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We show that a cocycle, which is nothing but a generalized random walk with
index set Zd, with bounded step sizes is recurrent whenever its associated random
entropy is zero, and transient whenever its associated random entropy is positive.
This generalizes a well-known one-dimensional result and implies a Polya type
dichotomy for this situation.
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1. Motivation and introduction. In [1], the concept of random entropy asso-

ciated with a Zd random group action was introduced and studied. Every such

Zd random group action is generated via a cocycle. (For the readers with a prob-

abilistic background, a cocycle is a generalization of an ordinary random walk,

the main difference being the fact that cocycles are generally indexed by Zd

rather than by Z. A one-dimensional cocycle is nothing but an ordinary random

walk; we give precise definitions in Section 2.) In the one-dimensional case, it

is easy to see that having positive random entropy is equivalent to the tran-

sience of the associated random walk. It therefore seems reasonable to try to

connect the concept of random entropy as developed in [1] and the transience

of the generating cocycle. In this paper, we show that the one-dimensional

connection holds in general.

The paper is completely self-contained. Section 2 contains the setup, includ-

ing all necessary definitions and the main results, while Sections 3 and 4 con-

tain the proofs.

2. Cocycles and random entropy. Let Ω be the following set:

Ω =
{
ω=

((
ω1
z, . . . ,ωdz

)
z∈Zd

)
; ωiz ∈ Zd,

ωiz+ωjz+ei =ωjz+ωiz+ej for i,j = 1, . . . ,d,i �= j
}
,

(2.1)

where ei, i= 1, . . . ,d, denote the unit vectors in Zd. The edges of Zd are oriented

in the natural way (following the three thumb rule). We should think of ωiz as

the label of the edge between z and z+ei. The set Ω should be interpreted as

follows: for two vertices z and z′, let π be an edge-self-avoiding path from z to

z′. Travelling from z to z′ alongπ , we add all labels of edges which we traverse

in the positive direction and subtract the labels of the edges which we traverse
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in the negative direction. The property in the definition of Ω asserts that the

outcome g(z,z′,ω) is independent of the choice of π , and only depends on z
and z′ (and onω of course). We define f(z,ω) to be g(0,z,ω). Then f is a map

Zd×Ω→ Zd and if φ : Zd×Ω→Ω is the group action given by the coordinate

shift, then f satisfies the cocycle identity

f(z+z′,ω)= f(z,ω)+f (z′,φz(ω)). (2.2)

The cocycle f plays the role of the position of the random walk in the one-

dimensional case, and the labels of the edges play the role of the increments.

Let µ be a φ-invariant ergodic probability measure on Ω (on the natural σ -

algebra) with the property that the edge labels are uniformly bounded. Hence-

forth, we will always assume that µ has this property.

Let F be a finite set containing at least two elements, and consider a Zd-

action ψ on X = FZd , together with an ψ-invariant, ergodic measure ρ on X.

The cocycle f induces a (µ×ρ)-invariant Zd-action (known as a skew product )

Φ : Zd×Ω×X →Ω×X as follows:

Φz(ω,x)=
(
φz(ω),ψf(z,ω)(x)

)
. (2.3)

We continue with the definition of random entropy. We write hm(ξ) for the

usual ergodic theoretical entropy with measure m and Zd-action ξ.

Definition 2.1. The random entropy Eρ(µ) is defined as

Eρ(µ)= hµ×ρ(Φ)−hµ(φ). (2.4)

Note that this is just the fibre entropy of the skew product (see [5]). The

above random entropy was studied and explicitly calculated in [1].

As mentioned before, a one-dimensional cocycle is just an ordinary random

walk. If this random walk is simple, that is, if µ is a product measure on {1,−1}Z
with the marginals equal to 1 with probability p, then the random entropy can

be computed and turns out to be equal to |2p−1|hρ(ψ) (see [1, 3]). (Compare

this with the forthcoming Theorems 2.3 and 3.1.)

