(6.4)

Let i denote this composition.

Our class ∆̂ will be defined by the following definition.

Definition 6.2. Let

∆̂= [D]⊗C0(∂2F2)�F2
[i]∈KK−1(C,C(∂F2

)
�F2⊗C

(
∂F2

)
�F2

)
, (6.5)

where [d̂R] is as in Section 3 and [u−1] and [E] are as above.

It will be convenient to calculate more explicitly the cycle corresponding

to the class [u− 1]⊗C(GF2/F2)�Z [E] ∈ KK(C0(R),C0(∂2F2) � F2). We will ex-

press it as a homomorphism C0(R) → C0(∂2F2) � F2, that is, as an element

w ∈ C0(∂2F2)�F2 such that w+1 is unitary in (C0(∂2F2)�F2)+.

We will first describe an element v ∈ C0(∂2F2)�F2 satisfying v∗v = vv∗ =
χ, where χ is a projection. We will then set w = v−χ. Then, of course, w+1=
v+1−χ will be unitary in (C0(∂2F2)�F2)+.

As the method of discovering such an explicit description (i.e., of transfer-

ringK-classes under strong Morita equivalences) is well known (see [3] in which

a similar calculation is carried out in the context of Aθ), we give the outcome

without further discussion.

As a function on ∂2F2×F2, v(a,b,γ)= 1 if and only if there exists a geodesic

ra,b such that ra,b(−∞) = a, ra,b(+∞) = b, ra,b(0) = e, and ra,b(−1) = γ; and

v(a,b,γ)= 0 else.

Note that χ = v∗v = vv∗ is the locally constant function on ∂2F2 given by

χ(a,b)= 1 if some (therefore any) geodesic from a to b passes through e, and

equals 0 else.
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We can describe v in group-algebra notation as follows. Fix γ a generator.

Then v(·,·,γ) is a function on ∂2F2 and, in particular, is a function on ∂F2×∂F2,

whose representation as a tensor product of two functions on ∂F2 is

v(·,·,γ)= χγ⊗
(
1−χγ

)
, (6.6)

where

χγ(a)=



1, γ ∈ [e,a),
0, else.

(6.7)

We can therefore represent v as

v =
∑

|γ|=1

χγγ⊗
(
1−χγ

)
γ ∈ C0

(
∂2F2

)
�F2 ⊂ C

(
∂F2

)
�F2⊗C

(
∂F2

)
�F2. (6.8)

Similarly, we represent the function χ by χ =∑χγ⊗(1−χγ), and it is easy to

check that v∗v = vv∗ = χ as claimed.

Finally, we note the following lemma.

Lemma 6.3. The class ∆̂ satisfies (σ12)∗(∆̂)=−∆̂.

Proof. We have ∆̂= i∗([D]), and so

(
σ12

)
∗
(
∆̂
)= (σ12

)
∗i∗

(
[D]

)= (σ12 ◦i
)
∗
(
[D]

)= (σ̄12
)
∗
(
[D]

)
, (6.9)

where σ̄12 : C0(∂2F2)� F2 → C0(∂2F2)� F2 is the algebra homomorphism in-

duced by the F2-equivariant map ∂2F2 → ∂2F2, (a,b) � (b,a). Now, [D] =
[d̂R]⊗C0(R) [v−χ], and hence

(
σ̄12

)
∗
(
[D]

)= [d̂R
]⊗C0(R)

(
σ̄12

)
∗
(
[v−χ])

= [d̂R
]⊗C0(R)

[
v∗−χ]=−[d̂R

]⊗C0(R)
[
v∗−χ]

(6.10)

by a direct calculation, and we are done.

In the following sections, we show that in an appropriate sense, ∆̂ provides

an “inverse” to the extension ∆. More precisely, we show that the conditions

of Theorem 5.1 are met by ∆, the fundamental class, and the element ∆̂ above.

7. The γ-element. Before proceeding to verify the equations of Theorem

5.1, we need to recall the work of Julg and Valette [7].

Up to now, we have adopted the convention of writing even KK-cycles in

the form (�,F), where F is an operator on the module �. A different defi-

nition is possible, in which two modules are involved, and F is an operator

between them. This was the setup in [7]. We retain their notation temporarily.

