ON THE FRESNEL INTEGRALS AND THE CONVOLUTION

ADEM KILIÇMAN and BRIAN FISHER

Received 24 November 2002

The Fresnel cosine integral $C(x)$, the Fresnel sine integral $S(x)$, and the associated functions $C_{+}(x), C_{-}(x), S_{+}(x)$, and $S_{-}(x)$ are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel cosine integral and its associated functions with x_{+}^{r} and x^{r} are evaluated.

2000 Mathematics Subject Classification: 33B10, 46F10.

The Fresnel cosine integral $C(x)$ is defined by

$$
\begin{equation*}
C(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{x} \cos u^{2} d u \tag{1}
\end{equation*}
$$

(see [3]) and the associated functions $C_{+}(x)$ and $C_{-}(x)$ are defined by

$$
\begin{equation*}
C_{+}(x)=H(x) C(x), \quad C_{-}(x)=H(-x) C(x) . \tag{2}
\end{equation*}
$$

The Fresnel sine integral $S(x)$ is defined by

$$
\begin{equation*}
S(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{x} \sin u^{2} d u \tag{3}
\end{equation*}
$$

(see [3]) and the associated functions $S_{+}(x)$ and $S_{-}(x)$ are defined by

$$
\begin{equation*}
S_{+}(x)=H(x) S(x), \quad S_{-}(x)=H(-x) S(x), \tag{4}
\end{equation*}
$$

where H denotes Heaviside’s function.
We define the function $I_{r}(x)$ by

$$
\begin{equation*}
I_{r}(x)=\int_{0}^{x} u^{r} \cos u^{2} d u \tag{5}
\end{equation*}
$$

for $r=0,1,2, \ldots$. In particular,

$$
\begin{equation*}
I_{0}(x)=\sqrt{\frac{\pi}{2}} C(x), \quad I_{1}(x)=\frac{1}{2} \sin x^{2}, \quad I_{2}(x)=\frac{1}{2} x \sin x^{2}-\frac{\sqrt{\pi}}{2 \sqrt{2}} S(x) . \tag{6}
\end{equation*}
$$

We define the functions $\cos _{+} x, \cos _{-} x, \sin _{+} x$, and $\sin _{-} x$ by

$$
\begin{align*}
& \cos _{+} x=H(x) \cos x, \quad \cos _{-} x=H(-x) \cos x, \\
& \sin _{+} x=H(x) \sin x, \quad \sin -x=H(-x) \sin x . \tag{7}
\end{align*}
$$

If the classical convolution $f * g$ of two functions f and g exists, then $g * f$ exists and

$$
\begin{equation*}
f * g=g * f \tag{8}
\end{equation*}
$$

Further, if $(f * g)^{\prime}$ and $f * g^{\prime}$ (or $f^{\prime} * g$) exist, then

$$
\begin{equation*}
(f * g)^{\prime}=f * g^{\prime} \quad\left(\text { or } f^{\prime} * g\right) \tag{9}
\end{equation*}
$$

The classical definition of the convolution can be extended to define the convolution $f * g$ of two distributions f and g in \mathscr{D}^{\prime} with the following definition, see [2].

Definition 1. Let f and g be distributions in \mathscr{D}^{\prime}. Then the convolution $f * g$ is defined by the equation

$$
\begin{equation*}
\langle(f * g)(x), \varphi(x)\rangle=\langle f(y),\langle g(x), \varphi(x+y)\rangle\rangle \tag{10}
\end{equation*}
$$

for arbitrary φ in \mathscr{D}^{\prime}, provided that f and g satisfy either of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution $f * g$ exists by this definition, then (6) and (8) are satisfied.

THEOREM 2. The convolution $\left(\cos _{+} x^{2}\right) * x_{+}^{r}$ exists and

$$
\begin{equation*}
\left(\cos _{+} x^{2}\right) * x_{+}^{r}=\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i} I_{r-i}(x) x_{+}^{i} \tag{11}
\end{equation*}
$$

for $r=0,1,2, \ldots$ In particular,

$$
\begin{gather*}
\left(\cos _{+} x^{2}\right) * H(x)=\sqrt{\frac{\pi}{2}} C_{+}(x) \tag{12}\\
\left(\cos _{+} x^{2}\right) * x_{+}=-\frac{1}{2} \sin _{+} x^{2}+\sqrt{\frac{\pi}{2}} C(x) x_{+}
\end{gather*}
$$

Proof. It is obvious that $\left(\cos _{+} x^{2}\right) * x_{+}^{r}=0$ if $x<0$. When $x>0$, we have

$$
\begin{align*}
\left(\cos _{+} x^{2}\right) * x_{+}^{r} & =\int_{0}^{x} \cos t^{2}(x-t)^{r} d t \\
& =\sum_{i=0}^{r}\binom{r}{i} \int_{0}^{x} x^{i}(-t)^{r-i} \cos t^{2} d t \tag{13}\\
& =\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i} I_{r-i}(x) x^{i},
\end{align*}
$$

proving (11). Equations (12) follow on using (6).

