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The problem of J-factorization of rational matrices, which have zeros and poles
on the imaginary axis, is reduced to construction of the solutions of two algebraic
Riccati equations. For construction of these solutions, it is offered to use appro-
priate algorithms. These algorithms permit to find the solutions in cases when the
Hamiltonian matrices, which are corresponding to these equations, have eigenval-
ues on the imaginary axis. Algorithms of factorization, which had been offered,
permit to find the solution of the problem when the matrix, which will be factored,
has zeros at infinity.
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1. Introduction. It is known that the procedure of J-factorization of ratio-

nal matrices arises in the modern control theory [6]. For the development of

the numerical algorithms of realization of this procedure, the investigations of

the connection between the procedure of J-factorization and the solution of

algebraic Riccati equation (ARE) [8] are very important. The point is that pro-

cedure of J-factorization in some cases can be reduced to the solution of ARE

[10]. However, if the matrix has zeros and poles on the imaginary axis, it should

be taken into account at reduction of this procedure to solution of ARE. Thus

in this case, it is necessary to remember that for solution of ARE it is necessary

to use the special algorithms (the Hamiltonian matrix, corresponding to ARE,

has eigenvalues on the imaginary axis). Below, the algorithm of J-factorization

of the rational matrices with zeros and poles on the imaginary axis is stated.

This algorithm has been published in [15].

Before the formulation of the problem, we will give some known facts. Ac-

cording to [2, 3], the problem of factorization of a rational matrix relatively to

the imaginary axis is formulated as follows. The Hermitian positive definite on

the imaginary axis rational matrix Φ(s) is given, that is,

Φ(s)= Φ∗(s), Φ∗(s)= ΦT (−s), Φ(iω) > 0 for any real ω. (1.1)

The superscript T denotes transposition. It is necessary to determine the ma-

trix G(s), which satisfies the relation

Φ(s)=G∗(s)G(s), (1.2)
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and the matrices G(s) and G−1(s) which have no poles in the open right half-

plane C+{s,Res > 0}. Frequently, in such problems the matrix Φ(s) is stated

as in [4]:

Φ(s)= R+BT (Is−A)−1
∗ C+CT (Is−A)−1B+BT (Is−A)−1

∗ Q(Is−A)−1B. (1.3)

The identity matrices with the corresponding dimensions are denoted by I. If

the eigenvalues of the matrix A do not belong to C+ and there exists R−1 (Φ(∞)
is invertible), the problem of determination of G(s) can be reduced to solution

of ARE. So, according to [4],

G(s)= L+KT(Is−A)−1B,

R = LTL, KT = L−T (PB+C)T , L−T = (L−1)T .
(1.4)

In this relation, the matrix P is the stabilizing solution of ARE

PA+ATP+Q−KKT = 0, (1.5)

that is the solution which ensures disposition of the eigenvalues of the matrix

Ac =A−BR−1(PB+C)T in the left half-plane. In this case the matrix

G−1(s)= L−1−L−1KT
(
Is−Ac

)−1BL−1 (1.6)

has no poles in C+. However the poles of G(s) are determined by eigenvalues

of the matrix A. For generalization of this problem in the case when the matrix

(1.3) has zeros on the imaginary axis and R ≥ 0, see [5].

The problem of J-factorization of the matrix (1.3) was considered in [10]. So,

if there exists R−1, the problem of J-factorization of the matrix (1.3) consists

in representing it as follows (see [10, relation (89)]):

Φ(s)=G∗(s)RG(s), (1.7)

G(s)= I+K̃T (Is−A)−1B, (1.8)

K̃=(PB+C)R−1, G−1(s)=I−K̃T (Is−Ac)−1B, Ac=A−BR−1(PB+C)T .
(1.9)

The matrix P is the stabilizing solution of the ARE

PA+ATP−K̃RK̃T +Q= 0. (1.10)

It is possible to note that if zeros of Φ(s) lay on the imaginary axis, then the

Hamiltonian matrix, which corresponds to ARE (1.10), will also have eigenval-

ues on the imaginary axis. In this case, it will be difficult to use the standard

procedures for solution of ARE (Schur method [16], the matrix sign function

method [9]) for determination of the stabilizing solution of ARE (1.10). In this

case, we can use algorithms [7, 12, 13, 14] for solution of ARE. However, it is
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necessary to note that, if we use such algorithm of factorization, the poles of

G(s), as well as in (1.4), are determined by eigenvalues of the matrix A.

