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1. Introduction. For edges e and f in a connected graph G, the distance

d(e,f ) between e and f is the minimum nonnegative integer a for which there

exists a sequence e = e0,e1, . . . ,ea = f of edges of G such that ei and ei+1 are

adjacent for i= 0,1, . . . ,a−1. For an edge e of G and a subgraph F of positive

size in G, the distance between e and F is defined as

d(e,F)=min
{
d(e,f ) : f ∈ E(F)}. (1.1)

A decomposition of a graph G is a collection of subgraphs of G, none of which

have isolated vertices, whose edge sets provide a partition of E(G). A de-

composition of G into k subgraphs is a k-decomposition. A decomposition

�= {G1,G2, . . . ,Gk} is ordered if the ordering (G1,G2, . . . ,Gk) has been imposed

on �. For an ordered k-decomposition � = {G1,G2, . . . ,Gk} of a connected

graph G and e∈ E(G), the �-code (or simply the code) of e is the k-vector

c�(e)=
(
d
(
e,G1

)
,d
(
e,G2

)
, . . . ,d

(
e,Gk

))
. (1.2)

Hence exactly one coordinate of c�(e) is 0, namely the ith coordinate if e ∈
E(Gi). In [3], a decomposition � is defined to be a resolving decomposition

for G if every two distinct edges of G have distinct �-codes. The minimum

k for which G has a resolving k-decomposition is its decomposition dimension

dimd(G). A resolving decomposition ofGwith dimd(G) elements is a minimum

resolving decomposition for G.

A resolving decomposition � = {G1,G2, . . . ,Gk} of a connected graph G is

defined in [5] to be independent if E(Gi) is independent for each i (1 ≤ i ≤ k)

in G. This concept can be considered from an edge-coloring point of view.

Recall that a proper edge coloring (or simply, an edge coloring) of a nonempty

graph G is an assignment c of colors (positive integers) to the edges of G so

that adjacent edges are colored differently, that is, c : E(G)→N is a mapping
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such that c(e) ≠ c(f) if e and f are adjacent edges of G. The minimum k
for which there is an edge coloring of G using k distinct colors is called the

edge chromatic number χe(G) of G. If � = {G1,G2, . . . ,Gk} is an independent

decomposition of a graphG, then by assigning color i to all edges inGi for each

i with 1≤ i≤ k, we obtain an edge coloring of G using k distinct colors. On the

other hand, if c is an edge coloring of a connected graph G, using the colors

1,2, . . . ,k for some positive integer k, then c(e) ≠ c(f) for adjacent edges e
and f in G. Equivalently, c produces a decomposition � of E(G) into color

classes (independent sets) C1,C2, . . . ,Ck, where the edges of Ci are colored i
for 1≤ i≤ k. Thus, for an edge e in a graph G, the k-vector

c�(e)=
(
d
(
e,C1

)
,d
(
e,C2

)
, . . . ,d

(
e,Ck

))
(1.3)

is called the color code (or simply the code) c�(e) of e. If distinct edges ofG have

distinct color codes, then c is called a resolving edge coloring (or independent

resolving decomposition) of G in [5]. Thus a resolving edge coloring of G is

an edge coloring that distinguishes all edges of G in terms of their distances

from the resulting color classes. A minimum resolving edge coloring uses a

minimum number of colors, and this number is the resolving edge chromatic

number χre(G) of G. Since every resolving edge coloring is an edge coloring

and every resolving edge coloring is a resolving decomposition, it follows that

2≤max
{

dimd(G),χe(G)
}≤ χre(G)≤m (1.4)

for each connected graph G of size m≥ 2.

To illustrate these concepts, consider the graph G of Figure 1.1. Let �1 =
{G1,G2,G3} be the decomposition of G, where E(G1) = {v1v2,v2v5}, E(G2) =
{v2v3,v2v6,v3v6}, and E(G3)= {v3v4,v3v5}. Since �1 is a minimum resolving

decomposition of G, it follows that dimd(G)= 3. Define an edge coloring c of

G by assigning the color 1 to v1v2 and v3v5, the color 2 to v2v5 and v3v6, the

color 3 to v2v3, and the color 4 to v2v6 and v3v4 (see Figure 1.1(b)). Since c is

