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NETTED MATRICES

PANTELIMON STĂNICĂ
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We prove that powers of 4-netted matrices (the entries satisfy a four-term re-
currence δai,j = αai−1,j +βai−1,j−1 +γai,j−1) preserve the property of netted-

ness: the entries of the eth power satisfy δea
(e)
i,j =αea(e)i−1,j+βea(e)i−1,j−1+γea(e)i,j−1,

where the coefficients are all instances of the same sequence xe+1 = (β+δ)xe−
(βδ+αγ)xe−1. Also, we find a matrixQn(a,b) and a vector v such thatQn(a,b)e ·
v acts as a shifting on the general second-order recurrence sequence with pa-
rameters a, b. The shifting action of Qn(a,b) generalizes the known property(

0 1
1 1

)e ·(1,0)t = (Fe−1,Fe)t . Finally, we prove some results about congruences sat-

isfied by the matrix Qn(a,b).

2000 Mathematics Subject Classification: 05A10, 11B39, 11B65, 11C20, 15A36.

1. Introduction. In [4], Peele and Stănică studied n×n matrices with the

(i,j) entry the binomial coefficients
(
i−1
j−1

)
(matrix Ln) and

(
i−1
n−j

)
(matrix Rn),

respectively, and derived many interesting results on powers of these matrices.

The matrix Ln was easily subdued, but curiously enough, closed forms for

entries of powers of Rn, say Ren, were not found. However, recurrences among

various entries of Ren were proved and precise results on congruences modulo

any prime p were found. To accomplish that, the authors of [4] proved that

the entries a(e)i,j of the eth power of Rn satisfy

Fe−1a
(e)
i,j = Fea(e)i−1,j+Fe+1a

(e)
i−1,j−1−Fea(e)i,j−1, (1.1)

where Fe is the Fibonacci sequence, Fe+1 = Fe+Fe−1, F0 = 0, and F1 = 1. As we

will see in our first result, this is not a singular phenomenon. The goal of this

note is two-fold: we prove the results of [4] for a class of matrices, containing

Rn, where the entries satisfy any four-term recurrence (we call these 4-netted

matrices), and we find a possible generalization of the Q-matrix, namely a

matrixQn(a,b), with the property that any power multiplied by a fixed vector

gives ann-tuple of consecutive terms of the general Pell or Fibonacci sequence.

It generalizes the known property
(

0 1
1 1

)e ·(1
0

)
=
(
Fe−1
Fe

)
. We also find the gen-

erating function for the entries of powers of these matrices. As applications,

we find some interesting identities for general Fibonacci (or Pell) numbers. In

Section 5, we provide a few results on the order of these matrices modulo a

prime.
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2. Matrices with entries satisfying a general four-term recurrence. Define

a tableau with elements ai,j , i≥ 0, j ≥ 0, which satisfy (for i≥ 1, j ≥ 1)

δai,j =αai−1,j+βai−1,j−1+γai,j−1 (2.1)

with the boundary conditions

βai,0+γai+1,0 = 0 ∀1≤ i≤n−1,

δai+1,n+1−αai,n+1 = 0 ∀1≤ i≤n−1.
(2.2)

We remark that if the 0th and (n+1)th columns are made up of zeros, then

conditions (2.2) are fulfilled.

In our main result of this section we prove that (2.1) is preserved for higher

powers of the n×n matrix (ai,j)i,j=1,...,n. Precisely, we prove the following

theorem.

Theorem 2.1. The entries of the eth power of the matrix

R = (ai,j)i,j=1,...,n (2.3)

satisfy the recurrence

δea
(e)
i,j =αea(e)i−1,j+βea(e)i−1,j−1+γea(e)i,j−1, i,j ≤n, (2.4)

where the sequences αe, βe, γe, and δe are all instances of the sequence xe
satisfying

xe+1 = (β+δ)xe−(βδ+αγ)xe−1 (2.5)

with initial conditions (δ1 = δ; δ2 = δ2−αγ), (α1 = α; α2 = α(δ+β)), (β1 =
β; β2 = β2−αγ), and (γ1 = γ; γ2 = γ(β+δ)).