Finally, we need to define the notions of recurrence and transience of a

cocycle.

Definition 2.2. The cocycle f (or the measure µ) is said to be recurrent if

µ
(
ω;f(z,ω)= 0 for infinitely many z ∈ Zd)= 1. (2.5)

The cocycle f (or the measure µ) is said to be transient if, for all z′ ∈ Zd,

µ
(
ω;f(z,ω)= f (z′,ω) for infinitely many z ∈ Zd)= 0. (2.6)
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In words, recurrence means infinitely many “visits” to the origin a.s., and

transience means that each image vector is attained only finitely many times

a.s. It does not follow from the definitions that any given cocycle is either

recurrent or transient, though we will now see that this is the case nevertheless.

Theorem 2.3. Suppose that 0<hρ(ψ) <∞.

(1) If Eρ(µ) > 0, then µ is transient.

(2) If Eρ(µ)= 0, then µ is recurrent.

Corollary 2.4 (a Polya dichotomy). Any measure µ (which concentrates

on configurations with uniformly bounded edge labels) on Ω is either recurrent

or transient.

Proof. Given a measure µ on Ω, take a measure ρ on X with finite positive

entropy and apply Theorem 2.3.

3. Proof of recurrence. For ease of notation and description, we will stick

to the two-dimensional case. Everything we say goes through in all dimensions.

Before we start proving anything, we mention at this point that we will go back

and forth between probabilistic language and ergodic-theoretical language, de-

pending on which is more suitable for the current purpose. So, for instance,

we will use the phrases “one-dimensional cocycle” and “random walk” inter-

changeably. Also, sometimes we behave like probabilists and do not write the

dependence on ω, but occasionally it is convenient to stress on this depen-

dence.

We define horizontal and vertical limits, writing f = (f1,f2), as follows:

h1(k)= lim
n→∞

f1(n,k)−f1(0,k)
n

, h2(k)= lim
n→∞

f2(n,k)−f2(0,k)
n

,

v1(k)= lim
n→∞

f1(k,n)−f1(k,0)
n

, v2(k)= lim
n→∞

f2(k,n)−f2(k,0)
n

.
(3.1)

All these limits exist µ-a.e. by stationarity. We first claim that h1(k) is in-

dependent of k and similarly for the other quantities. To see this, we write

Xn for f1(n,k)− f1(0,k) and Yn for f1(n,k+1)− f1(0,k+1). We have that

|Xn−Yn| ≤K for some uniform K > 0. Hence,

E
(∣∣∣∣Xnn − Yn

n

∣∣∣∣
)
�→ 0 (3.2)

for n → ∞ and it follows from Markov’s inequality that |Xn/n−Yn/n| con-

verges to 0 in probability. Hence the a.e. limit (which is known to exist) has to

be 0 as well. This proves the claim.

It follows that h1(k) is invariant under both horizontal and vertical transla-

tions and hence it is µ-a.e. constant. Similar statements are valid for the other
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quantities. Therefore, it makes sense to define h1 = h1(k), h2 = h2(k), v1 =
v1(k), and v2 = v2(k). We write h = (h1,h2) and v = (v1,v2). The following

result is taken from [1] and gives an explicit formula for the random entropy.

Theorem 3.1. One has

Eρ(µ)=
∣∣det(h,v)

∣∣hρ(ψ). (3.3)

The following result shows that we have convergence in measure to an ex-

plicit limit for the values of the cocycle in any given direction. In the remainder

of this paper, the quotient 1/(1+∞) is interpreted as 0 and ∞/(1+∞) as 1.

Lemma 3.2. Let {(kn,mn)} be a sequence of vectors in Z2.