a minimum edge coloring of G, it follows that χe(G) = 4. However, c is not a

resolving edge coloring. To see that, let �2 = {C1,C2,C3,C4} be the decomposi-

tion of G into color classes resulting from c, where the edges in Ci are colored

i by c. Then c�2(v2v5) = (1,0,1,1) = c�2(v3v6). On the other hand, define an

edge coloring c∗ of G by assigning the color 1 to v1v2 and v3v5, the color 2

to v2v3, the color 3 to v2v5 and v3v4, the color 4 to v2v6, and the color 5

to v3v6 (see Figure 1.1(c)). Let D∗ = {C1,C2, . . . ,C5} be the decomposition of G
into color classes of c∗. Then

c�∗
(
v1v2

)= (0,1,1,1,2), c�∗
(
v2v3

)= (1,0,1,1,1),
c�∗

(
v2v5

)= (1,1,0,1,2), c�∗
(
v2v6

)= (1,1,1,0,1),
c�∗

(
v3v4

)= (1,1,0,2,1), c�∗
(
v3v5

)= (0,1,1,2,1),
c�∗

(
v3v6

)= (1,1,1,1,0).

(1.5)
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G : v1
v2 v3

v4

v5

v6

(a)

c :
1

2 1
4

4 2

3

(b)

c∗ :
1

3 1
3

4 5

2

(c)

Figure 1.1. A graph G with dimd(G)= 3, χe(G)= 4, and χre(G)= 5.

Since the D∗-codes of the edges of G are all distinct, it follows that c∗ is a

resolving edge coloring. Moreover, G has no resolving edge coloring with 4

colors and so χre(G)= 5.

The concept of resolvability in graphs has previously appeared in [7, 11, 12].

Slater [11, 12] introduced this concept and motivated by its application to the

placement of a minimum number of sonar detecting devices in a network so

that the position of every vertex in the network can be uniquely determined

in terms of its distance from the set of devices. Harary and Melter [7] dis-

covered these concepts independently as well. Resolving decompositions in

graphs were introduced and studied in [3] and further studied in [6]. Resolv-

ing decompositions with prescribed properties have been studied in [5, 9, 10].

Resolving concepts were studied from the point of view of graph colorings in

[1, 2]. We refer to [4] for graph theory notation and terminology not described

here.

In [5], all nontrivial connected graphs of size m with resolving edge chro-

matic number 3 or m are characterized. Also, bounds have been established

for χre(G) of a connected graph G in terms of its size, diameter, or girth, as

stated below.

Theorem 1.1. If G is a connected graph of size m≥ 3 and diameter d, then

2≤ χre(G)≤m−d+3. (1.6)

Moreover, χre(G) = 2 if and only if G = P3, and χre(G) =m−d+3 if and only

if G = Pn for n≥ 4.
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Theorem 1.2. If G is a connected graph of size m and girth �, where m ≥
� ≥ 3, then

χre(G)≤m−�+4. (1.7)

Moreover, χre(G)=m−�+4 if and only if G = Cn for some even n≥ 4.

In this paper, we study the relationships among the resolving edge chro-

matic number, edge chromatic number, and decomposition dimension of a

connected graph, and provide bounds for the resolving edge chromatic num-

ber of a connected graph in terms of other graphical parameters in Section 2.

We investigate the resolving edge colorings of trees in Section 3.

2. Bounds for resolving edge chromatic numbers. In this section, we es-

tablish bounds for the resolving edge chromatic number of a connected graph

in terms of (1) its order and edge chromatic number; (2) its decomposition di-

mension and edge chromatic number. In order to this, we need some additional

definitions and preliminary results. Let � be a decomposition of a connected

graph G. Then a decomposition �∗ of G is called a refinement of � if every ele-

ment in �∗ is a subgraph of some element of �. First, we present two lemmas,

the first of which appears in [9].

Lemma 2.1. Let � be a resolving decomposition of a connected graph G. If

�∗ is a refinement of �, then �∗ is also a resolving decomposition of G.

Lemma 2.2. Let G be a connected graph of order n≥ 5, let T be a spanning

tree ofG with E(T)= {e1,e2, . . . ,en−1}, and letH =G−E(T). Then the decompo-

sition �= {F1,F2, . . . ,Fn−1,H}, where E(Fi)= {ei} for 1≤ i≤n−1, is a resolving

decomposition of G.