There is the problem of generalization of the algorithm [10] of J-factorization

of the matrix (1.3) (representing this matrix as (1.7)). This algorithm should

guarantee lack of zeros and poles of the matrix G(s) in C+ at an arbitrary

spectrum of the matrix A.

In [1, 11], algorithm of factorization of the matrix (1.3), which guaranteed a

lack of zeros and poles of the matrix G(s) in C+, was offered. Algorithm has

permitted to solve the problem with singular matrix R. However, it was based

on the assumption that the matrix A has no eigenvalues on the imaginary axis.

It is possible to construct algorithm of J-factorization of the matrix (1.3),

which has zeros and poles on the imaginary axis, by generalizing algorithms

of factorization [11, 14] and using for solution of ARE the algorithms in [12,

13, 14] (see Appendix A). This algorithm allows to solve the problem with sin-

gular matrix R. In contrast to the algorithm in [12, 13], in this algorithm, the

assumption that the matrix A has no eigenvalues on the imaginary axis is not

used.

2. Existence of R−1. As it was noted, if the matrix A has eigenvalues in C+,

the algorithm of J-factorization, defined by relations (1.7), (1.10), does not en-

sure a lack of poles of the matrix G(s) in C+. Therefore, if the matrix A has

eigenvalues in C+, it is necessary to modify this algorithm. This modification

is connected with an additional procedure of J-factorizations of some aux-

iliary matrix. In this connection, we will deduce the expression for a matrix

Φ−T (s)(Φ−T (s)= (Φ−1(s))T ) using the relation (1.9):

Φ−T (s)=G−T∗ R−1G−T (s)

= R−1−K̃T (Is−ATc )−1
∗ BR

−1−R−1BT
(
Is−ATc

)−1K̃

+K̃T (Is−ATc )−1
∗ BR

−1BT
(
Is−ATc

)−1K̃.

(2.1)

Note that the matrix Ac has no eigenvalues in C+. In an outcome of J-factoriza-

tion, similar to (1.7), (1.10), we will present the matrix Φ−T (s) as follows:

Φ−T (s)=G0∗(s)R−1G0(s),

G0(s)= I+K̃T1
(
Is−ATc

)−1K̃, K̃1 =
(
SK̃−BR−1)R. (2.2)

The matrix S is a stabilizing solution of the following ARE:

SAT +AS−SK̃RK̃T S = 0, (2.3)

that is a solution by which the matrix AT −K̃RK̃T S has no eigenvalues in C+.

We will note that matrices G0(s) and

G−1
0 (s)= I−K̃T1

(
Is−Acc

)−1K̃, (2.4)



2876 VLADIMIR B. LARIN

have no poles in C+ because the matrix

Acc =AT −K̃RK̃T S (2.5)

has no eigenvalues in C+. It is essential that its spectrum is determined only

by the spectrum of the matrix A. Really, the Hamiltonian matrix, which is cor-

responding to the ARE (2.3), has the form

H =
[
AT −K̃RK̃T
0 −A

]
. (2.6)

Let Λ− be eigenvalues of the matrix A, at which Re(λ) < 0 and, accordingly,

Λ0(Re(λ)= 0), Λ+(Re(λ) > 0). Eigenvalues of the matrix H will be accordingly

±Λ−, ±Λ0, and ±Λ+. Therefore, the spectrum of a matrix Acc will be a union

of Λ−, Λ0, and −Λ+.

Thus, relation (2.2) allows to modify algorithm of factorization (1.7) as fol-

lows:

Φ(s)= G̃∗(s)RG̃(s),
G̃(s)= G̃−T0 (s)= I−K̃T (Is−A+SK̃RK̃T )−1(SK̃R−B),

G̃−1(s)= I+K̃T (Is−A+BR−1(PB+C)T )−1(SK̃R−B), K̃ = (PB+C)R−1.
(2.7)

The matrices P and S are stabilizing solutions of AREs (1.10) and (2.3), respec-

tively.

