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We consider the one-dimensional Burgers equation perturbed by a white noise
term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We ob-
tain existence of a weak solution proving tightness for a sequence of polygonal
approximations for the equation and solving a martingale problem for the weak
limit.
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1. Introduction. We consider the stochastic partial differential equation

∂
∂t
u(t,x)= ∂2

∂x2
u(t,x)+f (t,x,u(t,x))+ ∂

∂x
g
(
t,x,u(t,x)

)
+σ(t,x,u(t,x)) ∂2

∂t∂x
W(t,x)

(1.1)

with Dirichlet boundary conditions

u(t,0)=u(t,1)= 0, t ≥ 0, (1.2)

and initial condition

u(0,x)=u0(x), x ∈ [0,1], (1.3)

where (∂2/∂t∂x)W(t,x) is a spacetime white noise (see [19] for the definition

and properties of the white noise), u0 ∈ L2([0,1]), and f = f(t,x,y), g =
g(t,x,y), and σ = σ(t,x,y) are Borel-measurable functions onR+×[0,1]×R.

A solution to this equation is an L2([0,1])-valued continuous process, adapted

to the filtration generated by the white noise, which solves the equation in a

weak sense (see below).

When f = σ = 0 and g(t,x,y)=y2/2, the above equation is called Burgers

equation. It has been proposed as a model for turbulent fluid motion (see

[4, 5, 10]). When g = 0, the equation is a stochastic reaction-diffusion equation

which has been studied intensively (see, e.g., [3, 8, 13, 19] and the references

therein).
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When f = 0, g(t,x,y) = y2/2, and σ �= 0, we obtain the Burgers equation

perturbed by a spacetime white noise. It has been studied by several authors

under Lipschitz coefficients on σ (see, e.g., [1, 2, 7, 9] and the references

therein).

Our aim in this paper is to study a one-dimensional Burgers equation per-

turbed by a stochastic noise term with a non-Lipschitz coefficient, namely,

∂
∂t
u(t,x)=∆u(t,x)+λ∇u2(t,x)

+γ
√
u(t,x)

(
1−u(t,x)) ∂2

∂t∂x
W(t,x),

u(t,0)=u(t,1)= 0,

u(0,x)= f(x), x ∈ [0,1],

(1.4)

where∆= ∂2/∂x2,∇= ∂/∂x, and f(x) : [0,1]→ [0,1] is a continuous function.

The stochastic term in this equation corresponds to continuous-time stepping-

stone models in population genetics (see [6, 15]), whereu(t,x)models the gene

frequency in colonies.

Equation (1.4) is interpreted in the weak sense, which means that, for each

ϕ ∈ C2([0,1]),

∫
[0,1]

u(t,x)ϕ(x)dx =
∫
[0,1]

u(0,x)ϕ(x)dx+
∫
[0,1]

u(t,x)ϕ′′(x)dx

−λ
∫ t

0

∫
[0,1]

u2(s,x)ϕ′(x)dxds

+γ
∫ t

0

∫
[0,1]

√
u(s,x)

(
1−u(s,x))ϕ(x)W(ds,dx).

(1.5)

Since the coefficients of (1.4) are non-Lipschitz, the standard results on exis-

tence and uniqueness of solutions cannot be applied.

In this paper, we prove existence of a nonnegative weak solution of (1.4)

(Theorem 4.2). Our method of proof is briefly described as follows. Following

Funaki [8], in Section 2 we define a discrete version of (1.4), which is a finite-

dimensional system (2.4) of stochastic differential equations. Next, we prove

existence of a weak solution for this system and use the method of Le Gall

[14] to obtain pathwise uniqueness of weak solutions. This yields existence

of a unique strong solution xNk (t) of (2.4). In Section 3, we define a system

of polygonal approximations uN(t,x) of xNk (t) and use the multidimensional

Kolmogorov-Totoki criterion to obtain tightness of {uN(t,x), N = 1,2, . . .}. In

Section 4, we use a martingale problem to conclude the proof of existence of a

weak solution of (1.4). Without loss of generality, we will assume that λ= γ = 1.
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2. Existence of a solution of the discretized version. We fix an integerN ≥
1 and consider the discretized version of (1.4) on the set {k/N, 1≤ k≤N}:

∂
∂t
XN

(
t,
k
N

)
=∆NXN

(
t,
k
N

)
+∇N

(
X2
N

(
t,
k
N

))

+
√
NXN

(
t,
k
N

)(
1−XN

(
t,
k
N

))
dBk(t),

XN
(

0,
k
N

)
= f

(
k
N

)
, 1≤ k≤N, t ≥ 0.