(i) Suppose that (kn,mn)→ (c1 ·∞,c2 ·∞) for some c1,c2 ∈ {1,−1} and in

addition that mn/kn→α∈ [−∞,∞]. Then

f
(
kn,mn

)
∣∣kn∣∣+∣∣mn

∣∣ �→ c1

1+|α|h+
c2|α|
1+|α|v (3.4)

in µ measure as n→∞.
(ii) Suppose that {kn} is bounded and mn → c3 ·∞ for some c3 ∈ {1,−1}.

Then

f
(
kn,mn

)
∣∣kn∣∣+∣∣mn

∣∣ �→c3v (3.5)

in µ measure as n→∞.

(iii) Suppose that {mn} is bounded and kn → c4 ·∞ for some c4 ∈ {1,−1}.
Then

f
(
kn,mn

)
∣∣kn∣∣+∣∣mn

∣∣ �→c4h (3.6)

in µ measure as n→∞.

Proof. For (i), we will only prove the case c1 = c2 = 1 (and hence α ≥ 0)

since the proofs of the other cases are all similar. Let ε > 0, choose ε1 > 0 so

that

ε1

(
1

1+α +ε1

)
+|h|ε1+ε1

(
α

1+α +ε1

)
+|v|ε1 < ε. (3.7)

(The reason for this complicated expression will become apparent soon.) Let

A
(
n,ε1

)= {ω;
∣∣∣∣f(n,0,w)n

−h
∣∣∣∣< ε1

}
,

B
(
n,ε1

)= {ω;
∣∣∣∣f(0,n,w)n

−v
∣∣∣∣< ε1

}
.

(3.8)
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Using the convergence in measure (we have at this point, in fact, a.s. conver-

gence), there exists N sufficiently large so that, for all n>N, one has

(a) µ(A(kn,ε1)) > 1−ε,
(b) µ(B(mn,ε1)) > 1−ε,
(c) |1/(1+mn/kn)−1/(1+α)|< ε1,

(d) |(mn/kn)/(1+mn/kn)−α/(1+α)|< ε1

hold. Since µ is a translation invariant measure, for n>N, we have

µ
(
φ(n,0)B

(
mn,ε1

))
> 1−ε, (3.9)

and hence

µ
(
A
(
kn,ε1

)∩φ(n,0)B(mn,ε1
))
> 1−2ε. (3.10)

Now, for ω∈A(kn,ε1)∩φ(n,0)B(mn,ε1), we have

∣∣∣∣f
(
kn,mn,ω

)
kn+mn

− 1
1+αh−

α
1+αv

∣∣∣∣
≤
∣∣∣∣ f

(
kn,0,ω

)
kn
(
1+mn/kn

) − 1
1+mn/kn

h
∣∣∣∣+

∣∣∣∣ 1
1+mn/kn

− 1
1+α

∣∣∣∣|h|
+
∣∣∣∣f

(
0,mn,φ(kn,0)ω

)
mn

(
1+kn/mn

) − 1
1+kn/mn

v
∣∣∣∣+

∣∣∣∣ mn/kn
1+mn/kn

− α
1+α

∣∣∣∣|v|
< ε1

(
1

1+α +ε1

)
+|h|ε1+ε1

(
α

1+α +ε1

)
+|v|ε1 < ε,

(3.11)

where the last inequality follows from the choice of ε1.

This implies that for each n >N, the set A(kn,ε1)∩φ(n,0)B(mn,ε1) is con-

tained in the set

{
ω;
∣∣∣∣f

(
kn,mn,ω

)
kn+mn

− 1
1+αh−

α
1+αv

∣∣∣∣< ε
}
. (3.12)

Hence,

µ
(∣∣∣∣f

(
kn,mn,ω

)
kn+mn

− 1
1+αh−

α
1+αv

∣∣∣∣< ε
)
> 1−2ε, (3.13)

for all n>N.
For (ii), recall that f(0,n)/n converges in measure to v , it follows that

f(−n,0)/n converges in measure to −v . Now we can write

f
(
kn,mn

)
∣∣kn∣∣+∣∣mn

∣∣ = f
(
0,mn

)
∣∣mn

∣∣ ·
∣∣mn

∣∣∣∣kn∣∣+∣∣mn
∣∣ + f

(
kn,0,φ(0,mn)ω

)
∣∣kn∣∣+∣∣mn

∣∣ . (3.14)
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The first term converges to c3v and the second term goes to 0 in probability

since {kn} is bounded, using the stationarity of µ. The proof of (iii) is similar

and is omitted.