3. Computation of the matrix S. In a common case (when the matrix (1.3)

has zeros on the imaginary axis) for determination of the matrices P,S, it is

possible to use algorithms in [7, 12, 13, 14]. However, for construction of a

solution of ARE (2.3) (determination of the matrix S), it is possible to reduce to

a determination of a solution of the Lyapunov equation. So, let the orthogonal

matrix U reduces the matrix A to the upper triangular Schur form

Ā=UAUT =
[
A+ A0

0 A−

]
, (3.1)

where Reλ(A+) > 0, Reλ(A−) ≤ 0. For a determination of a matrix U , it is

possible to use procedures schur.m and schord.m of the Matlab package. We

will transform ARE (2.3) by using the matrix U :

S̄ĀT +ĀS̄− S̄ḠS̄ = 0,

Ḡ =UK̃RK̃TUT =

g1 g2

gT2 g3


 , S̄ =USUT .

(3.2)
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The sizes of blocks gi (i = 1,2,3) correspond to the partitioning (3.1). We

will search for the solution of ARE (2.3) as

S̄ =
[
S+ 0

0 0

]
. (3.3)

The sizes of blocks S+ in (3.3) and A+ in (3.1) coincide.

As follows from (3.1) and (3.3), the matrix S+ satisfies the following ARE:

S+AT++A+S+−S+g1S+ = 0. (3.4)

We will assume that ARE (3.4) has a stabilizing solution S+ and the matrix S+
is invertible. In this case, the matrix X = S−1+ is uniquely determined by the

Lyapunov equation

AT+X+XA+−g1 = 0. (3.5)

Thus, the desired solution of ARE (2.3) has the form

S =UT
[
X−1 0

0 0

]
U, (3.6)

where the matrix X is determined by the Lyapunov equation (3.5).

Note that if the matrix A has no eigenvalues in C+, the stabilizing solution

of ARE (2.3) is S = 0. In this case, the matrices G̃(s) and G̃−1(s), which are

appearing in (2.7), coincide with G(s) and G−1(s), which are determined by

expressions (1.8) and (1.9).

4. Case R = 0. Let in (1.3) R = 0. As in [1, 11], it is possible to modify

problem of J-factorization of matrix (1.3) as follows. After multiplying the

matrix Φ(s) on the left-hand side by the matrix Ψ∗(s) and on the right-hand

side by Ψ(s) (the matrices Ψ(s) and Ψ−1(s) have no poles in C+), we obtain

Φ1(s)= Ψ∗(s)Φ(s)Ψ(s)=G1∗(s)R1G1(s),

G1(s)=G(s)Ψ(s). (4.1)

We note that the zeros and poles of the matrix Ψ(s) should not coincide with

the zeros and poles of the matrix Φ(s), that is, in the process of evaluation of

the matrix Φ1(s) cancellation of the zeros and the poles should not happen.

After the matrix Φ1(s) has been factorized (the matrix G1(s) is found), desired

solution (matrix G(s)) is determined by the following relation:

G(s)=G1(s)Ψ−1(s). (4.2)

It is expedient to select the matrix Ψ(s) in such a manner that the structure

of the matrix Φ1(s) would be similar to the matrix (1.3), but Φ1(∞) would be
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invertible. Being guided by these reasons, we select as the matrix Ψ(s) the

following matrix:

Ψ(s)= Is+αI, (4.3)

where the constant α > 0 does not belong to the spectrum of matrices A and

−A. This matrix satisfies the above-noted conditions of a lack of poles of ma-

trices Ψ(s),Ψ−1(s) in C+. Besides, it is impossible to cancel the poles of Φ(s)
and zeros of Ψ(s),Ψ∗(s).

Further, for simplification of the calculations, we consider α = 1. We note

that this restriction (±1 does not belong to a spectrum of a matrix A) is not

essential. Really, substituting s by αs̄ (α > 0), it is possible to transform the

matrix Φ(s) in such a manner that the matrix Φ(s̄) has no poles equal to ±1

[1] (see Example 4.3). Taking into consideration that

B(Is+I)= (Is+I)B (4.4)

for appropriate sizes of the identity matrices, which appear in the left- and

right-hand sides of (4.4), and also

(Is−A)−1(Is+I)= (Is−A)−1(A+I)+I, (4.5)

we have, for CTB = BTC ,

Φ1(s)= Ψ∗(s)Φ(s)Ψ(s)= R1+BT1 (Is−A)−1
∗ C1+CT1 (Is−A)−1B1

+BT1
(
Is−A∗

)−1Q(Is−A)−1B1,

B1 = (A+I)B, C1 = (I−A)C+QB, R1 = BTQB−CTAB−BTATC.
(4.6)

Thus, in the case of existence of R−1
1 and CTB = BTC , for determination of

the matrix G1(s), it is possible to use the above-circumscribed algorithm of

J-factorization.