Corollary 3. The convolution $\left(\cos _{-} x^{2}\right) * x_{-}^{r}$ exists and

$$
\begin{equation*}
\left(\cos _{-} x^{2}\right) * x_{-}^{r}=-\sum_{i=0}^{r}\binom{r}{i} I_{r-i}(x) x_{-}^{i} \tag{14}
\end{equation*}
$$

for $r=0,1,2, \ldots$ In particular,

$$
\begin{gather*}
\left(\cos _{-} x^{2}\right) * H(-x)=-\sqrt{\frac{\pi}{2}} C_{-}(x) \\
\left(\cos _{-} x^{2}\right) * x_{-}=-\frac{1}{2} \sin x^{2}-\sqrt{\frac{\pi}{2}} S(x) x_{-} \tag{15}
\end{gather*}
$$

Proof. Equations (14) and (15) follow on replacing x by $-x$ in (11) and (12), respectively, and noting that

$$
\begin{equation*}
I_{r}(-x)=(-1)^{r+1} I_{r}(x) . \tag{16}
\end{equation*}
$$

Theorem 4. The convolution $C_{+}(x) * x_{+}^{r}$ exists and

$$
\begin{equation*}
C_{+}(x) * x_{+}^{r}=\frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r+1}\binom{r+1}{i}(-1)^{r-i+1} I_{r-i+1}(x) x_{+}^{i} \tag{17}
\end{equation*}
$$

for $r=0,1,2, \ldots$. In particular,

$$
\begin{gather*}
C_{+}(x) * H(x)=-\frac{1}{\sqrt{2 \pi}} \sin _{+} x^{2}+C(x) x_{+}, \tag{18}\\
C_{+}(x) * x_{+}=\frac{1}{2 \sqrt{2 \pi}} \sin x^{2} x_{+}-\frac{1}{\sqrt{2 \pi}} \sin _{+} x^{2}-\frac{1}{4} S_{+}(x)+\frac{1}{2} C(x) x_{+}^{2} .
\end{gather*}
$$

Proof. It is obvious that $C_{+}(x) * x_{+}^{r}=0$ if $x<0$. When $x>0$, we have

$$
\begin{align*}
\sqrt{\frac{\pi}{2}} C_{+}(x) * x_{+}^{r} & =\int_{0}^{x}(x-t)^{r} \int_{0}^{t} \cos u^{2} d u d t \\
& =\int_{0}^{x} \cos u^{2} \int_{u}^{x}(x-t)^{r} d t d u \\
& =\frac{1}{r+1} \int_{0}^{x} \cos u^{2}(x-u)^{r+1} d u \tag{19}\\
& =\frac{1}{r+1} \int_{0}^{x} \cos u^{2} \sum_{i=0}^{r+1}\binom{r+1}{i} x^{i}(-u)^{r-i+1} d u \\
& =\frac{1}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i}(-1)^{r-i+1} I_{r-i+1}(x) x_{+}^{i} .
\end{align*}
$$

Equation (17) follows. Equations (18) follow on using (6).

Corollary 5. The convolution $C_{-}(x) * x_{-}^{r}$ exists and

$$
\begin{equation*}
C_{-}(x) * x_{-}^{r}=\frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r+1}\binom{r+1}{i} I_{r-i+1}(x) x_{-}^{i} \tag{20}
\end{equation*}
$$

for $r=0,1,2, \ldots$. In particular,

$$
\begin{gather*}
C_{-}(x) * H(-x)=\frac{1}{\sqrt{2 \pi}} \sin x^{2}+C(x) x_{-}, \tag{21}\\
C_{-}(x) * x_{-}=-\frac{1}{2 \sqrt{2 \pi}} \sin x^{2} x_{-}+\frac{1}{\sqrt{2 \pi}} \sin x^{2}-\frac{1}{4} S_{-}(x)+\frac{1}{2} C(x) x_{-}^{2} .
\end{gather*}
$$

Proof. Equations (20) and (21) follow on replacing x by $-x$ in (17) and (18), respectively, and using (16).

