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PROXIMINAL SUBSPACES Of A(K)
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We study an analogue of Garkavi’s result on proximinal subspaces of C(X) of finite
codimension in the context of the space A(K) of affine continuous functions on a
compact convex set K. We give an example to show that a simple-minded analogue
of Garkavi’s result fails for these spaces. When K is a metrizable Choquet simplex,
we give a necessary and sufficient condition for a boundary measure to attain its
norm onA(K). We also exhibit proximinal subspaces of finite codimension ofA(K)
when the measures are supported on a compact subset of the extreme boundary.
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1. Introduction. This note is motivated by a well-known result of Garkavi

(see [5, page 302]) that characterizes proximinal subspaces of finite codimen-

sion in C(X), the space of continuous functions on a compact Hausdorff space

X. See [2, 6] for other recent characterizations of proximinal subspaces of fi-

nite codimension in C(X) that are modelled on Garkavi’s result. In this short

note, we study proximinal subspaces of finite codimension in the space A(K)
of affine continuous functions (over the real scalar field) on a metrizable Cho-

quet simplex K. For a compact convex set K, let ∂K denote the set of extreme

points of K. We recall from [1] that a metrizable compact convex set K is a Cho-

quet simplex if for every k∈K, there exists a unique regular Borel probability

measure µ such that µ(∂K)= 1 and
∫
adµ = a(k) for all a∈A(K) (k is said to

be the resultant of µ). It is well known in the literature that for a simplex K, the

spaceA(K) shares several properties of the space of continuous functions (see

[1]). In particular, for any simplex K whose set of extreme points ∂K is closed,

A(K) is isometric to C(∂K) (see [1, Theorem II.4.3]). Thus it is natural to look

for an analogue of Garkavi’s theorem in this context. As far as we are aware,

this is the first time that such an analogue is being attempted for subspaces

of the space of continuous functions.

We first consider subspaces of codimension 1. Since a hyperplane is proxim-

inal if and only if the defining continuous linear functional attains its norm, we

first attempt to describe norm attaining functional ofA(K)∗. Given Φ ∈A(K)∗,

one can consider a norm-preserving Hahn-Banach extension Φ′ ∈ C(K)∗, and

since if Φ attains its norm on A(K), Φ′ attains its norm on C(K), one can try
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to apply Garkavi’s result. In general, as the extension is not unique, this pro-

cedure does not give much information about Φ. However, if one restricts the

extension to the so-called boundary measures (we identify C(K)∗ via the Riesz

representation theorem with the space of regular Borel measures M(K) on K),

it follows from [1, Lemma II.3.5] that the restriction map β : C(K)∗ →A(K)∗ is

one-to-one and onto on the space of boundary measures. Thus it is reasonable

to investigate analogues of Garkavi’s result for subspaces of finite codimension

described by boundary measures.

We start with an example of a simplex space and subspaces of codimension

1 and 2 described by boundary measures that are not proximinal but the corre-

sponding subspaces in the spaces of continuous functions are proximinal. For

a metrizable Choquet simplex K, we give a necessary and sufficient condition

for a boundary measure to attain its norm on A(K) extending Garkavi’s result

in this case. We refer to [1, 4] for all the concepts of convexity theory that we

will be using here.

Main result. Let X be a compact Hausdorff space. For a µ ∈ C(X)∗, let

suppµ denote the smallest closed subset of X such that |µ|(suppµ) = ‖µ‖.
Let G ⊂ C(X) be a subspace of codimension n. Suppose G⊥ = span{µ1, . . . ,µn}.
We first recall Garkavi’s result [5, Theorem 2.2, page 302].

Theorem 1.1 (Garkavi). In order that G be proximinal, it is necessary and

sufficient that the following three conditions be satisfied.

(1) For every 0 ≠ µ ∈ G⊥, suppµ admits a Hahn decomposition into two

closed sets suppµ+ and suppµ− = suppµ\suppµ+.

(2) For every pair of nonzero measures µ and ν in G⊥, the set suppµ\suppν
is closed.

(3) For every pair of nonzero measures µ and ν in G⊥, the measure µ is

absolutely continuous with respect to the measure ν on the set suppµ.