We next prove the second part of Theorem 2.3. First suppose that Eρ(µ)= 0.

There are two possibilities: (i) either h or v is the zero vector, or (ii) h and v
are linearly dependent. If h or v is zero, say h, then it follows from Lemma 3.2

that k1 defined as

k1(n)= f(n,0) (3.15)

has the property that

k1(n)
n

�→ 0 (3.16)

in µ measure as n→∞. Since k1 is a random walk with stationary increments,

it is well known that (see [2, 4]) this implies that k1 is recurrent which in turn

implies that f is recurrent.

Next we assume that h and v are nonzero. Then v = γh for some 0 �= γ ∈R.
If γ = p/q ∈Q, then k2 defined as

k2(n)= f(np,−nq) (3.17)

is a stationary random walk which, according to Lemma 3.2, satisfies

k2(n)
n

�→ 0 (3.18)

in µ measure as n→∞. As in the previous case, it follows that k2 is recurrent

and so f is recurrent as well.

Finally suppose that γ is irrational and let β = −1/γ. We generalize the

proof of the above cases. That is, we want to pick lattice points close to the

line y = βx (which is the “recurrence direction”) in such a way that the cocycle

f evaluated at these lattice points gives a recurrent one-dimensional random

walk with stationary increments. This will be possible if we enlarged our proba-

bility space. The idea is to move the line y = βx by a random uniform distance

δ ∈ [0,1] in the vertical direction, and on each vertical x = n line, we pick

the lattice point closest to the intersection of y = βx+δ with the line x = n.
The values of the cocycle f evaluated at these points will now be shown to

be a random walk with stationary increments. In order to do this completely

rigorously, it seems easier to adapt the cocycle language rather than the prob-

abilistic language.

Consider the space [0,1]×Ω with the product σ -algebra and product mea-

sure P×µ, where on [0,1] we have the usual Borel σ -algebra with P Lebesgue

measure. Define U : [0,1]×Ω→ [0,1]×Ω by

U(δ,ω)= ((δ+β)mod1,φ(1,	δ+β
)ω
)
. (3.19)
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Then U is clearly P×µ invariant and

Un(δ,ω)= ((δ+nβ)mod1,φ(n,	δ+nβ
)ω
)
. (3.20)

Define g : [0,1]×Ω→ Z2 by

g(δ,ω)= f (1,	δ+β
,ω) (3.21)

and k : Z×[0,1]×Ω→ Z2 by

k(n,δ,ω)=
n−1∑
i=0

g
(
Ui(δ,ω)

)= f (n,	δ+nβ
,ω). (3.22)

Then k is a cocycle for the Z-action generated by U . Since limn→∞	δ+nβ
/n=
β, v =α, and u=−(1/β)v , it follows from Lemma 3.2 that, for each δ∈ [0,1],

f
(
n,	δ+nβ
)

n+∣∣	δ+nβ
∣∣ �→
1

1+|β|h+
β

1+|β|v = 0 (3.23)

in µmeasure asn→∞. Sincen/(n+|	δ+nβ
|)→ 1/(1+|β|), this also implies

that

f
(
n,	δ+nβ
)

n
�→0 (3.24)

in µ measure as n→∞. We claim that k(n,·,·)/n → 0 in P × µ measure as

n → ∞. To see this, let ε > 0. According to (3.24), for each δ ∈ [0,1], there

exists Nδ such that, for all n≥Nδ,

µ
(∣∣∣∣f

(
n,	δ+nβ
,ω)

n

∣∣∣∣< ε
)
>
√

1−ε. (3.25)

Also, there exists a constant M such that

P
({
δ; Nδ ≤M

})
>
√

1−ε. (3.26)

Let

C(n,δ)=
{
ω;
∣∣∣∣f

(
n,	δ+nβ
,ω)

n

∣∣∣∣< ε
}
,

D = {δ; Nδ ≤M
}
.