Proof. We prove by induction on e that there exists a relation among the

entries of any 2×2 cell, namely

δea
(e)
i,j =αea(e)i−1,j+βea(e)i−1,j−1+γea(e)i,j−1. (2.6)

The above relation is certainly true for e= 1. We evaluate, for i≥ 2,

αδe−1a
(e)
i−1,j =

n∑
s=1

αδe−1ai−1,sa
(e−1)
s,j

=
n∑
s=1

αai−1,s

(
αe−1a

(e−1)
s−1,j +βe−1a

(e−1)
s−1,j−1+γe−1a

(e−1)
s,j−1

)

=
n∑
s=1

(
δai,s−βai−1,s−1−γai,s−1

)(
αe−1a

(e−1)
s−1,j +βe−1a

(e−1)
s−1,j−1

)

+
n∑
s=1

αγe−1ai−1,sa
(e−1)
s,j−1
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=
n∑
s=1

δai,s
(
αe−1a

(e−1)
s−1,j +βe−1a

(e−1)
s−1,j−1

)

−γαe−1a
(e)
i,j −ββe−1a

(e)
i−1,j−1−γβe−1a

(e)
i,j−1−βαe−1a

(e)
i−1,j

+αγe−1a
(e)
i−1,j−1−γαe−1

(
ai,0a

(e−1)
0,j −ai,na(e−1)

n,j

)
−ββe−1

(
ai−1,0a

(e−1)
0,j−1−ai−1,na

(e−1)
n,j−1

)
−γβe−1

(
ai,0a

(e−1)
0,j−1−ai,na(e−1)

n,j−1

)
−βαe−1

(
ai−1,0a

(e−1)
0,j −ai−1,na

(e−1)
n,j

)
.

(2.7)

Using the boundary conditions (2.2), we obtain, for i≥ 2,

αδe−1a
(e)
i−1,j =

(
αγe−1−ββe−1

)
a(e)i−1,j−1−γαe−1a

(e)
i,j −γβe−1a

(e)
i,j−1

−βαe−1a
(e)
i−1,j+

n∑
s=1

δai,s
(
δe−1a

(e−1)
s,j −γe−1a

(e−1)
s,j−1

)

+
(
αe−1a

(e−1)
n,j +βe−1a

(e−1)
n,j−1

)(
βai−1,n+γai,n

)
−
(
αe−1a

(e−1)
0,j +βe−1a

(e−1)
0,j−1

)(
βai−1,0+γai,0

)
= (αγe−1−ββe−1

)
a(e)i−1,j−1−γαe−1a

(e)
i,j −γβe−1a

(e)
i,j−1

−βαe−1a
(e)
i−1,j+δδe−1a

(e)
i,j −δγe−1a

(e)
i,j−1

+
(
αe−1a

(e−1)
n,j +βe−1a

(e−1)
n,j−1

)(
δai,n+1−αai−1,n+1

)
= (αγe−1−ββe−1

)
a(e)i−1,j−1+

(
δδe−1−γαe−1

)
a(e)i,j

−(γβe−1+δγe−1
)
a(e)i,j−1−βαe−1a

(e)
i−1,j .

(2.8)

Thus,

(
δδe−1−γαe−1

)
a(e)i,j =

(
αδe−1+βαe−1

)
a(e)i−1,j

+(ββe−1−αγe−1
)
a(e)i−1,j−1

+(γβe−1+δγe−1
)
a(e)i,j−1.

(2.9)

Therefore, we obtain the system of sequences

δe = δδe−1−γαe−1, (2.10)

αe =αδe−1+βαe−1, (2.11)

βe = ββe−1−αγe−1,

γe = γβe−1+δγe−1.
(2.12)
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From (2.10) we get αe−1 = (δ/γ)δe−1−(1/γ)δe, which when replaced in (2.11)

gives the recurrence

δe+1 = (β+δ)δe−(βδ+γα)δe−1. (2.13)

Similarly,

αe+1 = (β+δ)αe−(βδ+γα)αe−1,

βe+1 = (β+δ)βe−(βδ+γα)βe−1,

γe+1 = (β+δ)γe−(βδ+γα)γe−1.
(2.14)

The initial conditions are (δ1 = δ; δ2 = δ2 −αγ), (α1 = α; α2 = α(δ+β)),
(β1 = β; β2 = β2−αγ), and (γ1 = γ; γ2 = γ(β+δ)).

Example 2.2. As examples of tableaux satisfying our conditions, we have

a1
i,j =

(
i−1
j−1

)
(δ= 1, α= 1, β= 1, γ = 0),

a2
i,j =

(
i−1
n−j

)
(δ= 0, α= 1, β= 1, γ =−1),

a3
i,j =

(
n−i
n−j

)
(δ= 1, α= 0, β=−1, γ = 1).

