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We use the technique of updating the solution to suggest and analyze a class of new
splitting methods for solving general mixed variational inequalities. It is shown
that these modified methods converge for pseudomonotone operators, which is a
weaker condition than monotonicity. Our methods differ from the known three-
step forward-backward splitting of Glowinski, Le Tallec, and M. A. Noor for solving
various classes of variational inequalities and complementarity problems. Since
general mixed variational inequalities include variational inequalities and com-
plementarity problems as special cases, our results continue to hold for these
problems.
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1. Introduction. Variational inequalities theory is a branch of applicable

mathematics with a wide range of applications in industrial, physical, regional,

social, pure, and applied sciences. Variational inequalities have been extended

and generalized in different directions using new and novel techniques. A use-

ful and significant generalization is called the general mixed variational in-

equality or variational inequality of the second type. In recent years, several

numerical methods for solving variational inequalities have been developed.

It is a well-known fact that the projection method and its variant forms, in-

cluding the Wiener-Hopf equations, cannot be extended for mixed variational

inequalities involving the nonlinear terms. These facts motivated us to use the

technique of the resolvent operators. In this technique, the given operator is

decomposed into the sum of two (or more) monotone operators whose resol-

vents are easier to evaluate than the resolvent of the original operator. Such

type of methods is called the operators splitting methods. This can lead to

the development of very efficient methods since one can treat each part of

the original operator independently. In the context of variational inequalities,

Noor [11, 12, 16, 17] has used the resolvent operator technique to suggest and

analyze some two-step forward-backward splitting methods. A useful feature

of the forward-backward splitting methods for solving variational inequalities

is that the resolvent step involves the subdifferential of the proper, convex,
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and lower semicontinuous part only, and other parts facilitate the problem

decomposition. If the nonlinear term involving the general mixed variational

inequalities is proper, convex, and lower semicontinuous, then it has been

shown that the general mixed variational inequalities are equivalent to the

fixed-point and resolvent equations. These alternative formulations have been

used to develop a number of iterative-type methods for solving mixed varia-

tional inequalities. Noor [11, 12, 15, 16, 17] used the technique of updating the

solution in conjunction with resolvent operator technique to suggest a num-

ber of splitting-type algorithms for various classes of variational inequalities.

It has been shown that the convergence of such type of splitting and predictor-

corrector type algorithms requires the partially relaxed strong monotonicity,

which is a weaker condition than cocoercivity. In this note, we suggest and

analyze a new class of forward-backward splitting algorithms for a class of

general mixed variational inequalities by modifying the associated fixed-point

equation. The new splitting methods are self-adaptive type methods involving

the line search strategy, where the step size depends upon the resolvent equa-

tion, and the searching direction is a combination of the resolvent residue and

the modified extraresolvent direction. Our results include the previous results

of Noor [11, 12, 15, 16, 17] for solving different classes of variational inequali-

ties as special cases. Our methods are different from those of Glowinski and Le

Tallec [4], which they suggested by using the Lagrange multiplier technique.

Haubruge et al. [6] have studied the convergence analysis of the three-step

schemes of Glowinski and Le Tallec [4] and applied these three-step iterations

to obtain new splitting-type algorithms for solving variational inequalities, sep-

arable convex programming, and minimization of a sum of convex functions.

They have also proved that three-step iterations lead to highly parallelized al-

gorithms under certain conditions. Using essentially the techniques developed

in [4, 6], one can obtain several new algorithms for solving variational inequal-

ities from our results. Our results can be viewed as novel applications of the

technique of updating the solution as well as a refinement and improvement

of previously known results.

2. Preliminaries. Let H be a real Hilbert space whose inner product and

norm are denoted by 〈·,·〉 and ‖·‖, respectively. Let K be a nonempty closed

convex set in H. Let ϕ :H → R∪{+∞} be a function.

For given nonlinear operators T ,g :H →H, consider the problem of finding

u∈H such that

〈
Tu,g(v)−g(u)〉+ϕ(g(v))−ϕ(g(u))≥ 0, ∀g(v)∈H. (2.1)

The inequality of type (2.1) is called the general mixed variational inequality

or the general variational inequality of the second kind. If the function ϕ(·)
is a proper, convex, and lower semicontinuous function, then problem (2.1) is
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equivalent to finding u∈H such that

0∈ Tu+∂ϕ(g(u)), (2.2)

which is known as the problem of finding a zero of the sum of two (maximal)

monotone operators and has been studied extensively in recent years.

