
IJMMS 2003:45, 2863–2872
PII. S0161171203202386

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

A NEW CHARACTERIZATION OF SOME ALTERNATING
AND SYMMETRIC GROUPS

AMIR KHOSRAVI and BEHROOZ KHOSRAVI

Received 5 February 2002

We suppose that p = 2α3β +1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime num-
ber. Then we prove that the simple groups An, where n = p,p+1, or p+2, and
finite groups Sn, where n = p,p+1, are also uniquely determined by their order
components. As corollaries of these results, the validity of a conjecture of J. G.
Thompson and a conjecture of Shi and Bi (1990) both on An, where n= p,p+1, or
p+2, is obtained. Also we generalize these conjectures for the groups Sn, where
n= p,p+1.
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1. Introduction. Let G be a finite group. We denote by π(G) the set of all

prime divisors of |G|. We construct the prime graph of G as follows. The prime

graph Γ(G) of a groupG is the graph whose vertex set isπ(G), and two distinct

primes p and q are joined by an edge (we write p ∼ q) if and only if G contains

an element of order pq. Let t(G) be the number of connected components of

Γ(G) and letπ1,π2, . . . ,πt(G) be the connected components of Γ(G). If 2∈π(G),
then we always suppose that 2∈π1.

Now |G| can be expressed as a product of coprime positive integers mi,

i= 1,2, . . . , t(G), where π(mi)=πi. These integers are called the order compo-

nents of G. The set of order components of G will be denoted by OC(G). Also

we callm2, . . . ,mt(G) the odd-order components of G. The order components of

non-abelian simple groups having at least three prime graph components are

obtained by Chen [7, Tables 1, 2, 3]. Similarly, the order components of non-

abelian simple groups with two-order components can be obtained by using

the tables in [18, 28].

The following groups are uniquely determined by their order components:

Suzuki-Ree groups [6], Sporadic simple groups [4], PSL2(q) [7], E8(q) [2],G2(q),
where q ≡ 0(mod3) [3], F4(q), where q is even [15], PSL3(q), where q is an odd

prime power [14], PSL3(q), where q = 2n [13], PSU3(q), where q > 5 [16], and

Ap , where p and p−2 are primes [12].

It was proved by Oyama [20] that a finite group which has the same table of

characters as an alternating group An is isomorphic to An. It was also proved

by Koike [17] that a finite group which has the isomorphic subgroup-lattice as

an alternating group An is isomorphic to An.
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Let πe(G) denote the set of orders of elements in G. Shi and Bi [27] proved

that if πe(G) = πe(An) and |G| = |An|, then G � An. Iranmanesh and Alavi

[12] proved that if p and p−2 are primes and OC(G)=OC(Ap), then G �Ap .

Praeger and Shi [21] and Shi and Bi [26] proved that A8, A9, A11, A13, S7, and

S8 are characterizable by their element orders. Also recently, Kondrat’ev and

Mazurov [19] and Zavarnitsin [29] proved that if πe(G) = πe(An), where n =
s,s+1,s+2 and s is a prime number, then G �An.

Now we prove the following theorems.

Theorem 1.1. Let p = 2α3β+1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime

number. Let M = An, where n = p,p+1,p+2. Then OC(G) = OC(M) if and

only if G �M .

Theorem 1.2. Let p = 2α3β+1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime

number. Let M = Sn, where n = p,p+1. Then OC(G) = OC(M) if and only if

G �M .

In this paper, all groups are finite and by simple groups we mean non-abelian

simple groups. All further unexplained notations are standard and we refer,

for example, to [10]. Also frequently we use the results of Williams [28] and

Kondrat’ev [18] about the prime graph of simple groups.

2. Preliminary results

Remark 2.1. Let N be a normal subgroup of G and p ∼ q in Γ(G/N). Then

p ∼ q in Γ(G). In fact if xN ∈ G/N has order pq, then there is a power of x
which has order pq.