(2.15)

Other examples are given by the alternating matrices (−1)i+jaki,j (or (−1)i−1aki,j
or (−1)j−1aki,j , etc.), k= 1,2,3. In the next section, we present more examples.

3. Higher-order Fibonacci matrices. In this section, we uncover a very in-

teresting side of our previous results. A matrix of the formM =
(

0 1
1 m

)
is called

a Fibonacci or Q-matrix. It is known that if the sequence Ue+1 =mUe+Ue−1,

U0 = 0, U1 = 1, then Me =
(
Ue−1 Ue
Ue Ue+1

)
and Me ·

(
1
0

)
=
(
Ue−1
Ue

)
. Next, we find a

matrix Qn(a,b) such that Qn(a,b)e ·v is a vector of n consecutive terms of

the sequence Un for any power e and any vector v of alternating consecutive

terms in the sequence Un+1 = aUn+bUn−1. Let In be the identity matrix of

dimension n and let Mt be the transpose of a matrix M .

Let ai,j = a(1)i,j = ai+j−n−1bn−j
(
i−1
n−j

)
and Qn(a,b)= (ai,j)i,j . We use our pre-

vious results to show the following theorem.

Theorem 3.1. Let w = ((−1)nUn−1,(−1)n−1Un−2, . . . ,−U0)t . Then

Qn(a,b)e+1 ·w = (U(n−1)e,U(n−1)e+1, . . . ,U(n−1)(e+1)
)t , (3.1)

Ue−1a
(e)
i,j +Uea(e)i,j−1 =Uea(e)i−1,j+Ue+1a

(e)
i−1,j−1, (3.2)

where a(e)i,j are the entries of Qn(a,b)e and Ue is the sequence satisfying Ue+1 =
aUe+bUe−1, U0 = 0, U1 = 1. Moreover, Qn(a,b) is unique with the properties

a1,j = 0, j < n, ai,n = ai−1, and ai,j = aai−1,j+bai−1,j+1.
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Proof. First, the ith entry of Qn(a,b)e+1 ·w is

n∑
j=1

(−1)n+1−ja(e+1)
i,j Un−j =

n∑
j=1

(−1)n+1−j
n∑
k=1

ai,ka
(e)
k,jUn−j

=
n∑
k=1

ai,k
n∑
j=1

(−1)n+1−ja(e)k,jUn−j

=
n∑
j=1

ai,kU(n−1)(e−1)+k−1.

(3.3)

The initial condition and the step of induction (on e) will both follow if we

can prove that the matrix Qn acts as an index-translation on our sequence Ul,
namely

n∑
k=1

ai,kUt+k =Ut+n+i−1, t ≥−1. (3.4)

Let Wi =
∑n
k=1ai,kUt+k (t is assumed fixed). First,

W1 =
n∑
k=1

a1,kUt+k = a1,nUt+n =Ut+n. (3.5)

Then,

W2 =
n∑
k=1

a2,kUt+k = a2,n−1Ut+n−1+a2,nUt+n = bUt+n−1+aUt+n =Ut+n+1.

(3.6)

Now, for 1≤ i≤n−1,

Wi+1 =
n∑
k=1

ai+1,kUt+k =
n∑
k=1

(
aai,k+bai,k+1

)
Ut+k

= aWi+
n∑
k=1

ai,k+1bUt+k

= aWi+
n−1∑
k=1

ai,k+1
(
Ut+k+2−aUt+k+1

)

= aWi+
n∑
u=2

ai,uUt+u+1−a
n∑
u=2

ai,uUt+u since u= k+1

= bVi−bai,1Ut+2+aai,1Ut+1 = Vi with ai,1 = 0 if i≤n−1,

(3.7)
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where

Vi =
n∑
u=1

ai,uUt+u+1 =
n∑
u=1

(
aai−1,u+bai−1,u+1

)
Ut+u+1

= aVi−1+b
n−1∑
u=1

ai−1,u+1Ut+u+1 since ai+1,n+1 = 0

= aVi−1+b
n∑
u=2

ai−1,sUt+s since u+1= s

= aVi−1+bWi−1−bai−1,1Ut+1

= aVi−1+bWi−1 with ai−1,1 = 0 if i≤n−1.

(3.8)

Using Vi =Wi+1 in the previous recurrence, we get Wi+1 = aWi+bWi−1. There-

fore, Wi =Ut+n+i−1 since W1 =Ut+n, W2 =Ut+n+1.