(2.1)

Here, N is the set of the nonnegative integer numbers, {Bk(t)}1≤k≤N is an infi-

nite system of independent one-dimensional Brownian motions, and ∇N and

∆N are, respectively, the discrete approximations of the first and second de-

rivative with respect to the variable x:

∆NXN
(
t,
k
N

)
= XN

(
t,(k+1)/N

)−2XN(t,k/N)+XN
(
t,(k−1)/N

)
1/N2

,

∇Nh
(
s,
k
N

)
= h

(
s,(k+1)/N

)−h(s,k/N)
1/N

, 1≤ k≤N.
(2.2)

We write xNk (t)=XN(t,k/N). Substituting the above expressions in (2.1), we

obtain the finite-dimensional system of stochastic differential equations

dxNi (t)=N2[xNi+1(t)−2xNi (t)+xNi−1(t)
]+NxNi+1(t)

2−NxNi (t)2

+
√
NxNi (t)

(
1−xNi (t)

)
dBi(t), i= 1, . . . ,N,

(2.3)

which can be written in the more compact form

dxNi (t)=
 N∑
j=1

aNijx
N
j (t)+bNijxNj (t)2

dt+√
NxNi (t)

(
1−xNi (t)

)
dBi(t),

xNi (0)= f
(
i
N

)
, 1≤ i,j ≤N,

(2.4)

where

aNij =


N2 if j = i+1, i−1,

−2N2 if j = i,
0 otherwise,

bNij =


N if j = i+1,

−N if j = i,
0 otherwise.

(2.5)
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Note that for this system we cannot apply the standard results on existence

and uniqueness of solution because Lipschitz assumptions on the drift and

diffusion coefficients fail. We prove the following result.

Theorem 2.1. For any initial random condition XN(0) = (xN1 , . . . ,x
N
N ) ∈

[0,1]N , the system

dxNi (t)=
∑

j
aNijx

N
j (t)+

∑
j
bNijx

N
j (t)

2

dt
+
√
NxNi (t)

(
1−xNi (t)

)
dBi(t),

xNi (0)= xi, i= 1, . . . ,N,

(2.6)

admits a unique strong solution XN(t)= (xN1 (t), . . . ,xNN (t))∈ C([0,∞),[0,1]N).
Proof. We consider the rescaled system

dxNi (t)=
∑

j
aNijx

N
j (t)+

∑
j
bNijx

N
j (t)

2

)
dt

+
√
g
(
xNi (t)

)
dBi(t),

xNi (0)= xi, i= 1, . . . ,N,

(2.7)

where g :R→R is defined by g(x)=Nx(1−x) for 0≤ x ≤ 1, and g(x)= 0 oth-

erwise. Since the coefficients of (2.7) are continuous, by the Skorokhod’s exis-

tence theorem (see [11, 17]), we conclude that there exists on some probability

space a weak solution XN(t) of (2.7). We will prove that for each weak solution

XN(t)= (xN1 (t), . . . ,xNN (t)) of this system, xNi (t)∈ [0,1] for all i= 1, . . . ,N and

t ≥ 0, thus showing that XN(t) is a solution of (2.6).

First, we show that xNi (t) ≥ 0 for each i = 1, . . . ,N. Since the coefficients

of the system are non-Lipschitz, the solution may explode in a finite time.

Let τ1 ≤∞ denote the explosion time of the solution. If some of the solution

coordinates are negative, then there exists a random time 0< τ2 ≤∞ such that

for 0 < t ≤ τ2, all such coordinates are between −1 and 0. This is so because

(2.7) is finite-dimensional, and its solution is continuous.

We will use the following lemma (see [14]).

