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ON THE FRESNEL INTEGRALS AND THE CONVOLUTION

ADEM KILIÇMAN and BRIAN FISHER

Received 24 November 2002

The Fresnel cosine integral C(x), the Fresnel sine integral S(x), and the associated
functions C+(x), C−(x), S+(x), and S−(x) are defined as locally summable func-
tions on the real line. Some convolutions and neutrix convolutions of the Fresnel
cosine integral and its associated functions with xr+ and xr are evaluated.
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The Fresnel cosine integral C(x) is defined by

C(x)=
√

2
π

∫ x
0

cosu2du, (1)

(see [3]) and the associated functions C+(x) and C−(x) are defined by

C+(x)=H(x)C(x), C−(x)=H(−x)C(x). (2)

The Fresnel sine integral S(x) is defined by

S(x)=
√

2
π

∫ x
0

sinu2du, (3)

(see [3]) and the associated functions S+(x) and S−(x) are defined by

S+(x)=H(x)S(x), S−(x)=H(−x)S(x), (4)

where H denotes Heaviside’s function.

We define the function Ir (x) by

Ir (x)=
∫ x

0
ur cosu2du (5)

for r = 0,1,2, . . . . In particular,

I0(x)=
√
π
2
C(x), I1(x)= 1

2
sinx2, I2(x)= 1

2
x sinx2−

√
π

2
√

2
S(x). (6)

We define the functions cos+x, cos−x, sin+x, and sin−x by

cos+x =H(x)cosx, cos−x =H(−x)cosx,

sin+x =H(x)sinx, sin−x =H(−x)sinx.
(7)
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If the classical convolution f ∗g of two functions f and g exists, then g∗f
exists and

f ∗g = g∗f . (8)

Further, if (f ∗g)′ and f ∗g′ (or f ′ ∗g) exist, then

(f ∗g)′ = f ∗g′ (or f ′ ∗g). (9)

The classical definition of the convolution can be extended to define the con-

volution f ∗g of two distributions f and g in �′ with the following definition,

see [2].

Definition 1. Let f and g be distributions in �′. Then the convolution

f ∗g is defined by the equation

〈
(f ∗g)(x),ϕ(x)〉= 〈f(y),〈g(x),ϕ(x+y)〉〉 (10)

for arbitrary ϕ in �′, provided that f and g satisfy either of the conditions

(a) either f or g has bounded support,

(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗g exists by this definition, then (6) and

(8) are satisfied.

Theorem 2. The convolution (cos+x2)∗xr+ exists and

(
cos+x2)∗xr+ =

r∑
i=0

(
r
i

)
(−1)r−iIr−i(x)xi+ (11)

for r = 0,1,2, . . . . In particular,

(
cos+x2)∗H(x)=

√
π
2
C+(x),

(
cos+x2)∗x+ = −1

2
sin+x2+

√
π
2
C(x)x+.

(12)

Proof. It is obvious that (cos+x2)∗xr+ = 0 if x < 0. When x > 0, we have

(
cos+x2)∗xr+ =

∫ x
0

cost2(x−t)rdt

=
r∑
i=0

(
r
i

)∫ x
0
xi(−t)r−i cost2dt

=
r∑
i=0

(
r
i

)
(−1)r−iIr−i(x)xi,

(13)

proving (11). Equations (12) follow on using (6).
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Corollary 3. The convolution (cos−x2)∗xr− exists and

(
cos−x2)∗xr− = −

r∑
i=0

(
r
i

)
Ir−i(x)xi− (14)

for r = 0,1,2, . . . . In particular,

(
cos−x2)∗H(−x)=−

√
π
2
C−(x),

(
cos−x2)∗x− = −1

2
sin−x2−

√
π
2
S(x)x−.

(15)

Proof. Equations (14) and (15) follow on replacing x by −x in (11) and

(12), respectively, and noting that

Ir (−x)= (−1)r+1Ir (x). (16)

Theorem 4. The convolution C+(x)∗xr+ exists and

C+(x)∗xr+ =
√

2√
π(r +1)

r+1∑
i=0

(
r +1
i

)
(−1)r−i+1Ir−i+1(x)xi+ (17)

for r = 0,1,2, . . . . In particular,

C+(x)∗H(x)=− 1√
2π

sin+x2+C(x)x+,

C+(x)∗x+ = 1

2
√

2π
sinx2x+− 1√

2π
sin+x2− 1

4
S+(x)+ 1

2
C(x)x2

+.
(18)

Proof. It is obvious that C+(x)∗xr+ = 0 if x < 0. When x > 0, we have

√
π
2
C+(x)∗xr+ =

∫ x
0
(x−t)r

∫ t
0

cosu2dudt

=
∫ x

0
cosu2

∫ x
u
(x−t)rdtdu

= 1
r +1

∫ x
0

cosu2(x−u)r+1du

= 1
r +1

∫ x
0

cosu2
r+1∑
i=0

(
r +1
i

)
xi(−u)r−i+1du

= 1
r +1

r+1∑
i=0

(
r +1
i

)
(−1)r−i+1Ir−i+1(x)xi+.