Proof. Let e and f be two edges ofG. If e and f belong to distinct elements

of �, then c�(e)≠ c�(f ). Thus we may assume that e and f belong to the same

element H in �. We show that c�(e) ≠ c�(f ). Let e = uv , let P be the unique

u−v path in T , and let u′ and v′ be the vertices on P adjacent to u and

v , respectively. If f is adjacent to at most one of uu′ and vv′, then either

d(e,uu′) ≠ d(f ,uu′) or d(e,vv′) ≠ d(f ,vv′), and so c�(e) ≠ c�(f ). Hence

we may assume that f is adjacent to both uu′ and vv′. We consider two cases

according to whether u′ = v′ or u′ ≠ v′.
Case 1 (u′ = v′). Then f is incident with the vertex u′. Since n≥ 5 and T is

a spanning tree, there is a vertex x ∈ V(G)−{u,v,u′} such that x is adjacent

in T with exactly one of u, v , and u′. If u′x ∈ E(T), then d(f ,u′x) = 1 �=
2 = d(e,u′x); otherwise, d(e,ux) = 1 �= 2 = d(f ,ux) or d(e,vx) = 1 �= 2 =
d(f ,vx) according to whether ux or vx is an edge of T . So c�(e)≠ c�(f ).

Case 2 (u′ �= v′). Then we may assume that f is incident with u′. Let g be

an edge of T distinct from uu′ that is incident with u′. Then d(e,g)= 2≠ 1=
d(f ,g). Thus c�(e)≠ c�(f ).
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We now present bounds for the resolving edge chromatic number of a con-

nected graph in terms of its order and edge chromatic number.

Theorem 2.3. If G is a connected graph of order n≥ 5, then

χe(G)≤ χre(G)≤n+χe(G)−1. (2.1)

Proof. The lower bound follows by (1.4). To verify the upper bound, letm
be the size of G. If G is a tree of order n, thenm=n−1. Since χre(G)≤m, the

result is true for a tree. Thus we may assume that G is a connected graph that

is not a tree. Let T be a spanning tree ofG with E(T)= {e1,e2, . . . ,en−1}. LetH =
〈E(G)−E(T)〉 be the subgraph induced by E(G)−E(T). Then H is a nonempty

subgraph of G. Let χe(H)= k and let H1,H2, . . . ,Hk be the decomposition of H
into the color classes resulting from a minimum edge coloring of H. Now let

�= {F1,F2, . . . ,Fn−1,H
}
, �∗ = {F1,F2, . . . ,Fn−1,H1,H2, . . . ,Hk

}
, (2.2)

where E(Fi)= {ei} for 1≤ i≤n−1. Since � is a resolving decomposition of G
by Lemma 2.2 and D∗ is a refinement of �, it follows by Lemma 2.1 that D∗

is a resolving decomposition of G as well. Thus �∗ is a resolving independent

decomposition of G, and so

χre(G)≤
∣∣�∗∣∣=n+k−1=n+χe(H)−1≤n+χe(G)−1, (2.3)

as desired.

Next, we present bounds for the resolving edge chromatic number of a con-

nected graph in terms of its decomposition dimension and edge chromatic

number.

Theorem 2.4. For every connected graph G of order at least 3,

dimd(G)≤ χre(G)≤ χe(G)dimd(G). (2.4)

Proof. By (1.4), it suffices to verify the upper bound: let G be a nontriv-

ial connected graph with dimd(G) = k and χe(G) = c. Furthermore, let � =
{G1,G2, . . . ,Gk} be a resolving decomposition of G. If � is independent, then

� is a resolving independent decomposition of G and so χre(G) ≤ |�| = k =
dimd(G) < χe(G)dimd(G) since χe(G)≥ 2. Thus we may assume that � is not

independent. Without loss of generality, assume that E(Gi) is not independent

in E(G) for 1 ≤ i ≤ k1 ≤ k and E(Gi) is independent in E(G) for k1+1 ≤ i ≤ k
if k1 < k. Let ci = χe(Gi) for 1 ≤ i ≤ k and so 1 ≤ ci ≤ χe(G). Define a de-

composition �′ of G from � by (1) decomposing each Gi (1 ≤ i ≤ k1) into ci
color classes resulting from an edge coloring of Gi; (2) retaining each Gi for

k1 + 1 ≤ i ≤ k. Certainly, �′ is an independent decomposition of G with at

most
∑k
i=1 ci ≤ ck elements. Since �′ is a refinement of �, it follows by virtue
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of Lemma 2.1 that �′ is also an independent resolving decomposition of G.