We remark that if g ≡ I, where I is the identity operator, then problem (2.1)

is equivalent to finding u∈H such that

〈Tu,v−u〉+ϕ(v)−ϕ(u)≥ 0, ∀v ∈H, (2.3)

which is called the mixed variational inequality. It has been shown that a

wide class of linear and nonlinear problems arising in finance, economics, cir-

cuit and network analysis, elasticity, optimization, and operations research

can be studied via the mixed variational inequalities (2.1) and (2.3). For the

applications, numerical methods, and formulations, see [1, 2, 3, 4, 5, 6, 9, 10,

11, 12, 15, 16, 20].

We note that if ϕ is the indicator function of a closed convex set K in H,

that is,

ϕ(u)≡ IK(u)=



0, if u∈K,
+∞, otherwise,

(2.4)

then problem (2.1) is equivalent to finding u∈H, g(u)∈K such that

〈
Tu,g(v)−g(u)〉≥ 0 ∀g(v)∈K. (2.5)

The inequality of type (2.5) is known as the general variational inequality,

which was introduced and studied by Noor [7]. It turned out that the odd-

order and nonsymmetric free, unilateral, obstacle, and equilibrium problems

can be studied by the general variational inequality (2.5), see [7, 8, 9, 14, 18].

From now on, we assume that the operator g is onto K and g−1 exists unless

otherwise specified.

If K∗ = {u∈H : 〈u,v〉 ≥ 0, for all v ∈K} is a polar cone of a convex cone K
in H, then problem (2.5) is equivalent to finding u∈H such that

g(u)∈K, Tu∈K∗, 〈
Tu,g(u)

〉= 0, (2.6)

which is known as the general complementarity problem, which was intro-

duced and studied by Noor [7]. We note that if g(u) = u−m(u), where m is

a point-to-point mapping, then problem (2.6) is called the quasi-implicit com-

plementarity problem, see the references for the formulation and numerical

methods.

For g ≡ I, where I is the identity operator, problem (2.5) collapses to finding

u∈K such that

〈Tu,v−u〉 ≥ 0, ∀v ∈K, (2.7)
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which is called the standard variational inequality, introduced and studied by

Stampacchia [19]. For the recent state of the art, see the references.

It is clear that problems (2.3), (2.5), (2.6), and (2.7) are special cases of the

general mixed variational inequality (2.1). In brief, for a suitable and appro-

priate choice of the operators T , g, and ϕ and the space H, one can obtain

a wide class of variational inequalities and complementarity problems. This

clearly shows that problem (2.1) is a quite general and unifying one. Further-

more, problem (2.1) has important applications in various branches of pure

and applied sciences, see the references.

We now recall some well-known concepts and results.

Definition 2.1. For all u,v,z ∈H, an operator T :H →H is said to be

(i) g-monotone if

〈
Tu−Tv,g(u)−g(v)〉≥ 0; (2.8)

(ii) g-pseudomonotone if

〈
Tu,g(v)−g(u)〉≥ 0 �⇒ 〈Tv,g(v)−g(u)〉≥ 0. (2.9)

For g ≡ I, where I is the identity operator, Definition 2.1 reduces to the

classical definition of monotonicity and pseudomonotonicity. It is known that

monotonicity implies pseudomonotonicity but the converse is not true, see

[2]. Thus we conclude that the concept of pseudomonotonicity is weaker than

monotonicity.

Definition 2.2. If A is maximal monotone operator on H, then, for a con-

stant ρ > 0, the resolvent operator associated with A is defined as

JA(u)= (I+ρA)−1(u), ∀v ∈H, (2.10)

where I is the identity operator. It is well known that the operatorA is maximal

monotone if and only if the resolvent operator JA is defined everywhere on the

space. The operator JA is single valued and nonexpansive.