Lemma 2.2. Let Z ≡ {Z(t), t ≥ 0} be a real-valued semimartingale. Suppose

that there exists a function ρ : [0,∞)→ [0,∞) such that
∫ ε
0 du/ρ(u) = +∞ for

all ε > 0, and
∫ t
0(1{Zs>0}/ρ(Zs))d〈Z〉s <∞ for all t > 0 a.s. Then the local time

at zero of Z , L0
t (Z), is identically zero for all t a.s.
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Applying Lemma 2.2 to xNi (t) with ρ(u)=u and using the Tanaka formula

(see [16]), we obtain for xNi (t)− :=max[0,−xNi (t)],

N∑
i=1

xNi (t)− = −
∫ t

0

N∑
i=1

1xNi (s)<0

N∑
j=1

(
aNijxj(s)+bNijxj(s)2

)
ds

≤
∫ t

0

N∑
i,j=1

1xNi (s)<0a
N
ijxj(s)−ds+N

∫ t
0

N∑
i=1

1xNi (s)<0xi(s)
2ds

≤
∫ t

0

N∑
i,j=1

aNijxj(s)−ds+N
∫ t

0

N∑
i=1

xNi (s)−ds

=N
∫ t

0

N∑
i=1

xNi (s)−ds,

(2.8)

where we used that
∑
i aNij = 0 to obtain the last equality. Then by Gronwall’s

lemma, we obtain that
∑N
i=1x

N
i (t)− = 0, and hence that the solution is nonneg-

ative for each t ≥ 0. By a similar argument applied to (1−xNi (t))−, it follows

that xNi (t)≤ 1 for each 1≤ i≤N.

Using Lemma 2.2, we will prove pathwise uniqueness of weak solutions of

(2.6). Let X1,N = (x1,N
1 , . . . ,x1,N

N ) and X2,N = (x2,N
1 , . . . ,x2,N

N ) be two solutions

of (2.6) with the same initial conditions and the same Brownian motions. We

define

di
(
Xl,N(t)

)= aNijxl,Nj (t)+bNijxl,Nj (t)2, t ≥ 0, l= 1,2. (2.9)

Then

x1,N
i (t)−x2,N

i (t)=
∫ t

0

[
di
(
X1,N(s)

)−di(X2,N(s)
)]
ds

+
∫ t

0

[√
Nx1,N

i (s)
(
1−x1,N

i (s)
)

−
√
Nx2,N

i (s)
(
1−x2,N

i
)
(s)

]
dBi(s), i= 1, . . . ,N.

(2.10)

Since

〈X〉t =
∫ t

0

[√
Nx1,N

i (s)
(
1−x1,N

i (s)
)−√

Nx2,N
i (s)

(
1−x2,N

i
)
(s)

]2
ds,

∫ t
0

[√
Nx1,N

i (s)
(
1−x1,N

i (s)
)−√

Nx2,N
i (s)

(
1−x2,N

i
)
(s)

]2

x1,N
i (s)−x2,N

i (s)
1x1,N

i (s)−x2,N
i (s)>0

ds

≤
∫ t

0
2N1x1,N

i (s)−x2,N
i (s)>0

ds < 2Nt,

(2.11)
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(where we used that (
√
x(1−x)−√

y(1−y))/(x −y) < 2 for x,y ∈ [0,1],
x >y , which follows from L’Hospital rule), we can apply Lemma 2.2 to X(t)=
x1,N
i (t)−x2,N

i (t) with ρ(x) = x. Therefore, L0
t (x

1,N
i (s)−x2,N

i (s)) = 0 for all

i∈ {1, . . . ,N}.
By Tanaka’s formula,

∣∣x1,N
i (t)−x2,N

i (t)
∣∣= ∫ t

0
sgn

(
x1,N
i (s)−x2,N

i (s)
)(
di
(
X1,N(s)

)−di(X2,N(s)
))
ds

+
∫ t

0
sgn

(
x1,N
i (s)−x2,N

i (s)
)

×
[√
Nx1,N

i (s)
(
1−x1,N

i (s)
)

−
√
Nx2,N

i (s)
(
1−x2,N

i (s)
)]
dBi(s), i= 1, . . . ,N.