So, according to (2.7),

G1(s)= I−K̃T (Is−Ã)−1(SK̃R1−B1
)
,

Ã=A−SK̃R1K̃T , K̃ = (PB1+C1
)
R−1

1 ;
(4.7)

the matrices P and S are stabilizing solutions of the following ARE:

PA+ATP−K̃R1K̃T +Q= 0,

SAT +AS−SK̃R1K̃T S = 0.
(4.8)

We will pass to determination of the matrix G(s), which is defined by (4.2).

According to assumption, the numbers ±1 do not belong to the spectrum of

the matrix A. Taking into consideration the above-mentioned structure of the

spectrum of the matrix Acc (which differs from Ã only by transposition), it is
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possible to state that −1 does not belong to a spectrum of the matrix Ã. It

guarantees that the matrix I+Ã would be invertible and will allow to copy the

matrix G1(s) as follows:

G1(s)= I+K̃T (Is−Ã)−1(I+Ã)K1,

K1 = (I+Ã)−1(B1−SK̃R1
)
.

(4.9)

Using relations (4.4), (4.5), we will obtain the following expression for G1(s):

G1(s)= K̃T (Is−Ã)−1K1(Is+I)+I−K̃TK1. (4.10)

We will show that I−K̃TK1 = 0, and therefore, according to (4.1), (4.2),

Φ(s)=G∗(s)R1G(s), (4.11)

where

G(s)= K̃T (Is−Ã)−1K1. (4.12)

Really, according to (4.1), we have

Φ1(−1)=G1∗(−1)R1
(
I−K̃TK1

)= 0. (4.13)

However, the matrices G1∗(−1) and R1 are invertible, therefore I − K̃TK1 =
0 and the outcome of the J-factorization of the matrix (1.3) for R = 0 is

determined by expression (4.12). Note that the matrices G(s) and G−1(s) =
(Is + I)G−1

1 (s) have no poles in C+ because the matrices G1(s) and G−1
1 (s)

have no poles in C+.

Thus, as shown in the problem of J-factorization of the matrix (1.3), in which

R = 0, it is possible to reduce to an equivalent problem with an invertible matrix

R. The similar procedure of reduction of an initial problem can be successfully

used in the general case if in such problem matrix R is singular, but not equal

to zero (in [1, 11] such problem for Q= 0 was explicitly considered).

Example 4.1. Let in (1.3) C = 0, R = 0, A =
[

0 1 0
0 0 1
5 −1 5

]
, B = [0 0 1]T , and

Q= hTh, h= [0 −2 1]. In this case,

Φ(s)=
(
s2−4

)
s2(

s2+1
)2(s2−25

) . (4.14)

The matrixΦ(s) has zeros (s = 0) and poles (s =±i) on the imaginary axis. The

Hamiltonian matrix, which is corresponding to the ARE (4.8), will have zeros

on the imaginary axis. According to (4.6), we have R1 = 1. Using algorithms
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[12, 13, 14] for solution ARE (4.8), we will obtain the following matrices:

P =




0.000 0.000 0.000

−0.000 4.000 −0.000

0.000 −0.000 0.000


 ,

S =




0.0082 0.0408 0.2041

0.0408 0.2041 1.0204

0.2041 1.0204 5.1020


 .

(4.15)

We will further receive matrices which appear in (4.12):

Ã=




0 0.4286 −0.2857

0 −2.8571 −0.4286

5.0000 −15.2857 −2.1429


 ,

K̃ =




0

2.0000

1.0000


 , K1 =



−0.0000

0.0000

1.0000


 .