(3.27)
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For n≥M , we have

(P×µ)
({
(δ,ω);

∣∣∣∣k(n,δ,ω)n

∣∣∣∣< ε
})

= (P×µ)
({
(δ,ω);

∣∣∣∣f
(
n,	δ+nβ
,ω)

n

∣∣∣∣< ε
})

= (P×µ)({(δ,ω); ω∈ C(n,δ)})

=
∫ 1

0
µ
(
C(n,δ)

)
dP(δ)

≥
∫
D
µ
(
C(n,δ)

)
dP(δ)≥ 1−ε.

(3.28)

This proves the claim. Since k is a cocycle for the Z-action generated by U , it

follows as before that k is recurrent, that is,

(P×µ)({(δ,ω); k(n,δ,ω)= 0 for infinitely many n∈ Z})= 1. (3.29)

Projecting on the second coordinate yields that, for a.e. δ, we have

µ
({
ω;f

(
n,	δ+nβ
,ω)= 0 for infinitely many n∈ Z})= 1. (3.30)

In fact, we only need one δ with this property. Anyway, it follows that f is

recurrent.

For future use, we state the following consequence of the previous construc-

tion.

Lemma 3.3. For any α ∈ [−∞,∞], (random) vertices (y0,y1,y2, . . .) can be

constructed such that (f (y0),f (y1), . . .) forms a random walk with stationary

increments defined on the probability space [0,1]×Ω such that

(i) yn,2/yn,1 →α (where yn = (yn,1,yn,2)),
(ii) |yn+1−yn| is uniformly bounded (where the bound depends on α) for

n≥ 0.

Proof. When h (say) is zero, take yn = (n,0); when v = γh for γ = p/q ∈
Q, take yn = (np,−nq); and when v = γh for irrational γ, take yn = 	δ+nβ

as in the above construction.

4. Proof of transience. We start with a strengthening of Lemma 3.2. We will

need convergence as in Lemma 3.2 along a random sequence (kn,mn). The

choice of this sequence will depend on the realisation, so some care is needed.

It turns out that it is easier to work with a.s. convergence in this context. It does

not suffice, however, to just change the mode of convergence in Lemma 3.2 to

a.s. convergence. The reason for this is that each sequence (kn,mn) has an

exceptional set of measure zero where convergence does not take place. We

need to guarantee that the realisation we see is not in the exceptional set of the

random sequence (kn,mn)which, after all, depends on this very configuration.

That is, we need some uniformity in our estimates.
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Lemma 4.1. Let α∈ (−∞,∞). Then for any ε > 0, there a.s. exist Nε > 0 and

δε > 0 such that whenever mn,kn >Nε and |mn/kn−α|< δε,
∣∣∣∣ f

(
kn,mn

)
∣∣kn∣∣+∣∣mn

∣∣ − 1
1+|α|h−

|α|
1+|α|v

∣∣∣∣< ε. (4.1)

When α = ±∞, δε should be replaced by a constant Mε and the condition

|mn/kn−α|< δε should be replaced by |mn/kn|>Mε. Moreover, similar state-

ments are valid for all other cases of Lemma 3.2.

Proof. For the purists among us, first note that “a.s.” in the statement of

the lemma refers to µ. In the proof to follow, a.s. refers to (P ×µ) as defined

in Section 3. The result then follows by projecting on the second coordinate.