Definition 1 was extended in [1] with the next definition but first of all we let τ be a function in \mathscr{D} having the following properties:
(i) $\tau(x)=\tau(-x)$,
(ii) $0 \leq \tau(x) \leq 1$,
(iii) $\tau(x)=1$, for $|x| \leq 1 / 2$,
(iv) $\tau(x)=0$, for $|x| \geq 1$.

The function τ_{v} is now defined for $v>0$ by

$$
\tau_{v}(x)= \begin{cases}1, & |x| \leq v \tag{22}\\ \tau\left(v^{v} x-v^{v+1}\right), & x>v \\ \tau\left(v^{v} x+v^{v+1}\right), & x<-v\end{cases}
$$

DEFINITION 6. Let f and g be distributions in \mathscr{D}^{\prime} and let $f_{v}=f \tau_{v}$ for $v>0$. The neutrix convolution product $f \circledast g$ is defined as the neutrix limit of the sequence $\left\{f_{v} * g\right\}$, provided that the limit h exists in the sense that

$$
\begin{equation*}
\underset{v \rightarrow \infty}{N-\lim }\left\langle f_{v} * g, \varphi\right\rangle=\langle h, \varphi\rangle \tag{23}
\end{equation*}
$$

for all φ in \mathscr{D}, where N is the neutrix, see van der Corput [5], with its domain N^{\prime} the positive real numbers, with negligible functions finite linear sums of the functions

$$
\begin{equation*}
v^{\lambda} \ln ^{r-1} v, \quad \ln ^{r} v, \quad v^{r} \sin v^{2}, \quad v^{r} \cos v^{2} \quad(\lambda \neq 0, r=1,2, \ldots) \tag{24}
\end{equation*}
$$

and all functions which converge to zero in the normal sense as v tends to infinity.

Note that in this definition the convolution product $f_{v} * g$ is defined in Gel'fand and Shilov's sense, since the distribution f_{v} has bounded support.

It was proved in [1] that if $f * g$ exists in the classical sense or by Definition 1, then $f \circledast g$ exists and

$$
\begin{equation*}
f \circledast g=f * g \tag{25}
\end{equation*}
$$

The following theorem was also proved in [1].
Theorem 7. Let f and g be distributions in \mathscr{D}^{\prime} and suppose that the neutrix convolution product $f \circledast g$ exists. Then the neutrix convolution product $f \circledast g^{\prime}$ exists and

$$
\begin{equation*}
(f \circledast g)^{\prime}=f \circledast g^{\prime} \tag{26}
\end{equation*}
$$

We need the following lemma.
Lemma 8. If $I_{r}=N-\lim _{v \rightarrow \infty} I_{r}(v)$, then

$$
\begin{align*}
I_{4 r} & =\frac{(-1)^{r}(4 r)!\sqrt{\pi}}{2^{4 r+1}(2 r)!\sqrt{2}} \\
I_{4 r+1} & =0 \\
I_{4 r+2} & =\frac{(-1)^{r}(4 r+1)!\sqrt{\pi}}{2^{4 r+2}(2 r)!\sqrt{2}} \tag{27}\\
I_{4 r+3} & =\frac{(-1)^{r+1}(2 r)!}{2}
\end{align*}
$$

for $r=0,1,2, \ldots$.
Proof. It is easily proved that

$$
\begin{equation*}
I_{3}(x)=\frac{1}{2} x^{2} \sin x^{2}-\frac{1}{2}+\frac{1}{2} \cos x^{2} \tag{28}
\end{equation*}
$$

and it follows from (6) and (28) that (27) hold when $r=0$, since

$$
\begin{equation*}
S(\infty)=C(\infty)=\frac{1}{2} \tag{29}
\end{equation*}
$$

see Olver [4].
We also have

$$
\begin{gather*}
I_{2 r}(x)=\frac{1}{2} x^{2 r-1} \sin x^{2}+\frac{2 r-1}{4} x^{2 r-3} \cos x^{2}-\frac{(2 r-1)(2 r-3)}{4} I_{2 r-4}(x), \\
I_{2 r+1}(x)=\frac{1}{2} x^{2 r} \sin x^{2}+\frac{r}{2} x^{2 r-2} \cos x^{2}-r(r-1) I_{2 r-3}(x) \tag{30}
\end{gather*}
$$

and it follows that

$$
\begin{align*}
N-\lim _{v \rightarrow \infty} I_{2 r}(v) & =-\frac{(2 r)!(r-2)!}{2^{4}(2 r-4)!r!} N-\lim _{v \rightarrow \infty} I_{2 r-4}(v), \\
N-\lim _{v \rightarrow \infty} I_{2 r+1}(v) & =-\frac{r!}{(r-2)!} N-\lim _{v \rightarrow \infty} I_{2 r-3}(v) . \tag{31}
\end{align*}
$$

Equations (27) now follow by induction.

