A NONUNIFORM BOUND FOR THE APPROXIMATION OF POISSON BINOMIAL BY POISSON DISTRIBUTION

K. NEAMMANEE

Received 18 December 2002

Abstract

It is well known that Poisson binomial distribution can be approximated by Poisson distribution. In this paper, we give a nonuniform bound of this approximation by using Stein-Chen method.

2000 Mathematics Subject Classification: 60F05, 60G50.

1. Introduction and main result. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, possibly not identically distributed, Bernoulli random variables with $P\left(X_{i}=1\right)=1-$ $P\left(X_{i}=0\right)=p_{i}$ and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. The sum of this kind is often called a Poisson binomial random variable. In the case where the "success" probabilities are all identical, $p_{i}=p, S$ is the binomial random variable $\mathscr{B}(n, p)$. Let $\lambda=\sum_{i=1}^{n} p_{i}$ and let \mathscr{P}_{λ} be the Poisson random variable with parameter λ, that is, $P\left(\mathscr{P}_{\lambda}=\omega\right)=e^{-\lambda} \lambda^{\omega} / \omega$! for all nonnegative integers ω. It has long been known that if p_{i} 's are small, then the distribution of S_{n} can be approximated by a distribution of \mathscr{P}_{λ} (see, e.g., Chen [2]).

In this paper, we investigate the bound of this approximation. As an illustration, we look at the case of $p_{1}=p_{2}=\cdots=p_{n}=p$. There are at least three known uniform bounds: Kennedy and Quine [6] showed that, for $0<\lambda \leq 2-\sqrt{2}$,

$$
\begin{equation*}
\left|P\left(S_{n} \leq \omega\right)-P\left(\mathscr{P}_{\lambda} \leq \omega\right)\right| \leq 2 \lambda\left[(1-p)^{n-1}-e^{-n p}\right], \tag{1.1}
\end{equation*}
$$

Barbour and Hall [1] showed that

$$
\begin{equation*}
\left|P\left(S_{n} \leq \omega\right)-P\left(\mathscr{P}_{\lambda} \leq \omega\right)\right| \leq \min (p, \lambda p) \tag{1.2}
\end{equation*}
$$

and Deheuvels and Pfeifer [5] proved that

$$
\begin{align*}
\mid P\left(S_{n}\right. & \leq \omega)-P\left(\mathscr{P}_{\lambda} \leq \omega\right) \mid \\
& \leq \lambda p e^{-\lambda}\left\{\frac{(n p)^{(a-1)}(a-n p)}{a!}-\frac{(n p)^{(b-1)}(b-n p)}{b!}\right\}+R \tag{1.3}
\end{align*}
$$

with $a=[n p+1 / 2+\sqrt{n p+1 / 4}], b=[n p+1 / 2-\sqrt{n p+1 / 4}]$, and $|R| \leq$ $(1 / 2)(2 p)^{3 / 2} /(1-\sqrt{2 p})$, for $0<p<1 / 2$, and $[x]$ is understood to be the integer part of x.

For the general case, Le Cam [7] investigated and showed that

$$
\begin{equation*}
\sum_{\omega=0}^{\infty}\left|P\left(S_{n}=\omega\right)-\frac{e^{-\lambda} \lambda^{\omega}}{\omega!}\right| \leq \frac{16}{\lambda} \sum_{i=1}^{n} p_{i}^{2} \tag{1.4}
\end{equation*}
$$

It can be observed that the constant $16 / \lambda$ will be large when λ is small. Stein [10] used the method of Chen [3] to improve the bound and showed that

$$
\begin{equation*}
\left|P\left(S_{n} \leq \omega\right)-P\left(\mathscr{P}_{\lambda} \leq \omega\right)\right| \leq\left(\lambda^{-1} \wedge 1\right) \sum_{i=1}^{n} p_{i}^{2} \tag{1.5}
\end{equation*}
$$

for $\omega=0,1,2, \ldots, n$ and $\lambda^{-1} \wedge 1=\min \left(\lambda^{-1}, 1\right)$. In case when λ tends to 0 , one can see that (1.5) becomes

$$
\begin{equation*}
\left|P\left(S_{n} \leq \omega\right)-P\left(\mathscr{P}_{\lambda} \leq \omega\right)\right| \leq \sum_{i=1}^{n} p_{i}^{2} \tag{1.6}
\end{equation*}
$$