We recall from [1] that when K is metrizable, ∂K is a Gδ set and boundary

measures are precisely those measures µ for which |µ|(∂K)= ‖µ‖. For a Banach

space Y , we denote by Y1 its closed unit ball.

The following example is to show that a simple-minded analogue of Garkavi’s

theorem is not valid in the case of A(K). We first look at the case of codimen-

sion 1. Thus only condition (1) of the above theorem need to be considered.

In what follows, we will be using the Hahn decomposition of the support of a

norm attaining measure given by the above theorem and the structure of the

sets that is contained in the proof of the theorem as given in [5].

Example 1.2. Let A= {f ∈ C(N∪{∞}) : f(∞)=∑(1/2n)f(n)}, where N∪
{∞} is the one-point compactification ofN. ThenA is anA(K) space where K is

the state space ofAwith ∂K =N and it can be easily seen that K is a metrizable

Choquet simplex. Note that if a measure µ ∈ A∗ attains its norm on A, then

it attains it on the continuous function space and hence, if µ is supported on
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an infinite subset A of N, Garkavi’s theorem gives a Hahn decomposition of

A∪{∞} = B∪C , disjoint closed sets, say, C finite, B infinite containing ∞.

It is easy to see that a finitely supported boundary measure µ attains its

norm on A if and only if it attains its norm on the continuous function space

C(N∪{∞}).
Now we will show that if a boundary measure µ ∈ A∗, supported on an

infinite subset ofN, attains its norm onA, then µ is either a positive or negative

measure, that is, one of the sets in Garkavi’s decomposition is empty. Thus one

can easily give examples (see below) of boundary measures that attain their

norm on the continuous function space but not on A.

Let µ =∑αiδ(i) be such that each αi ≠ 0 and
∑|αi| = 1 (same proof works

if infinitely many αi’s are nonzero). If ‖f‖ = 1 =∑αif(i), then |f(i)| = 1 for

every i, and since f ∈A, f is identically 1 or −1. Thus µ is positive or negative.

We further note that if µ and ν are two independent boundary measures

attaining their norm, if one of them is infinitely supported, we can choose an

α so that µ+αν takes both positive and negative values. Since for any subspace

M of finite codimension, every vector in M⊥ attains its norm (see [5, Lemma

III.1.1, page 292]), we conclude thatM cannot have measures of the above kind.

As an illustration, take µ =∑(1/2n)δ(n+1) and ν = δ(1). Since µ and ν are

mutually singular, for any α, it is easy to see that µ+αν attains its norm on

C(N∪{∞}) but µ−ν does not attain its norm on A.

Let φ= δ(∞), which is not a boundary measure for A. It is easy to see that

ker(µ)∩ ker(ν) = ker(φ)∩ ker(ν). Thus this subspace of codimension 2 in

A contains two independent boundary measures of the above form, hence is

not a proximinal subspace. As µ and ν are mutually singular measures, one

can show that the three conditions of the theorem of Garkavi are satisfied, and

hence the intersections of their kernels is a proximinal subspace of C(N∪{∞}).
Remark 1.3. For a general Choquet simplex K, if the support of a measure

µ is a compact subset of ∂K, then µ attains its norm on A(K) if and only if it

attains its norm on C(K).

This follows from the general Choquet theory. Let S = suppµ. If µ attains its

norm on C(K), we, in particular, have an f ∈ C(S)1 such that µ(f)= ‖µ‖. But

any such f has a norm-preserving extension to A(K) (see [1, Theorem II.3.12]).

Thus µ attains its norm on A(K).
This idea can now be used to give a general formulation for a measure to

attain its norm on A(K) for any compact convex set K.

Theorem 1.4. Let µ be a measure on K of norm one. Suppose suppµ =A∪B
for disjoint closed sets A, B, which is a Hahn decomposition, and further, their

closed convex hulls are split faces of K, then µ attains its norm on A(K). Con-

versely, suppose K is a metrizable Choquet simplex, µ is a boundary measure,

and the closed convex hull of suppµ is a face. Then if µ attains its norm, suppµ
has a decomposition of the above form.
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Proof. Suppose we have such decomposition. Let F = CO−(A) and G =
CO−(B). Note that they are disjoint. This is because since F ∩G is a closed

face, we only need to observe that it has no extreme points of K.