(4.16)

Using these matrices in the procedure ss2tf.m of the Matlab package, we get

the following expression for G(s):

G(s)=
(
s2+2s

)
(
s3+5s2+s+5

) . (4.17)

Obviously, zeros and poles of G(s) do not lay in C+.

Example 4.2. In the issue of Example 4.1, we will increase multiplicity of

zeros and poles located on the imaginary axis:

Φ(s)=
(
s2−4

)
s6(

s2+1
)4(s2−25

) . (4.18)

In this case,

C = 0, R = 0, A=




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

5 −1 10 −2 5



,

B =




0

0

0

0

1



, h=

[
0 0 0 −2 1

]
.

(4.19)
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Having executed the procedures mentioned in Example 4.1, we will find that

the matrix P has all zero elements except for P(4,4)= 4; the matrix S looks as

follows:

S =




0.0000 0.0001 0.0003 0.0016 0.0082

0.0001 0.0003 0.0016 0.0082 0.0408

0.0003 0.0016 0.0082 0.0408 0.2041

0.0016 0.0082 0.0408 0.2041 1.0204

0.0082 0.0408 0.2041 1.0204 5.1020



. (4.20)

Accordingly, we get

Ã=




0.0000 1.0000 0.0000 −0.0229 −0.0114

0.0000 0.0000 1.0000 −0.1143 −0.0571

0.0000 0.0000 0.0000 0.4286 −0.2857

0.0000 0.0000 0.0000 −2.8571 −0.4286

5.0000 −1.0000 10.0000 −16.2857 −2.1429



,

K̃ =




0

0

0

2

1



, K1 =




0

0

0

0

1



.

(4.21)

As well as is in Example 4.1, using these matrices in procedure ss2tf.m of the

Matlab package, we get the following expression for G(s):

G(s)= s4+2s3

s5+5s4+2s3+10s2+s+5
. (4.22)

Obviously, zeros and poles of G(s) do not lay in C+.

Example 4.3 [1]. Let in (1.3)A=−I, B = I, C = 0, R = 0, and let the matrixQ
be invertible. In this case, the matrix Φ(s) has poles equal to ±1, which will be

cancelled with zeros of the matrices Ψ(s), Ψ∗(s), in the process of evaluation

of matrix Φ1(s), according to (4.6).

We will illustrate in this example, as mentioned above, that the passage to

the variable s̄ removes the complexities, which is connected with coinciding

zeros of the matrices Ψ(s), Ψ∗(s) and poles of the matrix Φ(s). Let α = 0.5,

that is, s = 0.5s̄. In this case,

Φ(s̄)= 4(Is̄+2I)−1
∗ Q(Is̄+2I)−1. (4.23)

In this matrix A=−2I, B = 2I, C = 0, and R1 = 0. According to (4.6), we have

B1 =−B =−2I, C1 =QB = 2Q, R1 = 4Q. (4.24)
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Obviously, the stabilizing solutions of the ARE (4.8) will be P = 0, S = 0. Further,

we will receive K̃ = (1/2)I, K1 = 2I. According to (4.12),

G(s̄)= (Is̄+2I)−1. (4.25)

Using the variable s, we will receive

G(s)= 1
2
(Is+I)−1. (4.26)

Taking into consideration that R1 = 4Q, we will be convinced that the matrix

Φ(s), defined by (4.11), coincides with the given matrix.

Appendices

A. Construction of the stabilizing solution of ARE. Following [13, 14], we

will briefly consider the algorithm of construction of the stabilizing solution

of ARE

SF+FTS−SGS+Q= 0. (A.1)

Solution, which will be searched below, has the following property: matrix

F−SG has no eigenvalues in C+. This algorithms can be interpreted as general-

ization of sign function method [9] of construction of the stabilizing solution

of ARE, whose Hamiltonian matrix has eigenvalues on the imaginary axis. The

algorithm includes the procedure of excluding stable unobservable modes, as

it permits to reduce the initial problem.