For the given α, we choose the sequence of points (yn) dictated by Lemma

3.3. We write xn = (kn,mn) and write yj(n) for the (or a) vertex among

(y0,y1, . . .) which is closest to xn. We then have

f
(
xn
)

∥∥xn∥∥ =
(
f
(
yj(n)

)
∥∥yj(n)∥∥ +

f
(
xn
)−f (yj(n))∥∥yj(n)∥∥

)∥∥yj(n)∥∥∥∥xn∥∥ . (4.2)

The ergodic theorem tells us that f(yn)/‖yn‖ converges a.s., and it then fol-

lows from the corresponding convergence in measure in Lemma 3.2 that this

a.s. limit must be the same limit as in Lemma 3.2. Therefore, if kn andmn are

large enough and |mn/kn−α| is small enough, then j(n) is large and there-

fore f(yj(n))/‖yj(n)‖ is close to the correct limit in Lemma 3.2. At the same

time, the term ‖yj(n)‖/‖xn‖ is close to 1 by construction. Finally, the norm of

the vector (f (xn)−f(yj(n)))/‖yj(n)‖ is bounded above by

M
∥∥xn−yj(n)∥∥∥∥yj(n)∥∥ , (4.3)

where M is the uniform upper bound on the norm of the edge labels. This last

expression is close to 0 when kn and mn are large and |mn/kn−α| is small.

For our next lemma, we need some additional notation. For each integer n,

define half-planes as follows:

H1(n)=
{
(x,y)∈R2; y ≤n},

H2(n)=
{
(x,y)∈R2; x ≤n},

H3(n)=
{
(x,y)∈R2; y ≥n},

H4(n)=
{
(x,y)∈R2; x ≥n}.

(4.4)
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Lemma 4.2. Suppose that |det(h,v)|> 0. Then there exist random variables

N1, N2, N3, and N4, taking values in the positive integers such that

f(0,n) ∉ f
(
H1(0)

) ∀n≥N1,

f (n,0) ∉ f
(
H2(0)

) ∀n≥N2,

f (0,n) ∉ f
(
H3(0)

) ∀n≤−N3,

f (n,0) ∉ f
(
H4(0)

) ∀n≤−N4.

(4.5)

Proof. We will only prove the existence of N1 since the other cases are

proved similarly.

We call ω ∈ Ω very bad if there exist a sequence {zk} in H1(0) and an

infinite sequence 0 < n1 < n2 < ··· of positive integers such that f(zk,ω) =
f(0,nk,ω) for all k≥ 1. Let

B = {ω; ω is very bad}. (4.6)

It suffices to show that µ(B)= 0. A problem here is that B is not clearly trans-

lation invariant. To overcome this difficulty, we enlarge the set B as to get an

invariant set.

We call ω bad if for some m and 
, there exist an infinite set of distinct

points W = {w1,w2, . . .} ∈ [−m,m]×{0,1,2, . . .} and a set Z={z1,z2, . . .} of lat-

tice points in H1(
) such that f(zk,ω)= f(wk,ω). It is clear that the set

A= {ω; ω is bad} (4.7)

is translation invariant and hence by ergodicity µ(A) is either 0 or 1. Further-

more, we have B ⊆A so that it suffices to prove that µ(A)= 0. We now assume

that µ(A)= 1 and show that we get a contradiction.

It follows from Lemma 4.1 that

f
(
wk
)

∥∥wk∥∥ �→ v (4.8)

a.s., where ‖·‖ denotes L1 distance.

The first thing is to rule out the possibility of the set Z being finite. This is

not hard. We can write

f
(
wk
)

∥∥wk∥∥ = f
(
zk
)

∥∥zk∥∥ ·
∥∥zk∥∥∥∥wk∥∥ . (4.9)

The left-hand side converges a.s. to v which is not the zero vector by assump-

tion. On the event that Z is bounded, the right-hand side converges a.s. to the

zero vector. Therefore, Z is unbounded a.s.