Remark 2.3. It is well known that the subdifferential ∂ϕ of a proper, con-

vex, and lower semicontinuous function ϕ :H → R∪{∞} is a maximal mono-

tone operator, so

Jϕ(u)= (I+∂ϕ)−1(u), ∀u∈H, (2.11)

is the resolvent operator associated with ∂ϕ and is defined everywhere.
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Lemma 2.4. For a given z ∈H, u∈H satisfies

〈u−z,v−u〉+ρϕ(v)−ρϕ(u)≥ 0, ∀v ∈H, (2.12)

if and only if

u= Jϕz, (2.13)

where Jϕ is the resolvent operator.

We remark that if the proper, convex, and lower semicontinuous function

ϕ is an indicator function of closed convex set K in H, then Jϕ ≡ PK , the

projection of H onto K. In this case, Lemma 2.4 is equivalent to the projection

lemma, see [1].

3. Main results. In this section, we use the resolvent operator technique

to suggest a modified resolvent method for solving general mixed variational

inequalities of type (2.1). For this purpose, we need the following result, which

can be proved using Lemma 2.4.

Lemma 3.1. The general mixed variational inequality (2.1) has a solution

u∈H if and only if u∈H satisfies

g(u)= Jϕ
[
g(u)−ρTu], (3.1)

where Jϕ = (I+ρ∂ϕ)−1 is the resolvent operator.

Lemma 3.1 implies that problems (2.1) and (3.1) are equivalent. This alterna-

tive equivalent formulation has played an important part in suggesting several

iterative methods for solving general mixed variational inequalities and related

problems, see [4, 5, 6, 11, 12, 14, 15, 16, 17].

In recent years, the technique of updating the solution has been used to

suggest and analyze a number of iterative methods for solving variational in-

equalities. The main idea in this technique is to modify the resolvent method

by performing an additional step forward and a resolvent at each iteration.

Using the technique of updating the solution, one can rewrite (3.1) in the form

g(u)= Jϕ
[
g(w)−ρTw], (3.2)

g(w)= Jϕ
[
g(y)−ρTy], (3.3)

g(y)= Jϕ
[
g(u)−ρTu]. (3.4)

Invoking Lemma 3.1, one can easily show that u∈H is a solution of (2.1) if

and only if u∈H is a zero of the equation

g(u)−Jϕ
[
g(w)−ρTw]= 0. (3.5)
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We now define the resolvent residue vector by

R(u)= g(u)−Jϕ
[
g(y)−ρTy]≡ g(u)−g(w), (3.6)

where g(y) is defined by (3.4) and g(w) by (3.3).

From Lemma 3.1, it follows that u ∈ H is a solution of (2.1) if and only if

u∈H is a zero of the equation

R(u)= 0. (3.7)

The above fixed-point formulation is used to suggest and analyze the following

iterative methods for solving general mixed variational inequalities (2.1).

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solution

un+1 by the iterative schemes

g
(
yn
)= Jϕ

[
g
(
un
)−ρTun

]
,

g
(
wn
)= Jϕ

[
g
(
yn
)−ρTyn

]
,

g
(
un+1

)= Jϕ
[
g
(
wn
)−ρTwn

]
, n= 0,1,2, . . . ,

(3.8)

which is known as the predictor-corrector method, see Noor [16].

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solution

un+1 by the iterative scheme

g
(
un+1

)= Jϕ
[
I−ρTg−1]Jϕ

[
I−ρTg−1]Jϕ

[
I−ρTg−1]g(un

)
, n= 0,1,2, . . . ,

(3.9)

which is known as the three-step forward-backward splitting algorithm. Note

that the order of T and Jϕ has not been changed. This method is compatible

with the three-step forward-backward splitting algorithm of Glowinski and Le

Tallec [4]. For the convergence analysis of Algorithm 3.3, see Noor [16] and

Haubruge et al. [6].

By rearranging the terms, one can use the fixed-point formulation (3.2), (3.3),

and (3.4) to suggest and analyze the following method for solving the general

mixed variational inequalities of type (2.1).

Algorithm 3.4. For a given u0 ∈H, compute un+1 by the iterative scheme

g
(
un+1

)= (I+ρTg−1)−1{Jϕ
[
I−ρTg−1]Jϕ

[
I−ρTg−1]Jϕ

[
I−ρTg−1]

+ρTg−1}g(un
)
, n= 0,1,2, . . . ,

(3.10)

which is again a three-step forward-backward splitting-type method and can

be considered as a generalization of an algorithm of Tseng [20] and Noor [16].