So, we will assume that there is the orthogonal matrix Z , which transforms

the matrices F,Q to the following form (for algorithm of construction of matrix

Z , see Appendix B):

F̄ = ZFZT =
[
f− ∗
0 F1

]
, Q̄= ZQZT =

[
0 0

0 Q1

]
. (A.2)

In (A.2), the sizes of the blocks F1 and Q1 are coinciding, the matrix f− has

no eigenvalues in C+(Re(λ(f−))≤ 0). The entries of the matrix F̄ , denoted by

∗, are not important. That is, the matrix f− determines stable unobservable

modes. We will transform the ARE (A.1) to the following form:

S̄F̄+ F̄T S̄− S̄ḠS̄+Q̄=Q, Ḡ = ZGZT =
[
g1 g2

gT2 g3

]
, S̄ = ZSZT . (A.3)

The sizes of the blocks g1, g2, g3 correspond to the partitioning (A.2). We will

search for the solution of the ARE (A.1) in the form

S̄ =
[

0 0

0 S1

]
, (A.4)
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where the size of the block S1 is coinciding with the size of the matrix F1. As

it follows from (A.2), (A.3), and (A.4), the matrix S1 satisfies the ARE

S1F1+FT1 S1−S1g3S1+Q1 = 0, (A.5)

which (by assumption) has symmetric solution. This solution ensures absence

of the matrix F1−g3S1 in C+ eigenvalues.

The Hamiltonian matrix, which corresponds to the ARE (A.5), has the form

H1 =
[
F1 −g3

−Q1 −F ′1

]
. (A.6)

Let the matrix T transform the matrix (A.6) to the block-diagonal form

H1 = T−1 diag{A,B,C}T , (A.7)

where Re(λ(A)) �= 0, λ(B) = 0, and Re(λ(C)) = 0, λ(C) �= 0. The sizes of the

matrices B and C are equal to 2nb× 2nb and 2nc × 2nc, respectively. Let

±iω,. . . ,±iωm be the various eigenvalues of the matrix C . As f(λ) is denoted

by the polynomial, degree of which is equal to 2m and the zeros of which are

coinciding with the above-mentioned eigenvalues.

It is supposed that there are the integers kb,kc ≥ 1 such that the ranks of

the matrices Bkb and (f (C))kc are equal to nb and nc, respectively.

At this suppositions, the unknown solution of the ARE (A.5) is determined

by the following relation:

(
diag

{
h1,h2,h3

})
T
[
I
S1

]
= 0, (A.8)

where h1 = I+sign(A), h2 = Bkb, and h3 = (f (C))kc .
Finally, we find, according to (A.4), the solution of the ARE (A.1)

S = ZT
[

0 0

0 S1

]
Z. (A.9)

B. Elimination of unobserved modes. It is possible to use orthogonal trans-

formations, which are transforming system’s matrices to this or that canonical

form (see, e.g., [17]), for constructing the matrix Z , which appears in (A.2). So,

let the matrices F,Q∈Rn×n be given. Let the rank of a matrix Q be equal to r
(0< r ≤n). We will represent the matrix Q as

Q= cTΛc, (B.1)
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where Λ∈ Rr×r is a diagonal matrix, c ∈ Rr×n. It is supposed that the pair of

matrices (F,c) is not completely observable, that is, the observability matrix




c
cF
...

cFn−1


 (B.2)

has a rank p <n. Using algorithm of orthogonal transformations (it is possible

to use procedure obsvf.m of the Matlab package), we will transform the pair of

matrices (F,c) to canonical observability form. Namely, we will construct an

orthogonal matrix U such that

UFUT =
[
f11 f12

0 f22

]
, cUT =

[
0 c1

]
. (B.3)

By orthogonal transformation, with a matrix V , we will transform the square

matrix f11 (which determines unobserved modes) to the block triangular form

Vf11VT =
[
f− f0

0 f+

]
, Reλ

(
f−
)≤ 0, Reλ

(
f+
)
> 0, f− ∈Rq×q.

(B.4)

It is possible to accept, as the matrix Z , the following orthogonal matrix:

Z =DU, D =
[
V 0

0 I

]
, (B.5)

(the size of the unity block I in the matrix D is coinciding with the size of the

matrix f22). Actually,

ZFZT =
[
f− ∗
0 F1

]
, ZQZT =

[
0 0

0 cT1Λc1

]
, (B.6)

where F1 ∈R(n−q)×(n−q). It is possible to accept the lower diagonal block of the

matrix ZQZT , as the matrix Q1 ∈R(n−q)×(n−q), which appears in (A.2).
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