(2.12)

Since aNij and bNij are bounded, it follows that

E
N∑
i=1

∣∣x1,N
i (t)−x2,N

i (t)
∣∣≤ ∫ t

0
E
N∑
i=1

∣∣di(X1,N(s)
)−di(X2,N(s)

)∣∣ds
≤
∫ t

0
K(N)E

N∑
i=1

∣∣x1,N
i (s)−x2,N

i (s)
∣∣ds,

(2.13)

where K(N) is a constant depending on N. From Gronwall’s inequality, we

conclude that

E
d∑
i=1

∣∣x1,N
i (t)−x2,N

i (t)
∣∣= 0 (2.14)

for all t ≥ 0, thus proving pathwise uniqueness. By a classical theorem of

Yamada and Watanabe [20], this is sufficient for existence of a unique strong

solution of (2.6).

3. Tightness of the approximating processes. From Theorem 2.1, there ex-

ists a strong solution of the system approximating (1.4)

dxNi (t)=
∑

1≤j≤N
aNijx

N
j (t)+

∑
1≤j≤N

bNijx
N
j (t)

2+
√
NxNi (t)

(
1−xNi (t)

)
dBi(t),

xNi (0)= f
(
i
N

)
, i= 1,2, . . . ,N,

(3.1)
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where N ∈ N is fixed. We denote by uN(t,x) the polygonal approximation of

xNi (t)

uN(t,x)=XN
(
t,
[Nx]+1

N

)(
Nx−[Nx])

+XN
(
t,
[Nx]
N

)(
[Nx]+1−Nx), t ≥ 0, x ∈ [0,1],

(3.2)

where by definition, [y] = k/N for k/N ≤ y < (k+1)/N. Therefore, we have

XN(t,k/N)= xNk (t)=uN(t,k/N), 1≤ k≤N, and 0≤uN(t,x)≤ 1 for all t ≥ 0,

x ∈ [0,1].
Let pN(t,i/N,j/N), t ≥ 0, 0 ≤ i,j ≤ N+1, be the fundamental solution of

∆N , that is,

∂
∂t
pN

(
t,
i
N
,
j
N

)
=∆NpN

(
t,
i
N
,
j
N

)
, t > 0, 1≤ i,j ≤N,

pN
(

0,
i
N
,
j
N

)
=Nδij,

(3.3)

with the boundary conditions

pN
(
t,0,

j
N

)
= pN

(
t,
N+1
N

,
j
N

)
= 0, t > 0, 1≤ j ≤N. (3.4)

Then (3.1) is equivalent to the system (see [12])

xNi (t)=
N∑
j=1

1
N
pN

(
t,
i
N
,
j
N

)
xNj (0)

+
∫ t

0

 N∑
j=1

1
N
pN

(
t−s, i

N
,
j
N

)
b(i,j)xNj (s)

2

ds
+
∫ t

0

N∑
j=1

[
pN

(
t−s, i

N
,
j
N

)√
NxNj (s)

(
1−xNj (s)

)]
dBj(s), 1≤ i≤N,

(3.5)

where in the last integral we used that {(1/N)Bj(s), 1≤ j ≤N} is an indepen-

dent system of Brownian motions which we also denote by {Bj(s)}.
We define the rescaled polygonal interpolation GN of pN in [0,1] by

GN
(
t,x,

j
N

)
= pN

(
t,
[Nx]+1

N
,
j
N

)(
Nx−[Nx])

+pN
(
t,
[Nx]
N

,
j
N

)(
[Nx]+1−Nx). (3.6)
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Using (3.2) and (3.8), we obtain the following representation for the approxi-

mate solution. For x ∈ [i/N,(i+1)/N),

uN(t,x)=
N∑
j=1

1
N
GN

(
t,x,

j
N

)
uN

(
0,
j
N

)

+
∫ t

0

N∑
j=1

[
1
N
pN

(
t−s, i+1

N
,
j
N

)
b(i+1,j)xNj (s)

2(Nx−[Nx])
+ 1
N
pN

(
t−s, i

N
,
j
N

)
b(i,j)xNj (s)

2([Nx]+1−Nx)]ds
+
∫ t

0

N∑
j=1

GN
(
t−s,x, j

N

)√
NuN

(
s,
j
N

)(
1−uN

(
s,
j
N

))
dBj(s)ds

:=u(1)N (t,x)+u(2)N (t,x)+u(3)N (t,x).
(3.7)

Then uN(t,x) satisfies the boundary conditions in (1.4).