Theorem 9. The neutrix convolution $\left(\cos _{+} x^{2}\right) * x^{r}$ exists and

$$
\begin{equation*}
\left(\cos _{+} x^{2}\right) \circledast x^{r}=\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i} I_{r-i} x^{i} \tag{32}
\end{equation*}
$$

for $r=0,1,2, \ldots$ In particular,

$$
\begin{align*}
& \left(\cos _{+} x^{2}\right) \circledast 1=\frac{\sqrt{\pi}}{2 \sqrt{2}} \\
& \left(\cos _{+} x^{2}\right) \circledast x=\frac{\sqrt{\pi}}{2 \sqrt{2}} x . \tag{33}
\end{align*}
$$

Proof. We put $\left(\cos _{+} x^{2}\right)_{v}=\left(\cos _{+} x^{2}\right) \tau_{v}(x)$. Then the convolution $\left(\cos _{+} x^{2}\right)_{v} * x^{r}$ exists and

$$
\begin{equation*}
\left(\cos _{+} x^{2}\right)_{v} * x^{r}=\int_{0}^{v} \cos t^{2}(x-t)^{r} d t+\int_{v}^{v+v^{-v}} \tau_{v}(t) \cos t^{2}(x-t)^{r} d t \tag{34}
\end{equation*}
$$

Now,

$$
\begin{align*}
\int_{0}^{v} \cos t^{2}(x-t)^{r} d t & =\sum_{i=0}^{r}\binom{r}{i} \int_{0}^{v} x^{i}(-t)^{r-i} \cos t^{2} d t \tag{35}\\
& =\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i} I_{r-i}(v) x^{i}
\end{align*}
$$

and it follows that

$$
\begin{equation*}
N-\lim \int_{v \rightarrow \infty}^{v} \cos t^{2}(x-t)^{r} d t=\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i} I_{r-i} x^{i} \tag{36}
\end{equation*}
$$

Further, it is easily seen that, for each fixed x,

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \int_{v}^{v+v^{-v}} \tau_{v}(t) \cos t^{2}(x-t)^{r} d t=0 \tag{37}
\end{equation*}
$$

and (32) follows from (34), (36), and (37). Equations (33) follow immediately.
Corollary 10. The neutrix convolution $\cos _{-} x^{2} \circledast x^{r}$ exists and

$$
\begin{equation*}
\left(\cos _{-} x^{2}\right) \circledast x^{r}=\sum_{i=0}^{r}\binom{r}{i}(-1)^{r-i+1} I_{r-i} x^{i} \tag{38}
\end{equation*}
$$

for $r=0,1,2, \ldots$. In particular,

$$
\begin{align*}
& \left(\cos _{-} x^{2}\right) \circledast 1=-\frac{\sqrt{\pi}}{2 \sqrt{2}} \\
& \left(\cos _{-} x^{2}\right) \circledast x=-\frac{\sqrt{\pi}}{2 \sqrt{2}} x \tag{39}
\end{align*}
$$

Proof. Equation (38) follows on replacing x by $-x$ in (32) and noting that I_{r} must be replaced by

$$
\begin{equation*}
N-\lim _{v \rightarrow \infty} I_{r}(-v)=(-1)^{r-1} \underset{v \rightarrow \infty}{N-\lim _{r} I_{r}(v)=(-1)^{r-1} I_{r} ~} \tag{40}
\end{equation*}
$$

Equations (33) follow.
Corollary 11. The convolution $\left(\cos x^{2}\right) \circledast x^{r}$ exists and

$$
\begin{equation*}
\left(\cos x^{2}\right) \circledast x^{r}=0 \tag{41}
\end{equation*}
$$

for $r=0,1,2, \ldots$.
Proof. Equation (41) follows from (32) and (38) on noting that $\cos x^{2}=$ $\cos _{+} x^{2}+\cos _{-} x^{2}$.