Therefore, χre(G)≤ |�′| ≤ ck= χe(G)dimd(G).

3. On resolving edge chromatic numbers of trees. The decomposition di-

mension of a tree T was studied in [3, 6]. It was shown in [3] that Pn is the

only connected graph of order n with decomposition dimension 2. Although

there is no general formula for the decomposition dimension of a nonpath

tree, several bounds have been established for dimd(T) for such trees in [3, 6].

In this section, we investigate the resolving edge chromatic number of trees.

Since χre(P3) = 2 and χre(Pn) = 3 for n ≥ 4, we consider trees that are not

paths. First, we need some additional definitions and notation.

A vertex of degree at least 3 in a graph G is called a major vertex. An end-

vertexu ofG is said to be a terminal vertex of a major vertex v ofG if d(u,v) <
d(u,w) for every other major vertex w of G. The terminal degree ter(v) of a

major vertex v is the number of terminal vertices of v . A major vertex v of

G is an exterior major vertex of G if it has positive terminal degree. Let σ(G)
denote the sum of the terminal degrees of the major vertices of G and let

ex(G) denote the number of exterior major vertices of G. In fact, σ(G) is the

number of end-vertices of G. For an ordered set W = {e1,e2, . . . ,ek} of edges in

a connected graph G and an edge e of G, let

cW(e)=
(
d
(
e,e1

)
,d
(
e,e2

)
, . . . ,d

(
e,ek

))
. (3.1)

The following two results are useful to us, the first of which appeared in [9]

and the second of which is due to König [8].

Lemma 3.1. Let T be a tree that is not a path, having order n ≥ 4 and p
exterior major vertices v1,v2, . . . ,vp . For 1 ≤ i ≤ p, let ui1,ui2, . . . ,uiki be the

terminal vertices of vi, let Pij be the vi−uij path (1≤ j ≤ ki), and let xij be a

vertex in Pij that is adjacent to vi. Let

W = {vixij : 1≤ i≤ p, 2≤ j ≤ ki
}
. (3.2)

Then cW(e)≠ cW(f) for each pair e, f of distinct edges of T that are not edges

of Pij for 1≤ i≤ p and 2≤ j ≤ ki.
König’s theorem. If G is a bipartite graph, then χe(G)=∆(G). In particu-

lar, if T is a tree, then χe(T)=∆(T).
For a cut-vertex v in a connected graph G and a component H of G−v , the

subgraph H with the vertex v , together with all edges joining v and V(H) in

G, is called a branch of G at v . For a bridge e in a connected graph G and a

component F of G−e, the subgraph F , together with the bridge e, is called a

branch of G at e. For two edges e = u1u2 and f = v1v2 in G, an e−f path in

G is a path with its initial edge e and terminal edge f .
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We are now prepared to present an upper bound for the resolving edge

chromatic number of a tree that is not a path.

Theorem 3.2. Let T be a tree that is not a path, having order n ≥ 4 and p
exterior major vertices v1,v2, . . . ,vp . For 1 ≤ i ≤ p, let ui1,ui2, . . . ,uiki be the

terminal vertices of vi, let Pij be the vi−uij path (1≤ j ≤ ki), and let xij be a

vertex in Pij that is adjacent to vi. Let W be the set described in (3.2). Then

χre(T)≤∆(T −W)+σ(T)−ex(T). (3.3)

Proof. LetU = {v1,u11,u21, . . . ,up1} and let T0 be the subtree of T of small-

est size that contains U . For each pair i, j of integers with 1 ≤ i ≤ p and

1≤ j ≤ ki, let Qij = Pij−vi be the xij−uij path in T . Thus T −W is the union

of the tree T0 and the paths Qij for all i, j with 1≤ i≤ p and 2≤ j ≤ ki. Since

T −W is a forest, it follows by König’s theorem that χe(T −W)=∆(T −W). We

define an edge coloring c of T by assigning (1) the colors to the edges in T−W
from the set {1,2, . . . ,∆(T −W)}; (2) the color

cij =∆(T −W)+
[
k1+k2+···+ki−1−(i−1)

]+(j−1) (3.4)

to the edge vixij in W for all i, j with 1 ≤ i ≤ p and 2 ≤ j ≤ ki. Thus the

maximum color assigned to the vertices of G by c is

cp,kp = c
(
vpxp,kp

)

=∆(T −W)+[k1+k2+···+kp−1−(p−1)
]+(kp−1

)

=∆(T −W)+(k1+k2+···+kp−p
)

=∆(T −W)+σ(T)−ex(T).