Theorem 3.1. For each T > 0, the sequence {uN(t,x), N ≥ 1} is tight in the

space C([0,T ],A), where A= C([0,1],[0,1]).
Proof. Using the fact that uN(t,x) ∈ [0,1], we obtain, as in the proofs of

[8, Lemma 2.2] and [8, Proposition 2.1], that for each T <∞ and p ∈ N, there

exists C = C(T ,p) > 0 such that

E
∣∣u(3)N (

t1,x
)−u(3)N (

t2,y
)∣∣2p ≤ C(∣∣t1−t2∣∣p/2+|x−y|p/2) (3.8)

for every t1, t2 ∈ [0,T ], x,y ∈ [0,1], and N ∈N, and that

lim
N→∞

sup
(t,y)∈[0,T ]×[0,1]

∣∣u(1)N (t,y)−u(t,y)∣∣= 0, (3.9)

where u(t,y) is the fundamental solution of ∆. Since

u(2)N
(
t,
k
N

)
=
∫ t

0

[
pN

(
t−s, k

N
,
k+1
N

)
xNk+1(s)

2−pN
(
t−s, k

N
,
k
N

)
xNk (s)

2
]
ds

(3.10)

and pN is a fundamental solution of ∆N , it follows that

∂
∂t
u(2)N

(
t,
k
N

)
=∆Nu(2)N

(
t,
k
N

)
+uN

(
t,
k+1
N

)2

−uN
(
t,
k
N

)2

. (3.11)
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Also, u(2)N (t,0)=u(2)N (t,1)= 0 by the boundary condition (3.8). Integration by

parts and an application of Gronwall’s inequality give, as in [12, Theorem 4.2],

max
1≤k≤N

∣∣∣∣u(2)N (
t,
k
N

)∣∣∣∣≤ e2t
∫ t

0
max

1≤k≤N

∣∣∣∣u(1)N (
s,
k
N

)
+u(3)N

(
s,
k
N

)∣∣∣∣ds. (3.12)

Hence, from the polygonal form of u(2)N and (3.8), (3.9), we obtain that for every

T <∞ and p ∈N, there exists C1 = C1(T ,p) > 0 such that

E
∣∣u(2)N (t1,x)−u(2)N (t2,y)

∣∣2p ≤ C1

(∣∣t1−t2∣∣p/2+|x−y|p/2) (3.13)

for every t1, t2 ∈ [0,T ], x,y ∈ [0,1], and N ∈ N. It follows from the multidi-

mensional Kolmogorov-Totoki criterion [18] that uN(t,x) ∈ C([0,T ],A) and

that the family {uN(t,x), N ∈ N} is tight in C([0,T ],A) for each positive T .

4. The martingale problem for the stochastic partial differential

equation. Since the sequence {uN(t,x), N ≥ 1} is tight by Theorem 3.1, there

exists a subsequence, which we denote again by {uNk(t,x)}, that converges

weakly in C([0,T ],A) to a limit v(t,x). By the Skorokhod’s representation

theorem, we can construct processes {vN(t,x)}, u(t,x) on some probability

space (Ω,�,{�t},P) such that {uN} �= {vN}, u �= v , and {vN(t,x)} converges

to u(t,x) uniformly on compact subsets of [0,T ]×R for any T > 0 as N →∞.

Obviously, u(t,x) satisfies the boundary conditions in (1.4). We will show that

u(t,x) is a weak solution of (1.4) by solving the corresponding martingale

problem.

Theorem 4.1. For any ϕ ∈ C2
c ,

�ϕ(t) :=
∫
[0,1]

u(t,x)ϕ(x)dx−
∫
[0,1]

u(0,x)ϕ(x)dx

−
∫
[0,1]

u(t,x)ϕ′′(x)dx−
∫ t

0

∫
[0,1]

u2(s,x)ϕ′(x)dx
(4.1)

is an {�t}-martingale with 〈�ϕ〉t =
∫ t
0

∫
[0,1] u(s,x)(1−u(s,x))ϕ2(x)dxds.