Using Theorem 2.1, with δ = 0, α = b, β = a, and γ = −1, we get the re-

currence between the entries of the higher power of Qn, namely Ue−1a
(e)
i,j +

Uea
(e)
i,j−1 = Uea(e)i−1,j+Ue+1a

(e)
i−1,j−1, with the appropriate initial conditions. The

fact that Qn is the unique matrix with the given properties follows easily ob-

serving that such a matrix could be defined inductively as follows. Let Q1 = 1.

Assume that Qn−1 = (ai,j)i,j=1,2,...,n−1 and construct Qn by bordering Qn−1

with the first column and the last row (left and bottom). The first column is

(0,0, . . . ,0,1)t and the last row is given by an,n = an−1 and an,j = aan−1,j +
ban−1,j+1.

Definition 3.2. We call such a matrix Qn(a,b) a generalized Fibonacci or

Q-matrix of dimension n and parameters a, b.

Example 3.3. We give here the first few powers of Q3(a,b):

Q3(a,b)=




0 0 1

0 b a
b2 2ab a2


 ,

Q3(a,b)2 =



b2 2ab a2

ab2 b
(
2a2+b) a

(
a2+b)

a2b2 2ab
(
a2+b) (

a2+b)2


 ,

Q3(a,b)3 =




a2b2 2ab
(
a2+b) (

a2+b)2

ab2
(
a2+b) b

(
2a4+4a2b+b2

)
a5+3a3b+2ab2

b2
(
a2+b)2

2ab
(
a4+3a2b+2b2

) (
a3+2ab

)2


 .

(3.9)

4. Some generating functions and an inverse. Although we cannot find

simple closed forms for all entries of Qn(a,b)e, we prove the following theo-

rem.
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Theorem 4.1. The generating function for a(e)i,j is

B(e)n (x,y)=
(
Ue−1+Uey

)(
bUe−1+yUe

)n−1

Ue−1+Uey−x
(
Ue+Ue+1y

) . (4.1)

Proof. Multiplying the recurrence (3.2) by xi−1yj−1 and summing for i,j ≥
2, we get

Ue−1

∑
i,j≥2

a(e)i,j x
i−1yj−1+Uey

∑
i,j≥2

a(e)i,j−1x
i−1yj−2

=Uex
∑
i,j≥2

a(e)i−1,jx
i−2yj−1+Ue+1xy

∑
i,j≥2

a(e)i−1,j−1x
i−2yj−2.

(4.2)

Thus,

Ue−1

(
B(e)n (x,y)−

∑
i≥1

a(e)i,1x
i−1−

∑
j≥1

a(e)1,jy
j−1+a(e)1,1

)

+Uey
(
B(e)n (x,y)−

∑
j≥1

a(e)1,jy
j−1

)

=Uex
(
B(e)n (x,y)−

∑
i≥1

a(e)i,1x
i−1

)
+Ue+1xyB(e)n (x,y).

(4.3)

Solving for B(e)n (x,y), we get

B(e)n (x,y)
(
Ue−1+Uey−x

(
Ue+Ue+1y

))

= (Ue−1−Uex
)∑
i≥1

a(e)i,1x
i−1

+(Ue−1+Uey
)∑
j≥1

a(e)1,jy
j−1−Ue−1a

(e)
1,1.

(4.4)

We need to find a(e)i,1 and a(e)1,j . As in [4], we prove that

a(e)1,j = bn−jUn−je−1 U
j−1
e

(
n−1
j−1

)
,

a(e)i,1 = bn−1Un−ie−1U
i−1
e .

(4.5)
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There is no difficulty to show the relations for e= 1,2. Assume that e≥ 3. First

we deal with the elements in the first row:

a(e+1)
1,j =

n∑
s=1

a(e)1,sas,j

=
n∑
s=1

bn−sUn−se−1 U
s−1
e as+j−n−1bn−j

(
n−1
s−1

)(
s−1
n−j

)

=
n∑
s=1

Un−se−1 U
s−1
e as+j−n−1b2n−j−s

(
n−1
j−1

)(
j−1
n−s

)

= bn−jaj−1Un−1
e

(
n−1
j−1

) n∑
s=1

(
bUe−1

aUe

)n−s(j−1
n−s

)

= bn−jaj−1Un−1
e

(
n−1
j−1

)(
1+ bUe−1

aUe

)j−1

= bn−jUn−je Uj−1
e+1

(
n−1
j−1

)
.