(19)

Equation (17) follows. Equations (18) follow on using (6).
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Corollary 5. The convolution C−(x)∗xr− exists and

C−(x)∗xr− =
√

2√
π(r +1)

r+1∑
i=0

(
r +1
i

)
Ir−i+1(x)xi− (20)

for r = 0,1,2, . . . . In particular,

C−(x)∗H(−x)= 1√
2π

sin−x2+C(x)x−,

C−(x)∗x− = − 1

2
√

2π
sinx2x−+ 1√

2π
sin−x2− 1

4
S−(x)+ 1

2
C(x)x2

−.
(21)

Proof. Equations (20) and (21) follow on replacing x by −x in (17) and

(18), respectively, and using (16).

Definition 1 was extended in [1] with the next definition but first of all we

let τ be a function in � having the following properties:

(i) τ(x)= τ(−x),
(ii) 0≤ τ(x)≤ 1,

(iii) τ(x)= 1, for |x| ≤ 1/2,

(iv) τ(x)= 0, for |x| ≥ 1.
The function τν is now defined for ν > 0 by

τν(x)=




1, |x| ≤ ν,
τ
(
ννx−νν+1

)
, x > ν,

τ
(
ννx+νν+1

)
, x <−ν.

(22)

Definition 6. Let f and g be distributions in �′ and let fν = fτν for

ν > 0. The neutrix convolution product f©∗ g is defined as the neutrix limit of

the sequence {fν∗g}, provided that the limit h exists in the sense that

N - lim
ν→∞

〈
fν∗g,ϕ

〉= 〈h,ϕ〉, (23)

for all ϕ in �, where N is the neutrix, see van der Corput [5], with its domain

N′ the positive real numbers, with negligible functions finite linear sums of

the functions

νλ lnr−1ν, lnr ν, νr sinν2, νr cosν2 (λ �= 0, r = 1,2, . . .) (24)

and all functions which converge to zero in the normal sense as ν tends to

infinity.

Note that in this definition the convolution product fν ∗ g is defined in

Gel’fand and Shilov’s sense, since the distribution fν has bounded support.

It was proved in [1] that if f∗g exists in the classical sense or by Definition 1,

then f©∗ g exists and

f©∗ g = f ∗g. (25)
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The following theorem was also proved in [1].

Theorem 7. Let f and g be distributions in �′ and suppose that the neutrix

convolution product f©∗ g exists. Then the neutrix convolution product f©∗ g′
exists and

(f©∗ g)′ = f©∗ g′. (26)

We need the following lemma.

Lemma 8. If Ir =N - limν→∞ Ir (ν), then

I4r = (−1)r (4r)!
√
π

24r+1(2r)!
√

2
,

I4r+1 = 0,

I4r+2 = (−1)r (4r +1)!
√
π

24r+2(2r)!
√

2
,

I4r+3 = (−1)r+1(2r)!
2

(27)

for r = 0,1,2, . . . .

Proof. It is easily proved that

I3(x)= 1
2
x2 sinx2− 1

2
+ 1

2
cosx2 (28)

and it follows from (6) and (28) that (27) hold when r = 0, since

S(∞)= C(∞)= 1
2
, (29)

see Olver [4].

We also have

I2r (x)= 1
2
x2r−1 sinx2+ 2r −1

4
x2r−3 cosx2− (2r −1)(2r −3)

4
I2r−4(x),

I2r+1(x)= 1
2
x2r sinx2+ r

2
x2r−2 cosx2−r(r −1)I2r−3(x)

(30)

and it follows that

N - lim
ν→∞ I2r (ν)=− (2r)!(r −2)!

24(2r −4)!r !
N - lim
ν→∞ I2r−4(ν),

N - lim
ν→∞ I2r+1(ν)=− r !

(r −2)!
N - lim
ν→∞ I2r−3(ν).

(31)

Equations (27) now follow by induction.
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Theorem 9. The neutrix convolution (cos+x2)∗xr exists and

(
cos+x2)©∗ xr = r∑

i=0

(
r
i

)
(−1)r−iIr−ixi (32)

for r = 0,1,2, . . . . In particular,

(
cos+x2)©∗ 1=

√
π

2
√

2
,

(
cos+x2)©∗ x =

√
π

2
√

2
x.