(3.5)

Certainly, adjacent edges are colored differently by c and so c is an edge col-

oring of T . It remains to show that c is a resolving edge coloring of T . Let

k=∆(T −W)+σ(T)−ex(T) (3.6)

and let � = {C1,C2, . . . ,Ck} be the decomposition of G into the color classes

resulting from c. Since all edges in W are colored differently, it suffices to

show that if e,f ∈ E(T −W), then c�(e)≠ c�(f ). We consider three cases.

Case 1 (e,f ∈ E(T0)). By Lemma 3.1, it follows that cW(e) ≠ cW(f), which

implies that c�(e)≠ c�(f ).
Case 2 (e,f ∉ E(T0)). There are two subcases.

Subcase 2.1 (e,f ∈ E(Qij) for some i, j with 1≤ i≤ p and 2≤ j ≤ ki). Since

vixij ∈ W and d(e,vixij) ≠ d(f ,vixij), this implies that cW(e) ≠ cW(f) and

so c�(e)≠ c�(f ).
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Subcase 2.2 (e ∈ E(Qij) and f ∈ E(Qrs), where 1 ≤ i, r ≤ p, 2 ≤ j, and

s ≤ ki). Notice that if i= r , then j ≠ s. Again, vixij,vrxrs ∈W . If d(e,vixij)≠
d(f ,vixij), then c�(e)≠ c�(f ). On the other hand, if d(e,vixij)= d(f ,vixij),
then d(f ,vrxrs) < d(e,vrxrs), implying that c�(e)≠ c�(f ).

Case 3 (exactly one of e and f belongs to T0, say f ∈ E(T0) and e ∈ E(Qij)
for some i, j with 1 ≤ i ≤ p and 2 ≤ j ≤ ki). If there is an edge w ∈ W such

that f lies on the e−w path, then d(f ,w) < d(e,w) and so c�(e) ≠ c�(f ).
Thus we may assume that every path between e and any edge w ∈W does not

contain f . Then f lies on some path P�1 in T for some � with 1 ≤ � ≤ p. We

consider two subcases.

Subcase 3.1 (i= �). Ifd(e,vixij)≠ d(f ,vixij), then c�(e)≠ c�(f ). Thus we

may assume that d(e,vixij)= d(f ,vixij). Since vi is an exterior vertex of T , it

follows that degvi ≥ 3 and so there exists a branch B at vi that does not contain

vixij . Necessarily, B must contain an edgew ofW . Then d(f ,w) < d(e,w) and

so c�(e)≠ c�(f ).
Subcase 3.2 (i ≠ �). Since vi and v� are exterior major vertices, it follows

that degvi ≥ 3 and degv� ≥ 3. Thus there exists a branch B1 at vi that does

not contain vixij and a branch B2 at v� that does not contain v�x�1. Neces-

sarily, each of B1 and B2 must contain an edge of W . Let w1 and w2 be two

edges of T such that wi belongs to Bi for i = 1,2. If d(e,w2) ≠ d(f ,w2), then

cW(e) ≠ cW(f) and so c�(e) ≠ c�(f ). Thus we may assume that d(e,w2) =
d(f ,w2). However, then, d(e,w1) < d(f ,w1), implying that cW(e) ≠ cW(f)
and so c�(e)≠ c�(f ).

Thus, in any case, c�(e)≠ c�(f ) and so � is a resolving edge coloring of G.

Therefore, χre(T)≤∆(T −W)+σ(T)−ex(T).

The upper bound in Theorem 3.2 is sharp. To see this, let K1,n, n ≥ 3, be

the star with V(K1,n)= {v,v1,v2, . . . ,vn}, where v is the central vertex of K1,n,

and let T be the tree obtained from K1,n by subdividing each edge vvi into vxi
and xivi for 2 ≤ i ≤ n. Let W = {vxi : 2 ≤ i ≤ n}. Then it can be verified that

χre(T)=∆(T −W)+σ(T)−ex(T)=n.

Next, we present another upper bound for χre(T) in terms of the maximum

degree of a tree T . A major vertex of a tree T is a superior major vertex of T
if its terminal degree is at least 2. Let sup(T) denote the number of superior

major vertices of T . Thus every superior major vertex of T is also an exterior

major vertex. Hence, if T is a tree that is not a path, then 1≤ sup(T)≤ ex(T).