In a moment, we describe means of geometrically describing their class in a

way consistent with our conventions.
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Consider the Cayley graph Σ for F2, which is a tree with edges Σ1 and ver-

tices Σ0. Note that we work with geometric edges, that is, set-theoretic pairs

of vertices {x,x′}. If x is a vertex, let x′ be the vertex one unit closer to e, the

origin, and let s(x) be the edge {x,x′}. Define an operator

b : l2Σ0 �→ l2Σ1 (7.1)

by

b(ex)=


es(x), x �= e,
0, x = e. (7.2)

Then it is clear that b is an isometry, is Fredholm, and has index 1. Next, note

that F2 acts unitarily on l2(Σ0) and l2(Σ1), and that, furthermore, γbγ−1−b is

a compact (in fact finite rank) operator, for all γ ∈ F2.

It follows that the pair
(
l2Σ0⊕l2Σ1,

(
0 b∗
b 0

))
defines a cycle for KKF2(C,C).

Let γ denote its class. That γ = 1 in this group implies the Baum-Connes

conjecture for F2. This fact (that γ = 1) was proved by Julg and Valette in [7].

We can produce a cycle for KKF2(C(∂F2),C(∂F2)), whose class we will de-

note by γ∂F2 , by tensoring all the above data with C(∂F2). Thus, let �0 =
C(∂F2;l2(Σ0)) and �1 = C(∂F2;l2(Σ1)). Let B : �0 → �1 be defined by (Bξ)(a)=
b(ξ(a)). The Hilbert C(∂F2)-modules �i carry obvious actions of F2. Let γ∂F2

be the class of the cycle
(

�0⊕�1,
(

0 B∗
B 0

))
. It is easy to check that the process

of tensoring with C(∂F2) in this way preserves units, that is,

γ = 1 �⇒ γ∂F2 = 1C(∂F2) (7.3)

in the ring KKF2(C(∂F2),C(∂F2)). Hence, we have the following lemma.

Lemma 7.1. The cycle
(

�0⊕�1,
(

0 B∗
B 0

))
is equivalent to the cycle correspond-

ing to 1C(∂F2) in the group KKF2(C(∂F2),C(∂F2)).

We now set about describing a cycle equivalent to the above, but which is in

some sense simpler. To do this, it will be notationally and conceptually simpler

to work with fields. Thus, we note that �0 and �1 may be viewed as sections

of the constant fields of Hilbert spaces {H0
a | a ∈ ∂F2} and {H1

a | a ∈ ∂F2},
respectively, with H0

a = l2(Σ0) and H1
a = l2(Σ1) for all a ∈ ∂F2, and that the

operator B may be regarded as the constant family of operators {ba | a∈ ∂F2}
with ba = b for all a ∈ ∂F2. What we are going to do is to eliminate edges

from the cycle at the expense of changing the constant field of operators to a

nonconstant field.

To this end, consider the field of unitary maps {Ua : H1
a → H0

a | a ∈ ∂F2}
given by Ua(es)= ex , where x is the vertex of s farthest from a. Note that the

assignment a�Ua, though not constant, is strongly continuous. For if a and b
are two boundary points, then Ua =Ub except for edges lying on the geodesic
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(a,b). Consequently, if s is a fixed edge and a and b are close enough, then

Ua(es)=Ub(es) since if a and b are sufficiently close, s does not lie on (a,b).
Now, consider the composition

l2F2 =H0
a
ba��������������������������������→H1

a
Ua�����������������������������������→H0

a = l2F2, (7.4)

which we denote by Wa. We see that for x = e, Wa(ex) = 0, and for x �= e, we

have

Wa
(
ex
)=



ex′ , x ∈ [e,a),
ex, else,

(7.5)

where x′ is the vertex one unit closer to e than x.

Since the assignment a → Wa is continuous, we obtain a Hilbert C(∂F2)-
module map �0 → �0 by defining for ξ ∈ C(∂F2;l2F2), (Wξ)(a) = Wa(ξ(a)).
Then, by unitary invariance of KK and the work of Julg and Valette, we see the

following lemma.