Definition 2.2 (see [11]). A finite group G is called a 2-Frobenius group if

it has a normal series 1�H � K �G, where K and G/H are Frobenius groups

with kernels H and K/H, respectively.

Lemma 2.3 (see [28, Theorem A]). If G is a finite group with its prime graph

having more than one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;

(b) a simple group;

(c) an extension of a π1-group by a simple group;

(d) an extension of a simple group by a π1-solvable group;

(e) an extension of a π1-group by a simple group by a π1-group.

Lemma 2.4 (see [28, Lemma 3]). If G is a finite group with more than one

prime graph component and has a normal series 1 � H � K � G such that H
and G/K are π1-groups and K/H is a simple group, thenH is a nilpotent group.

The next lemma follows from [1, Theorem 2].

Lemma 2.5. Let G be a Frobenius group of even order and let H, K be Frobe-

nius complement and Frobenius kernel of G, respectively. Then t(Γ(G)) = 2,
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and the prime graph components of G are π(H), π(K) and G has one of the

following structures:

(a) 2∈π(K) and all Sylow subgroups of H are cyclic;

(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow sub-

groups of odd order of H are cyclic groups, and the 2-Sylow subgroups

of H are cyclic or generalized quaternion groups;

(c) 2 ∈ π(H), K is an abelian group, and there exists H0 ≤ H such that

|H :H0| ≤ 2, H0 = Z×SL(2,5), (|Z|,2.3.5)= 1, and the Sylow subgroups

of Z are cyclic.

The next lemma follows from [1, Theorem 2] and Lemma 2.4.

Lemma 2.6. Let G be a 2-Frobenius group of even order. Then t(Γ(G)) = 2

and G has a normal series 1�H �K �G such that

(a) π1 =π(G/K)∪π(H) and π(K/H)=π2;

(b) G/K and K/H are cyclic, |G/K| divides |Aut(K/H)|, (|G/K|,|K/H|)= 1,

and |G/K|< |K/H|;
(c) H is nilpotent and G is a solvable group.

Lemma 2.7 (see [8, Lemma 8]). Let G be a finite group with t(Γ(G))≥ 2 and

let N be a normal subgroup of G. If N is a πi-group for some prime graph

component of G and m1,m2, . . . ,mr are some order components of G but not a

πi-number, then m1m2 ···mr is a divisor of |N|−1.

The next lemma follows from [5, Lemma 1.4].

Lemma 2.8. Suppose thatG andM are two finite groups satisfying t(Γ(M))≥
2, N(G) = N(M), where N(G) = {n | G has a conjugacy class of size n}, and

Z(G)= 1. Then |G| = |M|.
Lemma 2.9 (see [5, Lemma 1.5]). Let G1 and G2 be finite groups satisfy-

ing |G1| = |G2| and N(G1) = N(G2). Then t(Γ(G1)) = t(Γ(G2)) and OC(G1) =
OC(G2).

Lemma 2.10. Let G be a finite group and let M be a non-abelian finite group

with t(M)= 2 satisfying OC(G)=OC(M).
(1) Let |M| =m1m2, OC(M)= {m1,m2}, and π(mi)=πi for i= 1,2. Then

|G| =m1m2 and one of the following holds:

(a) G is a Frobenius or 2-Frobenius group;

(b) G has a normal series 1�H �K �G such thatG/K is aπ1-group,H is

a nilpotent π1-group, and K/H is a non-abelian simple group. More-

over, OC(K/H) = {m′
1,m

′
2, . . . ,m′

s ,m2}, |K/H| = m′
1m

′
2 ···m′

sm2,

and m′
1m

′
2 ···m′

s |m1, where π(m′
j)=π ′j , 1≤ j ≤ s.

(2) In case (b), |G/K| | |Out(K/H)|.