Proof. Using that

∑
n∈Z

an
(
bn+1−bn

)+∑
n∈Z

bn+1
(
an+1−an

)= 0 (4.2)
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and multiplying both sides of (2.1) byϕ(k/N)(1/N), we obtain, for fixedN ≥ 1,

�N
ϕ(t) :=

N∑
k=1

uN
(
t,
k
N

)
ϕ
(
k
N

)
1
N
−

N∑
k=1

uN
(

0,
k
N

)
ϕ
(
k
N

)
1
N

−
∫ t

0

N∑
k=1

∆NuN
(
s,
k
N

)
ϕ
(
k
N

)
1
N
−
∫ t

0

N∑
k=1

∇N
{
u2
N

(
s,
k
N

)}
ϕ
(
k
N

)
1
N

=
∑
k
vN

(
t,
k
N

)
ϕ
(
k
N

)
1
N
−
∑
k
vN

(
0,
k
N

)
ϕ
(
k
N

)
1
N

−
∫ t

0

∑
k
vN

(
s,
k
N

)
∆Nϕ

(
k
N

)
1
N
−
∫ t

0

∑
k
v2
N

(
s,
k
N

)
∇Nϕ

(
k
N

)
1
N

=
∑
k
ϕ
(
k
N

)
1
N

∫ t
0

√
NvN

(
s,
k
N

)(
1−vN

(
s,
k
N

))
dBk(s).

(4.3)

Hence, �N
ϕ(t) is a martingale because by (4.3), �N

ϕ(t) is the sum of a finite

number of martingales. Moreover, {�N
ϕ(t)} is uniformly integrable because

supN∈NE(�N
ϕ(t))2 <∞ uniformly in t ∈ [0,T ]. Indeed, since ϕ2 is integrable,

E
(
�N
ϕ(t)

)2 =
∑
k
ϕ2

(
k
N

)
1
N

∫ t
0

[
vN

(
s,
k
N

)(
1−vN

(
s,
k
N

))]
ds

≤ T
∑
k

1
N
ϕ2

(
k
N

)
<C(ϕ,T),

(4.4)

where C(ϕ,T) is a finite constant depending only on ϕ and T , but not on N.

Therefore, �N
ϕ(t)→�ϕ(t) as N →∞, where

�ϕ(t)=
∫
[0,1]

v(t,x)ϕ(x)dx−
∫
[0,1]

v(t,0)ϕ(x)dx

−
∫ t

0

∫ 1

0
v(s,x)ϕ′′(x)dxds−

∫ t
0

∫ 1

0
v2(s,x)ϕ′(x)dxds

(4.5)

is a martingale. From (4.3), we obtain the quadratic variation of �ϕ(t), which

is given by

〈
�N(ϕ)

〉
t =

〈∑
k
ϕ
(
k
N

)
1
N

∫ t
0

√
NvN

(
s,
k
N

)(
1−vN

(
s,
k
N

))
dBk(s)

〉
t

=
∫ t

0

∑
k
NvN

(
s,
k
N

)(
1−vN

(
s,
k
N

))
ϕ2

(
k
N

)
1
N2
ds.

(4.6)
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Hence, limN→∞〈�N(ϕ)〉t =
∫ t
0

∫
[0,1] v(s,x)(1−v(s,x))ϕ2(x)dxds = 〈�(ϕ)〉t ,

and the theorem is proved.

Now, we proceed to the proof of the main result.

Theorem 4.2. The processu(t,x) is a weak solution of the stochastic partial

differential equation (1.4).

Proof. To the quadratic variation 〈�(ϕ)〉t , there corresponds a martingale

measure �(dt,dx) with quadratic measure

ν(dxdt)=u(t,x)(1−u(t,x))dxdt (4.7)

(see [19]). Let W̃ be a white noise independent of � (defined possibly on an

extended probability space). We define

Wt(ϕ)=
∫
[0,1]

∫ t
0

1
u(s,x)

(
1−u(s,x))1{u(s,x)�∈{0,1}}ϕ(x)�(ds,dx)

+
∫
[0,1]

∫ t
0

1{u(s,x)∈{0,1}}ϕ(x)W̃(ds,dx).

(4.8)

Then Wt corresponds to a spacetime white noise W(ds,dx) such that

�t(ϕ)=
∫
[0,1]

∫ t
0

√
u(s,x)

(
1−u(s,x))ϕ(x)W(ds,dx). (4.9)

From (4.5), we conclude that u(t,x) satisfies (1.5), and hence that u(t,x) is a

weak solution of (1.4). The theorem is proved.
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