(4.6)

Now we find the elements in the first column:

a(e+1)
i,1 =

n∑
s=1

ai,sa
(e)
s,1

=
n∑
s=1

ai+s−n−1bn−s
(
i−1
n−s

)
bn−1Un−se−1 U

s−1
e

= ai−1bn−1Un−1
e

n∑
s=1

(
bUe−1

aUe

)n−s( i−1
n−s

)

= ai−1bn−1Un−1
e

(
1+ bUe−1

aUe

)i−1

= bn−1Un−ie Ui−1
e+1.

(4.7)

Using (4.5), we get

∑
j≥1

a(e)1,jy
j−1 =

∑
j≥1

Un−je−1 U
j−1
e bn−jyj−1

(
n−1
j−1

)

= bn−1
∑
s≥0

U(n−1)−s
e−1

(
yUe
b

)s(n−1
s

)

= (bUe−1+yUe
)n−1.

(4.8)

Using (4.4), (Ue−1 −Uex)
∑
i≥1Un−ie−1Ui−1

e bn−1xi−1 = bn−1Une−1, and Ue−1a
(e)
1,1 =

bn−1Une−1, we deduce the result.

The inverse of Qn(a,b) is not difficult to find. We have the following theo-

rem.
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Theorem 4.2. The inverse of Qn(a,b) is

Qn(a,b)−1 =
(
(−1)n+i+j+1an+1−i−jbi−n

(
n−i
j−1

))
i,j
. (4.9)

Proof. The proof is straightforward.

In general, finding simple closed forms for the entries of powers ofQn(a,b)
seems to be a very difficult matter. We can derive (after some work) simple

formulas for the entries of the second row and column of Qn(a,b)e.

Proposition 4.3. The entries of the second row and column of Qn(a,b)
are given by

a(e)2,j = bn−jUn−j−1
e−1 Uje

(
n−2
j−1

)
+bn−jUn−je−1 U

j−2
e Ue+1

(
n−2
j−2

)
,

a(e)i,2 = (n−i)bn−2Un−i−1
e−1 Uie+(i−1)bn−2Un−ie−1U

i−2
e Ue+1.

(4.10)

Remark 4.4. Since bn−ja(e−1)
j,n = a(e)j,1 and a(e−1)

n,j = a(e)1,j , we get closed forms

for the last row and column of Qn(a,b)e as well.

By taking some particular cases of our previous results we get some very

interesting binomial sums. For instance, we have the following corollary.

Corollary 4.5. The following identities are true:

n∑
j=1

(−1)n+1−jai+j−n−1bn−j
(
i−1
n−j

)
Un−j =Ui−1,

n∑
j=1

n∑
k=1

(−1)n+1−jai+j+2k−2n−2b2n−j−k
(
i−1
n−k

)(
k−1
n−j

)
Un−j =Un+i−2,

n∑
j=1

Un−jl−1 U
j−1
l U(n−1)p+j−1bn−j

(
n−1
j−1

)
=U(n−1)(l+p), for any l,p,

n∑
j=1

U(n−1)p+j−1U
n−j−1
l−1 Uj−2

l bn−j
[
U2
l

(
n−1
j−1

)
+(−1)l

(
n−2
j−2

)]

=U(n−1)(l+p)+1, for any l,p.

(4.11)

Proof. Using Theorem 3.1, with e = 1,2, we obtain the first two identi-

ties. Now, with the help of Theorem 3.1 and the trivial identity Qn(a,b)l+p =
Qn(a,b)lQn(a,b)p , we get

(
Qn(a,b)lQn(a,b)p

)·v
=Qn(a,b)l ·

(
U(n−1)p,U(n−1)p+1, . . . ,U(n−1)(p+1)

)t
= (U(n−1)(l+p),U(n−1)(l+p)+1, . . . ,U(n−1)(l+p+1)

)
.

(4.12)

Since a(l)1,j =Un−jl−1 U
j−1
l bn−j

(
n−1
j−1

)
, we obtain the third identity.
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Using

a(l)2,j = bn−jUn−j−1
l−1 Ujl

(
n−2
j−1

)
+bn−jUn−jl−1 U

j−2
l Ul+1

(
n−2
j−2

)
, (4.13)

Cassini’s identity (see [2, page 292]) (usually given for the Fibonacci numbers,

but certainly true for the sequence Ul, as well, as the reader can check easily),

and Ul−1Ul+1−U2
l = (−1)l, we get the fourth identity.

Corollary 4.6. In general,

n∑
j=1

U(n−1)p+j−1a
(l)
i,j =U(n−1)(l+p)+i−1 (4.14)

for any i, l, and p.