Proof. The proof of (1) follows from the above lemmas. Since t(G)≥ 2, we

have t(G/H)≥ 2. Otherwise t(G/H)= 1, so that t(G)= 1. SinceH is aπi-group,
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Table 2.1

p Finite simple Cpp groups

2

A5, A6;
L2(q), where q is a Fermat prime, a Mersenne prime, or q = 2n, n≥ 3,
L3(22), Sz(22n+1), n≥ 1

3
A5, A6;
L2(q), where q = 23, 3n+1, or 2.3n±1 which is a prime, n≥ 1, L3(22)

5

A5, A6, A7; M11, M22;
L2(q), where q = 72, 5n, or 2.5n±1 which is a prime, n ≥ 1, L3(22),
S4(q), q = 3, 7, U4(3);
Sz(q), q = 23, 25

7

A7, A8, A9; M22, J1, J2, HS;
L2(q), q = 23, 7n, or 2.7n−1 which is a prime, n ≥ 1, L3(22), S6(2),
O+8 (2), G2(q), q = 3, 19;
U3(q), q = 3, 5, 19; U4(3), U6(2), Sz(23)

13

A13, A14, A15; Suz, Fi22;
L2(q), q = 33, 52, 13n, or 2.13n −1 which is a prime, n ≥ 1, L3(3),
L4(3), O7(3), S4(5), S6(3), O+8 (3), G2(q), q = 23, 3;
F4(2), U3(q), q = 22, 23, Sz(23), 3D4(2), 2E6(2), 2F4(2)′

17

A17, A18, A19; J3, He, Fi23, Fi′24;
L2(q), q = 24, 17n, 2.17n ±1 which is a prime, n ≥ 1, S4(4), S8(2),
F4(2), O−8 (2), O

−
10(2),

2E6(2)

19

A19, A20, A21;
J1, J3,O′N, Th,HN; L2(q), q = 19n, 2.19n−1 which is a prime, n≥ 1,
L3(7), U3(23), R(33), 2E6(2)

37
A37, A38, A39; J4, Ly ;
L2(q), q = 37n, 2.37n−1 which is a prime, n≥ 1,
U3(11), R(33), 2F4(23)

73

A73, A74, A75;
L2(q), q = 73n, 2.73n − 1 which is a prime, n ≥ 1, L3(23), S6(23),
G2(q), q = 23, 32;
F4(3), E6(2), E7(2), U3(32), 3D4(3)

109
A109, A110, A111;
L2(q), q = 109n, 2.109n−1 which is a prime, n≥ 1, 2F4(23)

p = 2m+1,

m= 2s

Ap , Ap+1, Ap+2;

L2(q), q = 2m, pk, 2·pk±1 which is a prime, s ≥ k≥ 1, Sa(2b),
a = 2c+1 and b = 2d, c ≥ 1, c + d = s, F4(2e), e ≥ 1, 4e = 2s ,
O−2(m+1)(2), s ≥ 2, O−a (2b), c ≥ 2, c+d= s

Other Ap , Ap+1, Ap+2; L2(q), q = pk, 2·pk−1 which is a prime, k≥ 1

we arrive at a contradiction. Moreover, we have Z(G/H)= 1. For anyxH ∈G/H
and xH 
∈K/H, xH induces an automorphism of K/H and this automorphism
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is trivial if and only if xH ∈ Z(G/H). Therefore, G/K ≤ Out(K/H) and since

Z(G/H)= 1, (2) follows.

Definition 2.11. A group G is called a Cpp group if the centralizers of its

elements of order p in G are p-groups.

Lemma 2.12 (see [9]). Let p be a prime and p = 2α3β+1, α ≥ 0 and β ≥ 0.

Then any finite simple Cpp group is given by Table 2.1.

3. Characterization of some alternating and symmetric groups. In the se-

quel, we suppose that p = 2α3β+1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime

number.