Theorem 3.3. If T is a tree that is not a path, then

χre(T)≤∆(T)+sup(T). (3.7)

Proof. Suppose that T contains q ≥ 1 superior major vertices v1,v2, . . . ,vq.

For 1 ≤ i ≤ q, let ui1,ui2, . . . ,uiki be the terminal vertices of vi, where ki ≥ 2.

For each i, j with 1 ≤ i ≤ q and 1 ≤ j ≤ ki, let Pij be the vi−uij path in T ,
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let xij be the vertex in Pij that is adjacent to vi, and let Qij = Pij−vi be the

xij−uij path in T . Furthermore, let

W∗ = {vixi2 : 1≤ i≤ q} (3.8)

and let T1 be the subgraph of T obtained by removing all vertices in each set

V(Qij)−{xij} from T for all i, j with 1≤ i≤ q and 1≤ j ≤ ki; that is,

T1 = T −
(∪{V(Qij

)−{xij
}

: 1≤ i≤ q, 1≤ j ≤ ki
})
. (3.9)

Let Q be the linear forest whose components are the paths Qij (1≤ i≤ q and

1≤ j ≤ ki) in T ; that is,

Q=∪{Qij : 1≤ i≤ q, 1≤ j ≤ ki
}
. (3.10)

Let

T0 = T1−
{
xi2 : 1≤ i≤ q}. (3.11)

Then E(T0)= E(T1)−W∗ and

E(T)= E(T0
)∪W∗∪E(Q). (3.12)

Hence E(T) is partitioned into E(T0),W∗, and E(Q). We define an edge coloring

c of T by coloring the edges in each of the sets E(T0), W∗, and E(Q) in the

following three steps:

(1) if T has only one exterior major vertex, then this exterior major vertex is

also a superior major vertex since T is not a path. Thus ∆(T0)=∆(T)−1

and so χe(T0)=∆(T)−1. Let c1 be an edge coloring of T0 using ∆(T)−1

colors and define c(e)= c1(e) for all e ∈ E(T0). If T has more than one

exterior major vertex, then ∆(T0) ≤ ∆(T) and so χe(T0) ≤ ∆(T). Let c′1
be an edge coloring of T0 using ∆(T) colors and define c(e)= c′1(e) for

all e∈ E(T0);
(2) define c(vixi2)=∆(T)+i for each edge vixi2 in W∗, where 1≤ i≤ q;

(3) define c(e) for each edge e in Q. For each pair i, j with 1 ≤ i ≤ q and

1≤ j ≤ ki, let mij = |E(Qij)| and

E
(
Qij

)=
{
e1
ij ,e

2
ij , . . . ,e

mij
ij

}
, (3.13)

where (1) e1
ij is incident with xij , (2) e

mij
ij is incident with uij , (3) esij is

adjacent to es+1
ij in Qij for all s with 1≤ s ≤mij−1. Let

T∗0 = T1−
{
xij : 1≤ i≤ q, 1≤ j ≤ ki

}
. (3.14)
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For each i with 1≤ i≤ q, let di = degT∗0 vi, and so the degree of vi in T is

degvi = di+ki ≤∆(T). (3.15)

We consider two cases according to whether di = 0 or di > 0.

Case 1 (di = 0). Thus NT∗0 (vi) = ∅. This implies that T has only one ex-

terior major vertex that is also a superior major vertex. Notice that if j1,j2 ∈
{1,3,4, . . . ,k1} and j1 ≠ j2, then v1x1j1 and v1x1j2 are adjacent edges in T0 and

so c(v1x1j1)≠ c(v1x1j2). There are two subcases.

Subcase 1.1 (k1 = 3). Define

c
(
es11

)= c(v1x13
)

if s is odd, 1≤ s ≤m11, (3.16)

c
(
es11

)= c(v1x11
)

if s is even, 2≤ s ≤m11, (3.17)

c
(
es12

)=∆(T) if s is odd, 1≤ s ≤m12,

c
(
es12

)= c(v1x11
)

if s is even, 2≤ s ≤m12,
(3.18)

c
(
es13

)=∆(T) if s is odd, 1≤ s ≤m13,

c
(
es13

)= c(v1x13
)

if s is even, 2≤ s ≤m13.
(3.19)

Subcase 1.2 (k1 ≥ 4). For s is even and 2 ≤ s ≤ m11, define c(es11) as in

(3.17); for 1≤ s ≤m12, define c(es12) as in (3.18); for 1≤ s ≤m13, define c(es13)
as in (3.19). Furthermore, define

c
(
es11

)= c(v1x1k1

)
if s is odd, 1≤ s ≤m11,

c
(
es1j
)= c(v1x1,j−1

)
if s is odd, 1≤ s ≤m1j , 4≤ j ≤ k1,

c
(
es1j
)= c(v1x1j

)
if s is even, 2≤ s ≤m1j , 4≤ j ≤ k1.