Lemma 7.2. The cycle
(

�0 ⊕ �0,
(

0 W∗
W 0

))
is equivalent to the cycle corre-

sponding to 1∂F2 in the group KKF2(C(∂F2),C(∂F2)).

Since we have now altered the cycle of Julg and Valette up to equivalence

so that only one Hilbert module is involved (it is now otherwise known as an

“evenly graded” Fredholm module), we may now return as promised to our

conventions and write it simply as

(
C
(
∂F2;l2F2

)
,W
)
, (7.6)

consistent with the way we have been writing (even) KK-cycles up to now.

To summarize, we have

[(
C
(
∂F2;l2F2

)
,W
)]= [1C(∂F2)

]∈KKF2

(
C
(
∂F2

)
,C
(
∂F2

))
. (7.7)

Next, we apply the descent map

λ :KKF2

(
C
(
∂F2

)
,C
(
∂F2

))
�→KK(C(∂F2

)
�F2,C

(
∂F2

)
�F2

)
(7.8)

to the cycle described in equation (7.6) thus producing a cycle for KK(C(∂F2)�
F2,C(∂F2) � F2) which, by functoriality of descent, will be equivalent to the

cycle corresponding to 1C(∂F2)�F2 . A direct appeal to the definition of λ (see [9])

produces the cycle (C(∂F2)�F2⊗l2F2,W̄ ), where, regarding C(∂F2)�F2⊗l2F2

as given by functions F2 → C(∂F2)⊗l2F2, the action of W̄ on these functions is

given by the formula (W̄ξ)(γ)=W(ξ(γ)). We have the following lemma.

Lemma 7.3. The cycle (C(∂F2)�F2⊗ l2F2,W̄ ) is equivalent to the cycle cor-

responding to 1C(∂F2)�F2 in KK(C(∂F2)�F2,C(∂F2)�F2).
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This concludes our preparatory work. We now show that the class of the

cycle given in the above lemma is the same as the class of the Kasparov product

of the elements ∆̂ and ∆, concluding thus, as a consequence of the work of Julg

and Valette, that (5.1) holds.

8. Untwisting. We are interested in calculating the cycle corresponding to

the Kasparov product

(
∆̂⊗1C(∂F2)�F2

)⊗C(∂F2)�F2⊗C(∂F2)�F2⊗C(∂F2)�F2

(
1C(∂F2)�F2⊗σ∗12∆

)
. (8.1)

In this section, we do something we call—following an analogous proce-

dure in [8]—“untwisting.” A simple but fundamental property of hyperbolic

groups—and in particular of the free group—will be used: specifically, if two

points a and b on ∂F2 are sufficiently far apart, then any geodesic connecting

them passes quite close to the identity e of the group. This follows immedi-

ately from the definition of the topology on the compactified space F2. More

precisely, we have the following lemma.

Lemma 8.1. Let Ñ be a neighborhood of the diagonal {(a,a) | a ∈ ∂F2} in

∂F2×F2. Then there exists R > 0 such that if (a,b) ∈ (∂F2×F2)\Ñ, then the

(unique) geodesic from a to b passes through BR(e).

Note 8.2. To simplify the notation in this section, we denote by A the cross

product C(∂F2)�F2 and by B the algebra C0(∂2F2)�F2.

Consider then the product (∆̂⊗1A
)⊗A⊗A⊗A (1A⊗σ∗12∆) involved in the left-

hand side of (5.1).

Since ∆̂= i∗([D])= [D]⊗B [i], we have
(
∆̂⊗1A

)⊗A⊗A⊗A
(
1A⊗σ∗12∆

)

= ([D]⊗1A
)⊗B⊗A

[
i⊗1A

]⊗A⊗A⊗A
(
1A⊗σ∗12∆

)
.

(8.2)

We begin by examining the term [i⊗ 1A]⊗A⊗A⊗A (1A ⊗ σ∗12∆) ∈ KK1(B ⊗
A,A). It is easy to describe the corresponding cycle explicitly. For since σ∗12∆
is represented by a map A⊗A→ �(l2F2), so also 1A⊗σ∗12∆ is represented by

a map A⊗A⊗A→ �(A⊗ l2F2) and [i⊗1A]⊗A⊗A⊗A (1A⊗σ∗12∆) is represented

by a map B⊗A→ �(A⊗l2F2). By construction, this map is given on the set of

elementary tensors by the formula

a1⊗a2⊗a3 � �→ a1⊗ρ
(
a2
)
λ
(
a3
)
, (8.3)

where we have suppressed the inclusion i : B → A⊗A, so that a1⊗a2 in the

above expression is understood as an element of B.