Noor [13] has studied the convergence of Algorithms 3.2, 3.3, and 3.4 for the
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partially relaxed strongly monotone operator, which is a weaker condition than

cocoercivity.

In this note, we suggest another method involving the line search strategy,

which includes these splitting-type methods as special cases.

For a given positive constant α, we rewrite (3.1), using (3.2), (3.3), and (3.4),

in the following form:

g(u)= Jϕ
[
g(u)−α{g(u)−g(w)+ρTw}]

= Jϕ
[
g(u)−α{R(u)+ρTw}]

= Jϕ
[
g(u)−αd(u)],

(3.11)

where

d(u)= R(u)+ρTw ≡ R(u)+ρTg−1Jϕ
[
g(y)−ρTy]. (3.12)

This fixed-point formulation enables us to suggest the following iterative

method for general mixed variational inequalities of type (2.1).

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution

un+1 by the following iterative schemes.

Predictor step

g
(
yn
)= Jϕ

[
g
(
un
)−ρnTun

]
,

g
(
wn
)= Jϕ

[
g
(
yn
)−ρnTyn

]
,

(3.13)

where ρn satisfies

ρn
〈
Tun−Twn,R

(
un
)〉≤ σ∥∥R(un

)∥∥2, σ ∈ (0,1). (3.14)

Corrector step

g
(
un+1

)= Jϕ
[
g
(
un
)−αnd

(
un
)]
, n= 0,1,2, . . . , (3.15)

where

d
(
un
)= R(un

)+ρnTwn

= R(un
)+ρnTg−1Jϕ

[
g
(
yn
)−ρnTyn

]
,

(3.16)

αn =
〈
R
(
un
)
,D
(
un
)〉

∥∥d(un
)∥∥2 , (3.17)

D
(
un
)= R(un

)−ρnTun+ρnTwn

= R(un
)−ρnTun+ρnTg−1Jϕ

[
g
(
yn
)−ρnTyn

]
,

(3.18)

where αn is the corrector step size.
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If the proper, convex, and lower semicontinuous function ϕ is an indicator

function of a closed convex set K in H, then Jϕ ≡ PK , the projection of H onto

K, and, consequently, Algorithm 3.5 collapses to the following algorithm.

Algorithm 3.6. For a given u0 ∈ H, compute the approximate solution

un+1 by the following iterative schemes.

Predictor step

g
(
yn
)= PK

[
g
(
un
)−ρnTun

]
,

g
(
wn
)= PK

[
g
(
yn
)−ρnTyn

]
,

(3.19)

where ρn satisfies

ρn
〈
Tun−Twn,R

(
un
)〉≤ σ∥∥R(un

)∥∥2, σ ∈ (0,1). (3.20)

Corrector step

g
(
un+1

)= PK
[
g
(
un
)−αnd1

(
un
)]
, n= 0,1,2, . . . , (3.21)

where

d1
(
un
)= R(un

)+ρnTwn,

αn =
〈
R
(
un
)
,D1

(
un
)〉

∥∥d1
(
un
)∥∥2 ,

D1
(
un
)= R(un

)−ρnTun+ρnTwn.

(3.22)

Algorithm 3.6 appears to be a new one even for general variational inequality

(2.5). Note that, for αn = 1, Algorithm 3.5 is exactly Algorithm 3.2, which is

mainly due to Noor [16]. For g ≡ I, where I is the identity operator, we obtain

new improved versions of algorithms for variational inequalities and related

optimization problems. This clearly shows that Algorithm 3.5 is a unifying one

and includes several known and new algorithms as special cases.

For the convergence analysis of Algorithm 3.5, we need the following results.

Lemma 3.7. If ū∈H is a solution of (2.1) and T is g-pseudomonotone, then

〈
g(u)−g(ū),d(u)〉≥ (1−σ)∥∥R(u)∥∥2, ∀u∈H. (3.23)

Proof. Let ū∈H be a solution of (2.1). Then

〈
Tū,g(v)−g(ū)〉+ϕ(g(v))−ϕg(ū)≥ 0, ∀v ∈H, (3.24)
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which implies

〈
Tv,g(v)−g(ū)〉+ϕ(g(v))−ϕ(g(ū))≥ 0 (3.25)

since T is g-pseudomonotone.