Next we let a(zk) be the angle that the vector zk makes with the positive

x-axis, measured counterclockwise. We define Θ = Θ(ω) as the (random) set

of limit points of {a(zk)}. Since the zk’s are all in H1(
) for some 
, we have
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that Θ is nonempty and satisfies Θ ⊆ [π,2π]. Since Θ is also closed, we can

define

θ̄ = supΘ. (4.10)

Note that Θ is clearly translation invariant, and therefore θ̄ is an almost sure

constant. Now choose a subsequence (zk1 ,zk2 , . . .) such that

zkn,2
zkn,1

�→ tan θ̄. (4.11)

Note that this subsequence is random. Now choose a sequence (εm) converging

to zero. Using Lemma 4.1, we see that for fixed m, a.s. for all n large enough,

and for the appropriate β1 and β2,

∣∣∣∣∣f
(
zkn

)
∥∥zkn∥∥ −β1v−β2h

∣∣∣∣∣< εm. (4.12)

The exceptional set depends onm but the intersection of these sets (countably

many) still has full measure. On this intersection, we get a.s. convergence.

We claim that β1 ≤ 0. To see this, note that in Lemma 3.2, either case (i) with

c2 = −1, case (ii) with c3 = −1, or case (iii) without condition on c4 applies. In

all these cases, the coefficient of v in the limit is at most 0.

Using (4.9) again, with kn replacing k, we see that the left-hand side still

converges a.s. to v . According to Lemma 4.1, the first term on the right-hand

side converges a.s. to a different vector, which is either linearly independent

of v or a nonpositive multiple of v . (Here we have used the fact that h and

v are linearly independent and the fact that β1 ≤ 0.) The second term is, for

alln, a (random) positive number, and hence we have arrived at a contradiction.

Finally, we show that µ is transient when Eρ(µ) > 0. For this, we define the

following stochastic processes:

Y 1
n(k)=min

{
N ≥ 0; f(k,−n+
) ∉ f (H1(−n)

) ∀
 ≥N},
Y 2
n(k)=min

{
N ≥ 0; f(−n+
,k) ∉ f (H2(−n)

) ∀
 ≥N},
Y 3
n(k)=min

{
N ≥ 0; f(k,n−
) ∉ f (H3(n)

) ∀
 ≥N},
Y 4
n(k)=min

{
N ≥ 0; f(n−
,k) ∉ f (H4(n)

) ∀
 ≥N}.
(4.13)

The idea behind these definitions is the following: Y 1
n(k), for instance, is a

random variable that indicates how far we need to go into the box [−n,n]2
from below in order to make sure that no value in the lower half-plane H1(n)
is seen on the vertical line x = k further up.

It follows from Lemma 4.2 that Y in(k) is well defined and finite a.s. Special-

ising to Y 1
n , note that (Y 1

n(0))n is a stationary process. Hence there a.s. exists
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a (random) number n1 such that Y 1
n1
(0) < n1. It follows from the construc-

tions that this implies that, for all n ≥ n1, we have Y 1
n(0) < n. For the other

processes, Y 2,Y 3, and Y 4, we find numbers n2,n3, and n4 such that, for all

n≥ni, we have Y in(0) < n, i= 2,3,4.
Next define the (random) set An ⊂ [−n,n]2 as all points (z1,z2) in [−n,n]2

with the property that

−n+Y 2
n
(
z1
)≤ z1 ≤n−Y 4

n
(
z1
)
,

−n+Y 1
n
(
z2
)≤ z2 ≤n−Y 3

n
(
z2
)
.

(4.14)

For all n >max{n1,n2,n3,n4}, we have that the origin is contained in the

set An. This implies that for these values of n, the value f(0,ω) = 0 of the

cocycle taken at the origin is not taken at any point outside Bn.

It is not hard to adapt this argument to other vertices z′ as well, and this

implies that the cocycle is transient.
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