Lemma 3.1. Let G be a finite group and let M be An, where n = p,p+1, or

p+2, or Sn, wheren= p,p+1. If OC(G)=OC(M), thenG is neither a Frobenius

group nor a 2-Frobenius group.

Proof. If G is a Frobenius group, then by Lemma 2.5, OC(G) = {|H|,|K|},
where K and H are Frobenius kernel and Frobenius complement of G, respec-

tively. Since |H| | |K| − 1, we have |H| < |K|. Therefore, 2 � |H|, and hence

2 | |K|. So, |H| = p,|K| = |G|/p. We claim that there exists a prime p′ such

that 3n/4<p′. Note that p ≤n, and hence p′2 � |An|. Let β(n) be the number

of prime numbers less than or equal to n. In fact, by [22, Theorem 2] we have

n
logn−1/2

< β(n) <
n

logn−3/2
, (3.1)

where n≥ 67. Thus

β(n)−β
(

3n
4

)
>

n
logn−1/2

− 3n/4
log(3n/4)−3/2

. (3.2)

When n ≥ 405, we get β(n)−β(3n/4) > 1, and for n < 405, we can imme-

diately obtain the result by checking the table of prime numbers. Now let P ′

be the p′-Sylow subgroup of K. Since K is nilpotent, P ′ � G. Then p | p′ −1,

by Lemma 2.7, which is a contradiction since p′ < p. Therefore, G is not a

Frobenius group.

Now letG be a 2-Frobenius group. By Lemma 2.6, there is a normal series 1�
H � K �G such that |K/H| = p and |G/K|<p. So, |H| 
= 1 since |G| = |G/K|·
|K/H|·|H|. Since 2 | |H|, let p′ be as above and let P ′ be the p′-Sylow subgroup

of H. Now, p | p′−1, which is impossible. Hence, G is not a 2-Frobenius group.

Lemma 3.2. Let G be a finite group and M = An, where n = p,p + 1, or

p+2, or Sn, where n= p,p+1. If OC(G)=OC(M), then G has a normal series

1�H �K �G such that H and G/K are π1-groups and K/H is a simple group.

Moreover, the odd-order component of M is equal to an odd-order component

of K/H. In particular, t(Γ(K/H)) ≥ 2. Also |G/H| divides |Aut(K/H)|, and in

fact G/H ≤Aut(K/H).
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Proof. The first part of the lemma follows from the above lemmas since

the prime graph of M has two prime graph components. For primes p and q,

if K/H has an element of order pq, then G has one. Hence, by the definition of

prime graph component, the odd-order component of G must be an odd-order

component of K/H. Since K/H �G/H and CG/H(K/H)= 1, we have

G/H = NG/H(K/H)
CG/H(K/H)

� T , T ≤Aut(K/H). (3.3)

Theorem 3.3. Let p = 2α3β+1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime

number. Let M = An, where n = p,p+1,p+2. Then OC(G) = OC(M) if and

only if G �M .

Proof. By Lemma 3.2, G has a normal series 1 � H � K � G such that

π(H)
⋃
π(G/K)⊂π1, K/H is a non-abelian simple group, t(Γ(K/H))≥ 2, and

the odd-order component of M is an odd-order component of K/H. There-

fore, K/H is a finite simple Cpp group. Now using Table 2.1, we consider each

possibility of K/H separately.

In the sequel, we frequently use the results of [28, Table I] and [18, Tables

2, 3].

Step 1. Let p = 7,13,17,19,37,73, or 109.