(3.20)

Case 2 (di > 0). Thus NT∗0 (vi) ≠ ∅. Let x ∈ NT∗0 (vi). Then vix and vixij
(1 ≤ j ≤ k1) are adjacent edges in T0 and so all colors c(vix) and c(vixij),
1≤ j ≤ k1, are distinct. There are three subcases.

Subcase 2.1 (ki = 2). Define

c
(
esi1
)= c(vix

)
if s is odd, 1≤ s ≤mi1, (3.21)

c
(
esi1
)= c(vixi1

)
if s is even, 2≤ s ≤mi1, (3.22)

c
(
esi2
)= c(vix

)
if s is odd, 1≤ s ≤mi2,

c
(
esi2
)= c(vixi1

)
if s is even, 2≤ s ≤mi2.

(3.23)

Subcase 2.2 (ki = 3). For s is even and 2≤ s ≤mi1, define c(esi1) as in (3.22);

for 1≤ s ≤mi2, define c(esi2) as in (3.23), and define

c
(
esi1
)= c(vixi3

)
if s is odd, 1≤ s ≤mi1, (3.24)

c
(
esi3
)= c(vix

)
if s is odd, 1≤ s ≤mi3,

c
(
esi3
)= c(vixi3

)
if s is even, 2≤ s ≤mi3.

(3.25)
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Subcase 2.3 (ki ≥ 4). For s is even and 2≤ s ≤mi1, define c(esi1) as in (3.22);

for 1 ≤ s ≤mi2, define c(esi2) as in (3.23); for 1 ≤ s ≤mi3, define c(esi3) as in

(3.25). Furthermore, define

c
(
esi1
)= c(vixiki

)
if s is odd, 1≤ s ≤mi1,

c
(
esij
)= c(vixi,j−1

)
if s is odd, 1≤ s ≤mij , 4≤ j ≤ ki,

c
(
esij
)= c(vixij

)
if s is even, 2≤ s ≤mij , 4≤ j ≤ ki.

(3.26)

Since adjacent edges of T are colored differently by c, it follows that c is an

edge coloring of T using∆(T)+q colors. It remains to show that c is a resolving

edge coloring of T . Let �= {C1,C2, . . . ,C∆(T)+q} be the decomposition of T into

the color classes of c. Since all edges in W∗ are colored differently by c, it

suffices to show that if e,f ∈ E(T −W∗), then c�(e)≠ c�(f ). We consider two

cases.

Case 1 (there is some exterior major vertex z of T and a terminal vertex x
of z such that e lies on the z−x path of T ). Let y be a vertex in the z−x path

that is adjacent to z. There are two subcases.

Subcase 1(a) (yz ∈W ). First, assume that f lies on some z−x∗ path of T
for some terminal vertex x∗ of z. If x = x∗, then either d(e,yz) < d(f ,yz) or

d(f ,yz) < d(e,yz), implying that c�(e) ≠ c�(f ). Thus we may assume that

x ≠ x∗. If d(e,yz)≠ d(f ,yz), then c�(e)≠ c�(f ). If d(e,yz)= d(f ,yz), then

c(e)≠ c(f) by the definition of c and so c�(e)≠ c�(f ).
Next, assume that f does not lie on any z−x∗ path of T for all terminal

vertices x∗ of z. If there is an edgew ∈W∗ such that either f lies on the e−w
path or e lies on the f −w path, then d(f ,w) < d(e,w) or d(e,w) < d(f ,w),
respectively. In either case, c�(e) ≠ c�(f ). Thus, we may assume that every

path between e and an edge ofW∗ does not contain f and every path between f
and an edge ofW∗ does not contain e. Necessarily, then, there exist an exterior

major vertex z′ and a terminal vertex x′ of z′ such that f lies on the z′ −x′
path of T . Since f does not lie on any z−x∗ path of T for all terminal vertices

x∗ of z, it follows that z �= z′. Since z′ is an exterior major vertex of T , it follows

that the degree of z′ is at least 3 and so there exists a branch B at z′ that does

not contain f . Necessarily, B must contain an edge of W∗. Let w∗ be an edge

of W∗ that belongs to B. If d(e,yz) ≠ d(f ,yz), then c�(e) ≠ c�(f ). Thus we

may assume that d(e,yz) = d(f ,yz). This implies that d(f ,w∗) < d(e,w∗)
and so c�(e)≠ c�(f ).