We first show that the above map up to unitary equivalence can be rewritten

in a much more tractable way.

Before proceeding, let G̃ be a function on ∂F2×F2 not necessarily continuous

in the second variable, but continuous in the first. Then G̃ can be made to act
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on the right A-module A⊗l2F2 by the formula

G̃·(a⊗ey
)= G̃(·,y)a⊗ey, (8.4)

noting that for each y ∈ F2, G̃(·,y)∈ C(∂F2)⊂A.

Now, let F be a continuous, compactly supported function on ∂2F2. Thus,

F is a continuous function on ∂F2× ∂F2 vanishing in a neighborhood of the

diagonal. So, we can extend it to a continuous function F̃ on ∂F2×F2 by the

Tietze extension theorem and restrict the result to ∂F2×F2. Let F̃ ′ denote the

function on ∂F2×F2 given by (a,x)� F̃(x−1a,x−1). Note that F̃ ′ is continuous

in the first variable, but not in the second. Hence, F̃ ′ may be made to act on

the Hilbert A-module A⊗l2F2 by the remark in the previous paragraph. We can

thus regard F̃ ′ as an element of �(A⊗l2F2). Let τ(F) denote the image of the

operator F̃ ′ in �(A⊗l2F2).
Remark that F � τ(F) is a well-defined homomorphism C0(∂2F2) → �(A⊗

l2F2). For any two extensions of F to functions on ∂F2×F2 differ by a function—

say H̃—vanishing on ∂F2 × ∂F2, then H̃′ also vanishes on ∂F2 × ∂F2, and so

defines an operator lying in �(A⊗l2F2).
Next, for γ ∈ F2, set τ(γ)= 1⊗ρ(γ)∈ �(A⊗l2F2). It is a routine computation

to check that the assignments

F � �→ τ(F), γ � �→ ρ(γ) (8.5)

make up a covariant pair for the dynamical system (C0(∂2F2),F2), and hence

a homomorphism

τ : B �→ �
(
A⊗l2F2

)
. (8.6)

Next, define a covariant pair for the dynamical system (C(∂F2),F2) byϕ(f)=
f ⊗1 ∈ �(A⊗ l2F2) and ϕ(γ) = γ⊗uγ ∈ �(A⊗ l2F2). It is similarly easy to

check that this makes up a covariant pair and so a homomorphism

ϕ :A �→�
(
A⊗l2F2

)
. (8.7)

The following proposition is a key to the untwisting argument.

Proposition 8.3. The class [i⊗1A]⊗A⊗A⊗A (1A⊗σ∗12∆) ∈ KK1(B⊗A,A) is

represented by the homomorphism ι : B⊗A→ �(A⊗l2F2) such that

ι(b⊗a)= τ(b)π(ϕ(a)), b ∈ B, a∈A, (8.8)

where ϕ and τ are as above.

We note that the homomorphisms τ and π ◦ϕ commute, and so ι actually

is a homomorphism. That ι is a homomorphism also follows, however, from

the proof of Proposition 8.3 below, which shows that ι is unitarily conjugate

to the map in (8.3).
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We will require the following lemma.

Lemma 8.4. Let k∈ Cc(∂2F2×∂F2) and k̃ be an extension of k to a continuous

function on ∂F2×F2×F2. Then the two functions on ∂F2×F2

(a,x) � �→ k̃(x−1(a),x−1,x
)
,

(a,x) � �→ k̃(x−1(a),x−1,a
) (8.9)

are the same modulo C0(∂F2×F2).