In this paper, we consider a nonuniform bound when λ is small, that is, $\lambda \in(0,1]$ and $\omega \in\{1,2, \ldots, n-1\}$. Note that, when $\omega \notin\{1,2, \ldots, n-1\}$, we can compute the exact probabilities, that is,

$$
\begin{gather*}
P\left(S_{n}=0\right)=\prod_{i=1}^{n}\left(1-p_{i}\right), \quad P\left(S_{n}=n\right)=\prod_{j=1}^{n} p_{j}, \tag{1.7}\\
P\left(S_{n}=\omega\right)=0, \quad \omega=n+1, n+2, \ldots
\end{gather*}
$$

In finding the uniform bound, there are several techniques which can be used; for example,
(i) the operator method initiated in Le Cam [7],
(ii) the semigroup approach due to Deheuvels and Pfeifer [4],
(iii) the Chen-Stein technique, see Chen [3] and Stein [10],
(iv) direct computations as in Kennedy and Quine [6],
(v) the coupling method, see Serfling [8] and Stein [10].

In the present paper, our argument closely follows the Chen-Stein technique in Chen [3] and Stein [10]. The following theorem is our main result.

Theorem 1.1. Let $\lambda \in(0,1]$ and $\omega_{0} \in\{1,2, \ldots, n-1\}$. Then

$$
\begin{equation*}
\left|P\left(S_{n}=\omega_{0}\right)-P\left(\mathscr{P}_{\lambda}=\omega_{0}\right)\right| \leq \frac{1}{\omega_{0}} \sum_{i=1}^{n} p_{i}^{2} . \tag{1.8}
\end{equation*}
$$

2. Proof of the main result. Stein [9] gave a new technique to find a bound in the normal approximation to a distribution of a sum of dependent random variables. His technique was free from Fourier methods and relied instead on the elementary differential equation

$$
\begin{equation*}
f^{\prime}(\omega)-w f(\omega)=h(\omega)-N(h) \tag{2.1}
\end{equation*}
$$

where h is a function that is used to test convergence and $N(h)=E[h(Z)]$ where Z is the standard normal. Chen [3] applied Stein's ideas in the Poisson setting. Corresponding to the differential equation in the normal case above, one has an analogous difference equation

$$
\begin{equation*}
\lambda f(\omega+1)-\omega f(\omega)=h(\omega)-\mathscr{P}_{\lambda}(h) \tag{2.2}
\end{equation*}
$$

where $\mathscr{P}_{\lambda}(h)=E\left[h\left(\mathscr{P}_{\lambda}\right)\right]$ and f and h are real-valued functions defined on $\mathbb{Z}^{+} \cup\{0\}$. Let $\omega_{0} \in\{1,2, \ldots, n-1\}$ and define $h, h_{\omega_{0}}: \mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{R}$ by

$$
h(\omega)=\left\{\begin{array}{ll}
1, & \text { if } \omega=\omega_{0}, \tag{2.3}\\
0, & \text { if } \omega \neq \omega_{0},
\end{array} \quad h_{\omega_{0}}(\omega)= \begin{cases}1, & \text { if } \omega \leq \omega_{0} \\
0, & \text { if } \omega>\omega_{0}\end{cases}\right.
$$

Then we see that the solution f of (2.2) can be expressed in the form

$$
\begin{gather*}
f_{\omega_{0}}(\omega)= \begin{cases}\frac{(\omega-1)!}{\omega_{0}!} \lambda \omega_{0}-\omega_{\mathscr{P}_{\lambda}}\left(1-h_{\omega-1}\right), & \text { if } \omega_{0}<\omega, \\
-\frac{(\omega-1)!}{\omega_{0}!} \lambda \omega_{0}-\omega \mathscr{P}_{\lambda}\left(h_{\omega-1}\right), & \text { if } \omega_{0} \geq \omega>0, \\
0, & \text { if } \omega=0,\end{cases} \tag{2.4}\\
\lambda E\left[f_{\omega_{0}}\left(S_{n}+1\right)\right]-E\left[S_{n} f_{\omega_{0}}\left(S_{n}\right)\right]=P\left(S_{n}=\omega_{0}\right)-P\left(\mathscr{P}_{\lambda}=\omega_{0}\right) . \tag{2.5}
\end{gather*}
$$