Taking g(v)= Jϕ[g(y)−ρTy]= g(w) in (3.25), we have

〈
Tw,g(w)−g(ū)〉+ϕ(g(w))−ϕ(g(ū))≥ 0, (3.26)

from which we have

〈
g(u)−g(ū),ρTw〉≥ ρ〈R(u),Tw〉+ρϕ(g(ū))−ϕ(g(w)). (3.27)

Setting u= g(w), z = g(u)−ρTu, and v = g(ū) in (2.12), we have

〈
g(w)−g(u)+ρTu,g(ū)−g(w)〉+ρϕ(g(ū))−ρϕ(g(w))≥ 0, (3.28)

from which we obtain

〈
g(u)−g(ū),R(u)〉≥ 〈R(u),R(u)−ρTu〉−ρϕ(g(ū))+ρϕ(g(w))

+ρ〈Tu,g(u)−g(ū)〉

≥ 〈R(u),R(u)−ρTu〉−ρϕ(g(ū))+ρϕ(g(w)),
(3.29)

where we have used the fact that the operator T is pseudomonotone.

Adding (3.27) and (3.29), we have

〈
g(u)−g(ū),R(u)+ρTw〉= 〈g(u)−g(ū),d(u)〉

≥ 〈R(u),D(u)〉

= 〈R(u),R(u)−ρTu+ρTw〉

≥ ∥∥R(u)∥∥2−ρ〈R(u),Tu−Tw〉

≥ (1−σ)∥∥R(u)∥∥2
using (3.14),

(3.30)

which is the required result.

Lemma 3.8. Let ū∈H be a solution of (2.1) and let un+1 be the approximate

solution obtained from Algorithm 3.5. If T is g-pseudomonotone, then

∥∥g(un+1
)−g(ū)∥∥2 ≤ ∥∥g(un

)−g(ū)∥∥2− (1−σ)
2
∥∥R(un

)∥∥4

∥∥d(un
)∥∥2 . (3.31)
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Proof. From (3.15), (3.17), (3.23), and the second line of (3.30), we have

∥∥g(un+1
)−g(ū)∥∥2 ≤ ∥∥g(un

)−g(ū)−αnd
(
un
)∥∥2

≤ ∥∥g(un
)−g(ū)∥∥2−2αn

〈
g
(
un
)−g(ū),d(un

)〉

+α2
n
∥∥d(un

)∥∥2

≤ ∥∥g(un
)−g(ū)∥∥2−αn

〈
R
(
un
)
,D
(
un
)〉

≤ ∥∥g(un
)−g(ū)∥∥2−αn(1−σ)

∥∥R(un
)∥∥2

≤ ∥∥g(un
)−g(ū)∥∥2− (1−σ)

2
∥∥R(un

)∥∥4

∥∥d(un
)∥∥2 ,

(3.32)

which is the required result.

Theorem 3.9. Let g :H →H be invertible and let H be a finite-dimensional

space. If un+1 is the approximate solution obtained from Algorithm 3.5 and

ū∈H is a solution of (2.1), then limn→∞un = ū.

Proof. Let ū ∈ H be a solution of (2.1). From (3.31), it follows that the

sequence {‖g(ū)−g(un)‖} is nonincreasing and, consequently, {g(un)} is

bounded. Under the assumptions of g, it follows that the sequence {un} is

also bounded. Furthermore, we have

∞∑

n=0

(1−σ)2∥∥R(un
)∥∥4

∥∥d(un
)∥∥2 ≤ ∥∥g(u0

)−g(ū)∥∥2, (3.33)

which implies that

lim
n→∞R

(
un
)= 0. (3.34)

Let û be the cluster point of {un}, and the subsequence {unj} of the sequence

{un} converges to û∈H. Since R(u) is continuous, so

R(û)= lim
j→∞

R
(
unj

)= 0, (3.35)

which implies that û solves the general mixed variational inequality (2.1) by

invoking Lemma 3.1. From (3.31) and (3.34), it follows that

∥∥g(un+1
)−g(ū)∥∥2 ≤ ∥∥g(un

)−g(ū)∥∥2. (3.36)

Thus it follows from the above inequality that the sequence {un} has exactly

one cluster point û and

lim
n→∞g

(
un
)= g(û). (3.37)
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Since g is invertible, so

lim
n→∞

(
un
)= û, (3.38)

which is the required result.
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