Proof. Let k be as in the statement of the lemma. Then for some neighbor-

hood N of the diagonal in ∂F2×∂F2, k is supported on (∂F2×∂F2×∂F2)\(N×
∂F2). It follows that we can choose an extension k̃ of k to a function on ∂F2×
F2×F2 such that there is a neighborhood Ñ of the diagonal in ∂F2×F2 such

that k̃ is supported in (∂F2×F2×F2)\(Ñ×F2).
Now, by routine compactness arguments, it suffices to show that for a∈ ∂F2

fixed and xn a sequence in F2 converging to a boundary point b ∈ ∂F2, the

sequence

k̃
(
x−1
n (a),x−1

n ,xn
)− k̃(x−1

n (a),x−1
n ,a

)
(8.10)

converges to 0 as n→∞. We may clearly also assume without loss of gener-

ality that for all n, the point (x−1
n (a),x−1

n ) lies in the complement of Ñ, else

both terms are 0. By Lemma 8.1, there exists R > 0 such that any two points

(c,z) ∈ ∂F2 × F2 not in Ñ have the property that the geodesic [z,c) passes

through BR(e). Thus, for all n large enough, d(e,[x−1
n ,x−1

n (a)) ≤ R. But then

d(xn,[e,a))≤ R for all n. If a sequence in a hyperbolic space remains at fixed,

bounded distance from a geodesic ray, it must converge to the endpoint of the

ray. Hence, xn → a, and we are done by continuity of k̃ in the third variable.

Proof of Proposition 8.3. Consider the class [i ⊗ 1A] ⊗A⊗A⊗A (1A ⊗
σ∗12∆), which is represented by the map B⊗A→ �(A⊗l2F2) in (8.3).

Define a unitary map of Hilbert modules U : A⊗ l2F2 → A⊗ l2F2 by the

formula U(a⊗ ex) = x ·a⊗ ex . Let AdU denote the inner automorphism of

�(A⊗ l2F2) given by π(T)� π(UTU∗), and let ι′ denote the homomorphism

B⊗A→ �(A⊗l2F2), where

ι′
(
a1⊗a2⊗a3

)=AdU
(
a1⊗ρ

(
a2
)
λ
(
a3
))
. (8.11)

We claim that ι′ = ι. It is a simple matter to check that ι|B⊗C∗r (F2)
= ι′|B⊗C∗r (F2)

,

where B⊗C∗r (F2) is viewed as a subalgebra of B⊗A, and that for b ∈ B and f ∈
C(∂F2), we have ι(b⊗f) = τ(b)π(f ⊗1) whereas ι′(b⊗f) = τ(b)(1⊗λ(f)).
Thus, it remains to prove that τ(b)π(1⊗Mf̃ −f ⊗1)= 0 in the Calkin algebra

�(A⊗l2F2) whenever b ∈ B, f ∈ C(∂F2), and f̃ is an extension of f to F2. The

collection of b of the form
∑
γFγ with each Fγ ∈ Cc(∂2F2) is dense in B, and
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hence it suffices to prove the result for b having this form. Hence, it is sufficient

to prove the result for b = F ∈ Cc(∂2F2). We are now done by Lemma 8.4 with

k(a,b,c)= F(a,b)f(c).

9. Conclusion of the proof. Consider the class [i⊗1A]⊗A⊗A⊗A (1A⊗σ∗12∆),
which we have shown has the form [ι], where ι is as in Proposition 8.3. We are

interested in calculating the Kasparov product of the class of this extension

and the class [D]⊗1A ∈KK−1(A,B⊗A).
Recall that

[D]= [d̂R
]⊗C0(R) [v−χ], (9.1)

where [v−χ] is the class of the homomorphism C0(R)→ B induced by map-

ping ψ to v−χ.

Hence, [D]⊗1A = ([d̂R]⊗1A)⊗C0(R)⊗A ([v−χ]⊗1A), where [v−χ]⊗1A is

represented by the homomorphism C0(R)⊗A → B⊗A induced by mapping

ψ⊗a� (v−χ)⊗a.

The Kasparov product

(
[D]⊗1A

)⊗B⊗A
[
i⊗1A

]⊗A⊗A⊗A
(
1A⊗σ∗12(∆)

)
(9.2)

therefore has the form

([
d̂R
]⊗1A

)⊗C0(R)⊗A
(([
v−χ]⊗1A

)⊗B⊗A [ι]
)
, (9.3)

and ([v−χ]⊗1A)⊗B⊗A [ι] is represented by the homomorphism C0(R)⊗A→
�(A⊗l2F2) induced by mapping

ψ⊗a � �→ τ(v−χ)π(ϕ(a)). (9.4)

But, this homomorphism has the form stated in the hypothesis of Lemma 3.2.