Let $S_{n}^{(i)}=S_{n}-X_{i}$ for $i=1,2, \ldots, n$. By using the facts that each X_{j} takes on values 0 and 1 and that X_{j} 's are independent, we have

$$
\begin{align*}
E\left[S_{n} f_{\omega_{0}}\left(S_{n}\right)\right] & =\sum_{i=1}^{n} p_{i} E\left[f\left(S_{n}^{(i)}+1\right)\right] \\
& =\lambda E\left[f_{\omega_{0}}\left(S_{n}+1\right)\right]+\sum_{i=1}^{n} p_{i} E\left[f_{\omega_{0}}\left(S_{n}^{(i)}+1\right)-f_{\omega_{0}}\left(S_{n}+1\right)\right] \\
& =\lambda E\left[f_{\omega_{0}}\left(S_{n}+1\right)\right]+\sum_{i=1}^{n} p_{i} E\left\{X_{i}\left[f_{\omega_{0}}\left(S_{n}^{(i)}+1\right)-f_{\omega_{0}}\left(S_{n}^{(i)}+2\right)\right]\right\} \\
& =\lambda E\left[f_{\omega_{0}}\left(S_{n}+1\right)\right]+\sum_{i=1}^{n} p_{i}^{2} E\left[f_{\omega_{0}}\left(S_{n}^{(i)}+1\right)-f_{\omega_{0}}\left(S_{n}^{(i)}+2\right)\right], \tag{2.6}
\end{align*}
$$

which implies, by (2.5), that

$$
\begin{equation*}
P\left(S_{n}=\omega_{0}\right)-P\left(\mathscr{P}_{\lambda}=\omega_{0}\right)=\sum_{i=1}^{n} p_{i}^{2} E\left[f_{\omega_{0}}\left(S_{n}^{(i)}+2\right)-f_{\omega_{0}}\left(S_{n}^{(i)}+1\right)\right] . \tag{2.7}
\end{equation*}
$$

From (2.4), it follows that

$$
\begin{align*}
& f_{\omega_{0}}(\omega+2)-f_{\omega_{0}}(\omega+1) \\
& \quad= \begin{cases}-\lambda \omega_{0}-\omega-2 \frac{\omega!}{\omega_{0}!}\left[(\omega+1) \mathscr{P}_{\lambda}\left(h_{\omega+1}\right)-\lambda \mathscr{P}_{\lambda}\left(h_{\omega}\right)\right], & \text { if } \omega \leq \omega_{0}-2, \\
\lambda \omega_{0}-\omega-2 \frac{\omega!}{\omega_{0}!}\left[(\omega+1) \mathscr{P}_{\lambda}\left(1-h_{\omega+1}\right)+\lambda \mathscr{P}_{\lambda}\left(h_{\omega}\right)\right], & \text { if } \omega=\omega_{0}-1, \\
\lambda^{\omega_{0}-\omega-2} \frac{\omega!}{\omega_{0}!}\left[(\omega+1) \mathscr{P}_{\lambda}\left(1-h_{\omega+1}\right)-\lambda \mathscr{P}_{\lambda}\left(1-h_{\omega}\right)\right], & \text { if } \omega \geq \omega_{0} .\end{cases} \tag{2.8}
\end{align*}
$$

CASE $1\left(\omega \leq \omega_{0}-2\right)$. Since

$$
\begin{equation*}
(\omega+1) \mathscr{P}_{\lambda}\left(h_{\omega+1}\right)-\lambda \mathscr{P}_{\lambda}\left(h_{\omega}\right)=e^{-\lambda} \sum_{k=0}^{\omega+1} \frac{\lambda^{k}}{k!}(\omega+1-k), \tag{2.9}
\end{equation*}
$$

we have

$$
\begin{align*}
\left|f_{\omega_{0}}(\omega+2)-f_{\omega_{0}}(\omega+1)\right| & =\lambda^{\left(\omega_{0}-2\right)-\omega} \frac{\omega!}{\omega_{0}!}\left[e^{-\lambda} \sum_{k=0}^{\omega+1} \frac{\lambda^{k}}{k!}(\omega+1-k)\right] \\
& \leq \frac{(\omega+1)!}{\omega_{0}!}\left[e^{-\lambda} \sum_{k=0}^{\omega+1} \frac{\lambda^{k}}{k!}\right] \tag{2.10}\\
& \leq \frac{\left(\omega_{0}-1\right)!}{\omega_{0}!} \\
& =\frac{1}{\omega_{0}}
\end{align*}
$$

where we have used the facts that $\lambda \in(0,1]$ and $0 \leq \omega+1-k \leq \omega+1$ in the first inequality and the conditions $\omega \leq \omega_{0}-2$ and $e^{-\lambda} \sum_{k=0}^{\omega+1}\left(\lambda^{k} / k!\right) \leq 1$ in the second inequality.