Since the proofs of these cases are similar, we state only one of them, say

p = 13. Using Table 2.1, we have

(1) K/H � Suz or Fi22. It is a contradiction since 37 | |Suz| and 39 | |Fi22|
but 37 � |An|, where n= 13,14,15;

(2) K/H � L2(27), L2(25), L3(3), L4(3), Sz(8), 2F4(2)′, or U3(4). If K/H �
L2(27), then |G|/|K/H|=|H|·|G/K| 
= 1. By Lemma 2.6, |G/K| | |Out(K/
H)| = 6. So, |H| 
= 1. Let P be the 5-Sylow subgroup of H. But since H
is nilpotent, P �G. Hence, 13 | (|P |−1), which is a contradiction. Other

cases are similar;

(3) K/H � L2(13r ) or L2(2.13r −1), where 2.13r −1 is a prime, r ≥ 1. Note

that 132 � |G|, hence r = 1. So, K/H � L2(13) or L2(25), and we can

proceed similar to (2);

(4) K/H �O7(3). It is a contradiction since 39 | |O7(3)| but 39 � |An|;
(5) K/H � S4(5) or S6(3). It is a contradiction since 54 | |S4(5)| but 54 � |An|.

Also 39 | |S6(3)| but 39 � |An|;
(6) K/H �O+8 (3). It is a contradiction since 312 | |O+8 (3)| but 312 � |An|;
(7) K/H � G2(3) or G2(8). If K/H � G2(3), then we get a contradiction

since for n = 13,14 we have 36 | |G2(3)| but 36 � |An|. For n = 15,

since |Out(G2(3))| = 2, we have |H| 
= 1. Now we proceed similar to

(2). If K/H � G2(8), then we get a contradiction since 218 | |G2(8)| but

218 � |An|;
(8) K/H � F4(2). It is a contradiction since 17 | |F4(2)| but 17 � |An|;
(9) K/H �U3(23). It is a contradiction since 23 | |U3(23)| but 23 � |An|;
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(10) K/H � 3D4(2) or 2E6(2). It is a contradiction since 212 � |An|. Also 19 �
|An|;

(11) K/H is an alternating group, namely A13, A14, or A15.

First suppose that n= 13. Since |K/H| ≤ |A13|, K/H �A13. But |G| =
|A13|, and hence H = 1 and K = G � A13. If n = 14, then K/H � A13 or

A14. But if r 
= 6, then Aut(Ar )= Sr , and hence |Out(Ar )| = 2. If K/H �
A13, then |G/K| | 2, and hence |H| 
= 1. Now we get a contradiction

similar to (2). Therefore, K/H � A14, and hence G � A14. If n = 15, we

do similarly.

Step 2. Let p = 2m+1, where m= 2s .

Using Table 2.1, we have

(i) K/H � L2(2m). Note that for every m we have |L2(2m)| | |G|. Using

Lemma 2.6, |G/K| | |Out(K/H)|. Also |Out(L2(2m))| =m. Hence, |H| 
=
1. Now let p′ be a prime number less than p such that

p′‖
∣∣An∣∣
m|K/H| . (3.4)

Let P ′ be thep′-Sylow subgroup ofH. SinceH is nilpotent, P ′ �G. Hence,

p | (|P ′|−1), which is a contradiction;

(ii) K/H � L2(pk) or L2(2pk±1), where 2pk±1 is a prime and 1 ≤ k ≤ s.
We know that p‖|An|, hence k= 1. Now we proceed similar to (i);

(iii) K/H � Sa(2b), where a = 2c+1 and b = 2d, c ≥ 1, c+d = s. Let q = 2b

and f = 2c , Then p = qf +1 and we have

∣∣Sa(2b)∣∣= qf 2(
qf −1

)(
qf +1

)
Πf−1
i=1

(
qi−1

)(
qi+1

)
. (3.5)

Each factor of the form (qj±1) is less than or equal to p and therefore

divides |An|. Also qf 2 = (2m)f ≤ 2m2 ≤ 22m. Hence, |Sa(2b)| | |An|. But

|Out(Sa(2b))| = b. Then |H| 
= 1 and we can proceed similar to (i);

(iv) K/H � F4(2e), where e ≥ 1, 4e = 2s , or O−2(m+1)(2), where s ≥ 2, or

O−a (2b), where c ≥ 2, c+d= s. Again this part is similar to (iii);

(v) K/H �Ap,Ap+1,Ap+2.