By that lemma,

([
d̂R
]⊗1A

)⊗C0(R)⊗A
(
[v−χ]⊗1A

)⊗B⊗A [ι] (9.5)

is represented by the KK(A,A) cycle (A⊗ l2F2, Ū +1), where Ū is any lift to

�(A⊗ l2F2) of the element τ(v −χ) ∈ �(A⊗ l2F2), where the Hilbert (A,A)-
bimodule A⊗l2F2 has its standard right A-module structure, and where it has

the left A-module structure given by the homomorphism ϕ :A→�(A⊗l2F2).
In particular, the bimodule is in fact the same as the bimodule appearing in

the Julg and Valette cycle appearing in Lemma 7.3.

It remains to calculate a lift Ū of τ(v−χ) and show that in fact such a lift

can be chosen, which agrees with the operator W̄ of Lemma 7.3.

We first construct a lift of τ(v). Recall that v =∑γ∈S χγγ⊗(1−χγ)γ, where

S is a basis for F2. Each γ is mapped under τ to the image in the Calkin algebra
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of the right translation operators 1⊗ρ(γ) :A⊗ l2F2 →A⊗ l2F2. Consider each

term Fγ = χγ⊗(1−χγ)∈ Cc(∂2F2). Let χ̃γ denote the function on F2 given by

χ̃γ(g)=



1, γ ∈ [e,g],
0, else.

(9.6)

Then χ̃γ extends continuously to F2, and the restriction of χ̃γ to ∂F2 is χγ .

Let then

F̃γ = χγ⊗
(
1− χ̃γ

)
, (9.7)

which is an extension to ∂F2×F2 of Fγ . Forming F̃ ′γ as per the recipe described

in the definition of τ , we obtain the function

F̃ ′γ(a,g)= F̃γ
(
g−1a,g−1)=




1, γ ∈ [e,g−1a
)
, γ ∉

[
e,g−1

]
,

0, else.
(9.8)

We remind the reader that the statement “x ∈ [e,y]” for x,y ∈ F2 may

be equivalently read: “the reduced expression of y contains x as an initial

subword,” or more shortly, “y begins with x.”

With this in mind, consider the first case above. If g−1a begins with γ but

g−1 does not, it follows that there is cancellation between g−1 and a; more

precisely, a must begin with g, followed by γ. (Since g−1 does not begin with

γ, g does not end in γ−1, and hence gγ is in fact reduced.) We have

F̃ ′γ(a,g)=



1, gγ ∈ [e,a), g does not end in γ−1,

0, else.
(9.9)

Now, consider the operator F̃ ′γ(1⊗vγ) ∈ A⊗�(l2F2) ⊂ �(A⊗ l2F2). This

operates by
(∑

fhh
)
⊗eg � �→

(∑
F̃ ′γ
(·,gγ−1)fhh

)
⊗egγ−1 (9.10)

for
∑
fhh is an arbitrary element of the cross product A. From our above work,

we see that F̃ ′γ(·,gγ−1)= 0 unless g ends in γ. On the other hand, if g does end

in γ, gγ−1 does not end in γ−1. Hence, we see that the above operator sends

(∑
fhh

)
⊗eg � �→




(∑
χgfhh

)
⊗egγ−1 , g ends in γ,

0, else.
(9.11)

We see finally that V̄ = ∑γ∈S F̃ ′γ · (1⊗vγ), which is a lift of τ(v), acts on

A⊗l2F2 by
(∑

fhh
)
⊗eg � �→

(∑
χgfhh

)
⊗eg′ , (9.12)

where the prime notation is as in the discussion just prior to Lemma 7.2.
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In particular, V̄ as an operator on A⊗ l2F2, where the latter is regarded as

functions F2 → C(∂F2)⊗l2F2, has the form

(
V̄ξ
)
(g)= V(ξ(g)), (9.13)

where V is the operator C(∂F2)⊗l2F2 → C(∂F2)⊗l2F2, where

V
(
f ⊗eg

)= χgf ⊗eg′ . (9.14)