Indeed if x ∈ F∩G is an extreme point, then, by Milman’s theorem (see [4,

Proposition 1.5]), x ∈A∩B. Thus F and G are disjoint.

Also note that CO(F ∪G) is a split face (see [1, Corollary II.6.8]) and G is

the complementary face of F relative to the set CO(F ∪G). Thus there exists

an a ∈ A(CO(F ∪G))1 such that µ(a) = 1 (see [1, Proposition II.6.19]). Since

CO(F∪G) is a split face, this a has a norm-preserving extension to a′ ∈A(K)
(see [1, Theorem II.6.15]) and µ(a′)= 1. We note that CO(F∪G)= CO−(suppµ)
is a split face which is a consequence of our assumption.

Now suppose K is a metrizable simplex, µ is a boundary measure, and F =
CO−(suppµ) is a face. Since |µ|(∂K∩suppµ)= 1, F = CO−(suppµ)= CO−(∂K
∩suppµ). Note that, by Milman’s theorem, ∂F ⊂ suppµ, and since ∂K∩suppµ⊂
∂F , |µ|(∂F)= 1. Thus suppµ ⊂ (∂F)−. Hence suppµ = (∂F)−. Also as F is again

a Choquet simplex, we may assume without loss of generality that (∂K)− =
suppµ.

Let 1= ‖a‖ = µ(a). As in the case of continuous functions, suppose suppµ =
A∪B for closed disjoint sets A, B which is a Hahn decomposition. Suppose

A= {x : a(x)= 1}. We will show thatA is a dilated set, that is, for any boundary

measure ν with its resultant γ(ν) ∈ A, ν(A) = 1. It would then follow from a

result of [3] that CO−(A) is a face, and hence, a split face since K is a simplex.

Let ν be a maximal measure with γ(ν)∈A. Then 1= a(γ(ν))= ∫ adν . Since

ν is a maximal measure, ν({x ∈ ∂K : a(x)= 1})= 1. Thus ν(A)= 1.

Remark 1.5. For a metrizable K and a boundary measure µ since |µ|(∂K∩
suppµ) = 1, we have that CO−(suppµ) = CO−(suppµ ∩ ∂K). Thus if F is a

closed split face such that ∂F = suppµ∩∂K, then F = CO−(suppµ). Thus in the

metrizable case, for a boundary measure µ, the above result can be formulated

in terms of the structure topology on ∂K (see [1, Chapter II, Section 6]) as

suppµ∩∂K, A∩∂K, and B∩∂K are structurally closed sets. Since when ∂K is

closed, the structure and usual topology coincide on ∂K, these assumptions

are consistent with the theorem of Garkavi.

We conclude with a partial result on proximinal subspaces of finite codi-

mension of A(K).

Proposition 1.6. Let K be a Choquet simplex. Let Y ⊂ C(K) be a proximinal

subspace of codimension n and suppose Y⊥ = span{µ1, . . . ,µn} such that Ei =
suppµi ⊂ ∂K for all i. Then Y ′ = {a ∈ A(K) : µi(a) = 0 for 1 ≤ i ≤ n} is a

proximinal subspace of A(K).

Proof. Let E = ∪Ei. By applying Garkavi’s theorem, it is easy to see that

Y∼ = {g ∈ C(E) : µi(g) = 0 for 1 ≤ i ≤ n} is a proximinal subspace of C(E).
Let a ∈ A(K) and let f ∈ Y∼ be a best approximation for a|E. Let h ∈ A(K)
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be such that h = a−f on E and ‖h‖ = ‖a−f‖E (see Remark 1.3). Note that,

for any b ∈ Y ′, we have b|E ∈ Y∼. Now, for any b ∈ Y ′, ‖a−b‖ ≥ ‖a−b‖E ≥
‖(a−f)‖E = ‖h‖ = ‖a−(a−h)‖. Also a−h∈ Y ′. Therefore, Y ′ is a proximinal

subspace.
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