5. Order of Qn(a,b) modulo p. Let a,b ∈ Z and p ∈ Z prime. Using the

recurrence among the entries ofQn(a,b) and reasoning as in [4], we prove the

following theorem.

Theorem 5.1. If e is the least positive integer (entry point) such that Ue ≡
0(modp), then

Q2k(a,b)e ≡ (−1)(k+1)eUe−1I2k(modp),

Q2k+1(a,b)e ≡ (−1)keI2k+1(modp).
(5.1)

Moreover, Qn(a,b)4e ≡ In(modp). Furthermore, considering the parity of e,

Qn(a,b)2e ≡ In(modp) if e is even,

Qn(a,b)2e ≡ rn−1In(modp) if e≡ 3(mod4),

Qn(a,b)2e ≡ (−r)n−1In(modp) if e≡ 1(mod4),

(5.2)

where r ≡ (U(e+1)/2/U(e−1)/2)(modp), so r 2 ≡−1(modp).

Proof. Using (3.2), if Ue ≡ 0(modp), then

Ue−1a
(e)
i,j ≡Ue+1a

(e)
i−1,j−1. (5.3)

Since p divides neither Ue−1 nor Ue+1 (otherwise it would divide U1 = 1), we

get

a(e)i,j ≡ 0(modp) if i �= j,
a(e)i,i ≡ a(e)i−1,i−1 ≡ ··· ≡ a(e)1,1 ≡Un−1

e−1 (modp).
(5.4)

Therefore

Qn(a,b)e ≡Un−1
e−1 In(modp). (5.5)
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Using Cassini’s identity Ul−1Ul+1−U2
l = (−1)l, for l= e, we get, if n= 2k,

Un−1
e−1 =U2k−1

e−1 ≡ (U2
e−1

)kU−1
e−1 ≡ (−1)keU−1

e−1

≡ (−1)(k+1)eUe−1(modp)
(5.6)

since U2
e−1 ≡U2

e+1 ≡ (−1)e(modp). If n= 2k+1, then

Un−1
e−1 =U2k

e−1 ≡
(
U2
e−1

)k ≡ (−1)ke(modp). (5.7)

The previous two congruences, replaced in Qn(a,b)e ≡Un−1
e−1 In(modp), prove

the first claim.

By [3, Lemma 3.4],

Ue−1 ≡ (−1)(e−2)/2 if e is even,

Ue−1 ≡ r(−1)(e−3)/2, r 2 ≡−1(modp), if e is odd.
(5.8)

The residue r in the previous relation is just r ≡ (U(e+1)/2/U(e−1)/2)(modp).
Thus, if e is even, then U2

e−1 ≡ 1(modp), so Qn(a,b)2e ≡ In(modp) for any n.

The remaining cases are similar.

Similarly, we can prove the following theorem.

Theorem 5.2. (1) If p|Up−1, then Qn(a,b)p−1 ≡ In(modp).
(2) If p|Up+1, then

Q2k+1(a,b)p+1 ≡ I2k+1(modp), Q2k(a,b)p+1 ≡−I2k(modp). (5.9)

A consequence of [1, Theorem 1] is the following lemma.

Lemma 5.3. For a prime p which divides f(x)= x2−ax−1 for some integer

x, the sequence {Ue}e, satisfying the recurrence Ue = aUe−1+Ue−2, has a period

p−1(modp) provided p is not a divisor of D = a2+4.

Our final result is the following theorem.

Theorem 5.4. Let p be a prime divisor of x2−ax−1 for some integer x
and gcd(p,a2+4)= 1. Then, Qn(a,1)p−1 ≡ In(modp).

Proof. The proof is straightforward, using Lemma 5.3 and Theorem 3.1 or

Theorem 5.1.

6. Further comments. We observed that netted matrices defined using

three-term or four-term recurrences with constant coefficients (we call these

3- or 4-netted matrices) preserve a four-term recurrence among the entries

of their powers. We ask the question: what is the order of the recurrence for

higher powers of a 5-netted, and so forth, matrices?

We might attempt to prove that a k-netted matrix will preserve a k-term

recurrence. However, that is not true, and it can be seen from our work since
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a two-term recurrence is not preserved (see Theorem 2.1). Our guess is that a

k2-netted matrix preserves a k2-term recurrence among the entries of its higher

powers. Our guess is based on work already done and on many computer hours

running examples. However, it is too early to promote it to a conjecture.
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[4] R. Peele and P. Stănică, Matrix powers of column-justified Pascal triangles and Fi-
bonacci sequences, Fibonacci Quart. 40 (2002), no. 2, 146–152.
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