Otherwise expressed, let ξ be an element of C(∂F2;l2F2) of the form ξ(a) =∑
ξg(a)eg , where each ξg is a scalar-valued function on ∂F2. Then

(Vξ)(a)=
∑

g∈[e,a)
ξg(a)⊗eg′ . (9.15)

Now, apply the same calculations to the element τ(χ). We obtain the oper-

ator (projection) P̄ on A⊗l2F2 given by P̄ =∑ F̃ ′γ ∈A⊗�(l2F2)⊂�(A⊗l2F2).
We have that V̄ − P̄ is an operator whose projection to the Calkin algebra is

τ(v−χ) as required. Let it be denoted by Ū . Form F̄ = Ū+1.

Our calculations show that F̄ is an operator having the form

(
F̄ξ
)
(g)= F(ξ(g)), (9.16)

where F : C(∂F2)⊗l2F2 → C(∂F2)⊗l2F2 is the operator

(Fξ)(a)=
∑

g∈[e,a)
ξg(a)⊗eg′ +

∑

g∉[e,a)
χg(a)⊗eg, (9.17)

which is precisely the operator W of Lemma 7.2, that is, F =W , and therefore

F̄ = W̄ ∈�(A⊗l2F2).
We are now done, having shown by direct computation that

(
[D]⊗1A

)⊗B⊗A
[
i⊗1A

]⊗A⊗A⊗A
(
1A⊗σ∗12∆

)

= [(C(∂F2
)
�F2⊗l2F2,W̄

)]= λ(γ∂F2�F2

)
,

(9.18)

and therefore that

(
[D]⊗1A

)⊗B⊗A
[
i⊗1A

]⊗A⊗A⊗A
(
1A⊗σ∗12∆

)= 1A. (9.19)

References

[1] C. Anantharaman-Delaroche and J. Renault, Amenable Groupoids, Monographie
de L’Enseignement Mathématique, vol. 36, L’Enseignement Mathématique,
Geneva, 2000.

[2] B. Blackadar, K-Theory for Operator Algebras, Mathematical Sciences Research
Institute Publications, vol. 5, Springer-Verlag, New York, 1986.

[3] A. Connes, Noncommutative Geometry, Academic Press, California, 1996.



THE BAUM-CONNES CONJECTURE, NONCOMMUTATIVE … 2445

[4] E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperboliques d’après Mikhael
Gromov [Hyperbolic Groups in the Theory of Mikhael Gromov], Progress in
Mathematics, vol. 83, Birkhäuser Boston, Massachusetts, 1990 (French).

[5] M. Gromov, Hyperbolic groups, Essays in Group Theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, New York, 1987, pp. 75–263.

[6] N. Higson, A characterization of KK-theory, Pacific J. Math. 126 (1987), no. 2,
253–276.

[7] P. Julg and A. Valette, K-theoretic amenability for SL2(Qp), and the action on the
associated tree, J. Funct. Anal. 58 (1984), no. 2, 194–215.

[8] J. Kaminker and I. Putnam,K-theoretic duality of shifts of finite type, Comm. Math.
Phys. 187 (1997), no. 3, 509–522.

[9] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math.
91 (1988), no. 1, 147–201.

[10] M. A. Rieffel, Applications of strong Morita equivalence to transformation group
C∗-algebras, Operator Algebras and Applications, Part I (Kingston, Ont.,
1980), Proc. Sympos. Pure Math., vol. 38, American Mathematical Society,
Rhode Island, 1982, pp. 299–310.

[11] J.-L. Tu, La Conjecture de Baum-Connes pour les Feuilletages Moyennables [The
Baum-Connes conjecture for amenable foliations], K-Theory 17 (1999),
no. 3, 215–264 (French).

Heath Emerson: Indiana University-Purdue University at Indianapolis (IUPUI), 402
North Blackford Street, Indianapolis, IN 46202-3216, USA

Current address: Mathematisches Institut, Westfalische Wilhelms-Universitat, Einste-
instrasse 62, 48149 Muenster, Germany

E-mail address: hemerson@math.iupui.edu

mailto:hemerson@math.iupui.edu