(33)

Proof. We put (cos+x2)ν = (cos+x2)τν(x). Then the convolution

(cos+x2)ν∗xr exists and

(
cos+x2)

ν∗xr =
∫ ν

0
cost2(x−t)rdt+

∫ ν+ν−ν
ν

τν(t)cost2(x−t)rdt. (34)

Now,

∫ ν
0

cost2(x−t)rdt =
r∑
i=0

(
r
i

)∫ ν
0
xi(−t)r−i cost2dt

=
r∑
i=0

(
r
i

)
(−1)r−iIr−i(ν)xi

(35)

and it follows that

N - lim
ν→∞

∫ ν
0

cost2(x−t)rdt =
r∑
i=0

(
r
i

)
(−1)r−iIr−ixi. (36)

Further, it is easily seen that, for each fixed x,

lim
ν→∞

∫ ν+ν−ν
ν

τν(t)cost2(x−t)rdt = 0 (37)

and (32) follows from (34), (36), and (37). Equations (33) follow immediately.

Corollary 10. The neutrix convolution cos−x2©∗ xr exists and

(
cos−x2)©∗ xr = r∑

i=0

(
r
i

)
(−1)r−i+1Ir−ixi (38)

for r = 0,1,2, . . . . In particular,

(
cos−x2)©∗ 1=−

√
π

2
√

2
,

(
cos−x2)©∗ x =−

√
π

2
√

2
x.

(39)
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Proof. Equation (38) follows on replacing x by −x in (32) and noting that

Ir must be replaced by

N - lim
ν→∞ Ir (−ν)= (−1)r−1 N - lim

ν→∞ Ir (ν)= (−1)r−1Ir . (40)

Equations (33) follow.

Corollary 11. The convolution (cosx2)©∗ xr exists and

(
cosx2)©∗ xr = 0 (41)

for r = 0,1,2, . . . .

Proof. Equation (41) follows from (32) and (38) on noting that cosx2 =
cos+x2+cos−x2.

Theorem 12. The neutrix convolution C+(x)©∗ xr exists and

C+(x)©∗ xr =
√

2√
π(r +1)

r∑
i=0

(
r +1
i

)
(−1)r−i+1Ir−i+1xi (42)

for r = 0,1,2, . . . . In particular

C+(x)©∗ 1= 0, (43)

C+(x)©∗ x = 1
8
. (44)

Proof. We put [C+(x)]ν = C+(x)τν(x). Then the convolution product

[C+(x)]ν∗xr exists and

[
C+(x)

]
ν∗xr =

∫ ν
0
C(t)(x−t)rdt+

∫ ν+ν−ν
ν

τν(t)C(t)(x−t)rdt. (45)

We have

√
π
2

∫ ν
0
C(t)(x−t)rdt

=
∫ ν

0
(x−t)r

∫ t
0

cosu2dudt

=
∫ ν

0
cosu2

∫ ν
u
(x−t)rdtdu

=− 1
r +1

∫ ν
0

cosu2[(x−ν)r+1−(x−u)r+1]du
=− 1

r +1

∫ ν
0

r∑
i=0

(
r +1
i

)
xi
[
(−ν)r−i+1−(−u)r−i+1]cosu2du

(46)
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and it follows that

N - lim
ν→∞

∫ ν
0
C(t)(x−t)rdt =

√
2√

π(r +1)

r∑
i=0

(
r +1
i

)
(−1)r−i+1Ir−i+1xi. (47)

Further, it is easily seen that, for each fixed x,

lim
ν→∞

∫ ν+ν−ν
ν

τν(t)C(t)(x−t)rdt = 0 (48)

and (42) now follows immediately from (45), (47), and (48).

Corollary 13. The neutrix convolution C−(x)©∗ xr exists and

C−(x)©∗ xr =
√

2√
π(r +1)

r∑
i=0

(
r +1
i

)
(−1)r−iIr−i+1xi (49)

for r = 0,1,2, . . . . In particular,

C−(x)©∗ 1= 0, (50)

C−(x)©∗ x =−1
8
. (51)

Proof. Equation (49) follows on replacing x by −x and Ir by (−1)r−1Ir in

(42). Equations (50) and (51) follow.

Corollary 14. The neutrix convolution C(x)©∗ xr exists and

C(x)©∗ xr = 0 (52)

for r = 0,1,2, . . . .

Proof. Equation (52) follows from (43) and (50) on noting that C(x) =
C+(x)+C−(x).
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