Subcase 1(b) (yz ∉ W ). By the argument used in Subcase 1.1, we may as-

sume that every path between e and an edge of W∗ does not contain f and

every path between f and an edge of W∗ does not contain e. Thus there exist

an exterior major vertex z′ and a terminal vertex x′ of z′ such that f lies on the

z′ −x′ path of T . If z = z′, then there exists w ∈W∗ such that w is incident

with z. If d(e,w) ≠ d(f ,w), then c�(e) ≠ c�(f ), while if d(e,w) = d(f ,w),
then c(e) ≠ c(f) by the definition of c and so c�(e) ≠ c�(f ). Thus we may
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assume that z ≠ z′. Since the degrees of z and z′ are at least 3, there exists

a branch B1 at z that does not contain e and a branch B2 at z′ that does not

contain f . Necessarily, B1 must contain an edge w1 of W∗ and B2 must con-

tain an edge w2 of W∗. If d(e,w1) ≠ d(f ,w1), then c�(e) ≠ c�(f ), while if

d(e,w1)= d(f ,w1), then d(f ,w2) < d(e,w2) and so c�(e)≠ c�(f ).
Case 2 (for every exterior major vertex z of T and every terminal vertex x of

z, e does not lie on the z−x path of T ). Then there are at least two branches at

e, say B′1 and B′2, each of which contains some superior major vertex. Therefore,

each of B′1 and B′2 contains an edge of W∗. Let w′
1 and w′

2 be the edges of W∗

in B′1 and B′2, respectively. First assume that f ∈ E(B′1). Then the f−w′
2 path of

T contains e, so d(e,w′
2) < d(f ,w

′
2) and c�(e) ≠ c�(f ). We now assume that

f �∈ E(B′1). Then the f −w′
1 path of T contains e. Hence d(e,w′

1) < d(f ,w
′
1), so

c�(e)≠ c�(f ).
Therefore, � is a resolving edge coloring of T and so χre(T)≤ |�| =∆(T)+

sup(T), as desired.

In the proof of Theorem 3.3, if T is a tree with sup(T)≥ 2 such that degv ≤
∆(T)− 1 for every major vertex v of T that is not a superior major vertex,

then ∆(T0)≤∆(T)−1. Hence χe(T0)≤∆(T)−1. Thus, T0 has an edge coloring

c∗ using ∆(T)−1 colors. Define an edge coloring c such that c(e)= c∗(e) for

all e ∈ E(T0) and define c(e) for each e ∈ V(T)−E(T0) as described in the

proof of Theorem 3.3. Then an argument similar to the one used in the proof

of Theorem 3.3 shows that c is a resolving edge coloring of T . Thus, we have

the following corollary.

Corollary 3.4. Let T be a tree with sup(T)≥ 2. If every major vertex v of

T that is not a superior major vertex has degv <∆(T), then

χre(T)≤∆(T)+sup(T)−1. (3.27)

The upper bound in Corollary 3.4 is sharp. To see this, let T be a tree having

two superior major vertices v1 and v2 with degv1 = degv2 =∆(T) and degv <
∆(T) for every major vertex v of T that is not a superior major vertex. By

Corollary 3.4, χre(T)≤∆(T)+sup(T)−1=∆(T)+1. Assume, to the contrary,

that χre(T) = ∆(T). Let c be a resolving edge coloring of T with ∆(T) colors

and let �= {C1,C2, . . . ,C∆(T)} be the decomposition of T into the color classes

of c. Let N(vi) = {xi1,xi2, . . . ,xi∆(T)} for i = 1,2. Without loss of generality,

assume that xij ∈ Cj for i= 1,2 and 1≤ j ≤∆(T). However, then, c�(v1x11)=
(0,1,1, . . .) = c�(v2x21), which is a contradiction. Therefore, χre(T) = ∆(T)+
1=∆(T)+sup(T)−1.
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