First suppose that n = p. Since |K/H| ≤ |Ap|, K/H � Ap . But |G| =
|Ap|, and hence H = 1 and K = G � Ap . If n = p+1, then K/H � Ap
or Ap+1. But if r 
= 6, then Aut(Ar ) = Sr , and hence |Out(Ar )| = 2. If

K/H �Ap , then |G/K| | 2, and hence |H| 
= 1. Now we get a contradiction

similar to (i). Therefore, K/H � Ap+1, and hence G � Ap+1. If n = p+2,

we do similarly.

Step 3. For other primes p, we have K/H � Ap,Ap+1,Ap+2; L2(q), where

q = pk,2pk−1 which is a prime, k≥ 1.

In fact the proof of this step is exactly similar to that of Step 2 and we omit

it for convenience.
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Theorem 3.4. IfG is a non-abelian finite group with connected prime graph,

then G is not characterizable with its order component.

Proof. Clearly, OC(G)=OC(Z|G|), but G 
� Z|G|.
Corollary 3.5. Every simple group with one component (see [28, Table I])

is not characterizable with this method.

Theorem 3.6. Let n be a positive integer. If there exist at least two non-

isomorphic abelian groups of order n, then abelian groups of order n are not

characterizable with their order component.

Proof. The proof is obvious.

Remark 3.7. It was a conjecture that every finite simple group M , where

Γ(M) is not connected, is characterizable with its order components. But the

following example is a counterexample.

Example 3.8. If q is an odd-prime power andn= 2k ≥ 4, then OC(S2n(q))=
OC(O2n+1(q)), but obviously S2n(q) 
�O2n+1(q).

Theorem 3.9. Let p = 2α3β+1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime

number. Let M = Sn, where n = p, p+1. Then OC(G) = OC(M) if and only if

G �M .

Proof. Similar to the proof of Theorem 3.3, sinceG is a Cpp group, we have

K/H �An. Now using Lemma 3.2, we have

An ≤ G
H
≤Aut

(
An
)= Sn. (3.6)

Therefore, G/H � An or Aut(An) = Sn. If G/H � An, then |H| = 2 and H � G.

Hence, H ⊆ Z(G)= 1, which is a contradiction. Therefore, G/H � Sn, and since

|G| = |Sn|, we have G � Sn.

4. Some related results

Remark 4.1. It is a well known conjecture of J. G. Thompson that if G is

a finite group with Z(G) = 1 and M is a non-abelian simple group satisfying

N(G)=N(M), then G �M .

We can generalize this conjecture for the groups under discussion by our

characterization of these groups.

Corollary 4.2. Let G be a finite group with Z(G) = 1 and let M be Ap ,

Ap+1, Ap+2, Sp , or Sp+1. If N(G)=N(M), then G �M .

Proof. By Lemmas 2.8 and 2.9, if G and M are two finite groups satisfying

the conditions of Corollary 4.2, then OC(G) = OC(M). So, Theorems 3.3 and

3.9 imply this corollary.
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Remark 4.3. Shi and Bi in [26] put forward the following conjecture.

Shi’s conjecture. Let G be a group and M a finite simple group. Then

G �M if and only if

(i) |G| = |M|,
(ii) πe(G)=πe(M), where πe(G) denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups [24], groups of alternat-

ing type [27], and some simple groups of Lie type [23, 25, 26]. As a consequence

of Theorems 3.3 and 3.9, we prove a generalization of this conjecture for the

groups under discussion.

Corollary 4.4. Let G be a finite group and let M be Ap , Ap+1, Ap+2, Sp , or

Sp+1. If |G| = |M| and πe(G)=πe(M), then G �M .

Proof. By assumption, we must have OC(G) = OC(M). Thus the corollary

follows by Theorems 3.3 and 3.9.
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