Theorem 12. The neutrix convolution $C_{+}(x) \circledast x^{r}$ exists and

$$
\begin{equation*}
C_{+}(x) \circledast x^{r}=\frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r}\binom{r+1}{i}(-1)^{r-i+1} I_{r-i+1} x^{i} \tag{42}
\end{equation*}
$$

for $r=0,1,2, \ldots$ In particular

$$
\begin{align*}
& C_{+}(x) \circledast 1=0 \tag{43}\\
& C_{+}(x) \circledast x=\frac{1}{8} \tag{44}
\end{align*}
$$

Proof. We put $\left[C_{+}(x)\right]_{v}=C_{+}(x) \tau_{v}(x)$. Then the convolution product $\left[C_{+}(x)\right]_{v} * x^{r}$ exists and

$$
\begin{equation*}
\left[C_{+}(x)\right]_{v} * x^{r}=\int_{0}^{v} C(t)(x-t)^{r} d t+\int_{v}^{v+v^{-v}} \tau_{v}(t) C(t)(x-t)^{r} d t \tag{45}
\end{equation*}
$$

We have

$$
\begin{array}{rl}
\sqrt{\frac{\pi}{2}} \int_{0}^{v} & C(t)(x-t)^{r} d t \\
& =\int_{0}^{v}(x-t)^{r} \int_{0}^{t} \cos u^{2} d u d t \\
& =\int_{0}^{v} \cos u^{2} \int_{u}^{v}(x-t)^{r} d t d u \tag{46}\\
& =-\frac{1}{r+1} \int_{0}^{v} \cos u^{2}\left[(x-v)^{r+1}-(x-u)^{r+1}\right] d u \\
& =-\frac{1}{r+1} \int_{0}^{v} \sum_{i=0}^{r}\binom{r+1}{i} x^{i}\left[(-v)^{r-i+1}-(-u)^{r-i+1}\right] \cos u^{2} d u
\end{array}
$$

and it follows that

$$
\begin{equation*}
N-\lim _{v \rightarrow \infty} \int_{0}^{v} C(t)(x-t)^{r} d t=\frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r}\binom{r+1}{i}(-1)^{r-i+1} I_{r-i+1} x^{i} \tag{47}
\end{equation*}
$$

Further, it is easily seen that, for each fixed x,

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \int_{v}^{v+v^{-v}} \tau_{v}(t) C(t)(x-t)^{r} d t=0 \tag{48}
\end{equation*}
$$

and (42) now follows immediately from (45), (47), and (48).
Corollary 13. The neutrix convolution $C_{-}(x) \circledast x^{r}$ exists and

$$
\begin{equation*}
C_{-}(x) \circledast x^{r}=\frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r}\binom{r+1}{i}(-1)^{r-i} I_{r-i+1} x^{i} \tag{49}
\end{equation*}
$$

for $r=0,1,2, \ldots$. In particular,

$$
\begin{align*}
& C_{-}(x) \circledast 1=0, \tag{50}\\
& C_{-}(x) \circledast x=-\frac{1}{8} . \tag{51}
\end{align*}
$$

Proof. Equation (49) follows on replacing x by $-x$ and I_{r} by $(-1)^{r-1} I_{r}$ in (42). Equations (50) and (51) follow.

Corollary 14. The neutrix convolution $C(x) \circledast x^{r}$ exists and

$$
\begin{equation*}
C(x) \circledast x^{r}=0 \tag{52}
\end{equation*}
$$

for $r=0,1,2, \ldots$.
Proof. Equation (52) follows from (43) and (50) on noting that $C(x)=$ $C_{+}(x)+C_{-}(x)$.

Acknowledgment. This research was carried out during the second author's visit to the University of Putra Malaysia (UPM) and partially supported under the Grant IRPA 09-02-04-0259-EA001. The authors greatly acknowledge the partial support.

References

[1] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), no. 1, 119-135.
[2] I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations, Academic Press, New York, 1964.
[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, California, 2000.
[4] F. W. J. Olver, Asymptotics and Special Functions, Computer Science and Applied Mathematics, Academic Press, New York, 1974.
[5] J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959/1960), 281-399.

Adem Kılıçman: Department of Mathematics, University of Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Current address: Institute of Advanced Technology, University of Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

E-mail address: akilic@fsas.upm.edu.my
Brian Fisher: Department of Mathematics, University of Leicester, Leicester, LE1 7RH, England

E-mail address: fbr@1e.ac.uk