CASE $2\left(\omega=\omega_{0}-1\right)$. We have

$$
\begin{align*}
\left|f_{\omega_{0}}(\omega+2)-f_{\omega_{0}}(\omega+1)\right| & =\frac{\lambda^{-1}}{\omega_{0}}\left[\omega_{0} e^{-\lambda} \sum_{k=\omega_{0}+1}^{\infty} \frac{\lambda^{k}}{k!}+\lambda e^{-\lambda} \sum_{k=0}^{\omega_{0}-1} \frac{\lambda^{k}}{k!}\right] \\
& \leq \frac{\lambda^{-1}}{\omega_{0}}\left[e^{-\lambda} \sum_{k=\omega_{0}+1}^{\infty} k \frac{\lambda^{k}}{k!}+e^{-\lambda} \sum_{k=0}^{\omega_{0}-1}(k+1) \frac{\lambda^{k+1}}{(k+1)!}\right] \\
& =\frac{\lambda^{-1}}{\omega_{0}} E\left[\mathscr{P}_{\lambda}\right] \\
& =\frac{1}{\omega_{0}} . \tag{2.11}
\end{align*}
$$

CASE $3\left(\omega \geq \omega_{0}\right)$. Since

$$
\begin{align*}
& \frac{1 \lambda^{\omega+2}}{(\omega+2)!}+\frac{2 \lambda^{\omega+3}}{(\omega+3)!}+\frac{3 \lambda^{\omega+4}}{(\omega+4)!}+\cdots \\
& \quad \leq \lambda^{\omega-\omega_{0}+2}\left[\frac{\omega_{0} \lambda^{\omega_{0}}}{\omega_{0}!\left(\omega_{0}+1\right) \cdots(\omega+2)}+\frac{\left(\omega_{0}+1\right) \lambda^{\omega_{0}+1}}{\left(\omega_{0}+1\right)!\left(\omega_{0}+2\right) \cdots(\omega+3)}+\cdots\right] \\
& \quad \leq \frac{\lambda^{\omega-\omega_{0}+2}}{\left(\omega_{0}+1\right)\left(\omega_{0}+2\right) \cdots(\omega+2)}\left[\sum_{k=\omega_{0}}^{\infty} \frac{k \lambda^{k}}{k!}\right] \\
& \quad \leq \frac{e^{\lambda} \lambda^{\omega-\omega_{0}+2} E\left[\mathscr{P}_{\lambda}\right]}{\left(\omega_{0}+1\right)\left(\omega_{0}+2\right) \cdots(\omega+2)} \\
& \quad=\frac{e^{\lambda} \lambda^{\omega-\omega_{0}+3}}{\left(\omega_{0}+1\right)\left(\omega_{0}+2\right) \cdots(\omega+2)}, \\
& (\omega+1) \mathscr{P}_{\lambda}\left(1-h_{\omega+1}\right)-\lambda \mathscr{P}_{\lambda}\left(1-h_{\omega}\right)=-e^{-\lambda} \sum_{k=\omega+2}^{\infty} \frac{\lambda^{k}}{k!}(k-(\omega+1))<0, \tag{2.12}
\end{align*}
$$

we have

$$
\begin{align*}
\left|f_{\omega_{0}}(\omega+2)-f_{\omega_{0}}(\omega+1)\right| & =\lambda^{\omega_{0}-\omega-2} \frac{\omega!}{\omega_{0}!} e^{-\lambda} \sum_{k=\omega+2}^{\infty} \frac{\lambda^{k}}{k!}(k-(\omega+1)) \tag{2.13}\\
& \leq \frac{\lambda \omega!}{(\omega+2)!} \leq \frac{1}{(\omega+1)(\omega+2)}
\end{align*}
$$

From Cases 1, 2, and 3, we conclude that

$$
\begin{equation*}
\left|f_{\omega_{0}}(\omega+2)-f_{\omega_{0}}(\omega+1)\right| \leq \frac{1}{\omega_{0}} \tag{2.14}
\end{equation*}
$$

By (2.7) and (2.14), we have

$$
\begin{align*}
& \left|P\left(S_{n}=\omega_{0}\right)-P\left(\mathscr{P}_{\lambda}=\omega_{0}\right)\right| \\
& \quad \leq\left(\sum_{i=1}^{n} p_{i}^{2}\right) E\left[\left|f_{\omega_{0}}\left(S_{n}^{(i)}+2\right)-f_{\omega_{0}}\left(S_{n}^{(i)}+1\right)\right|\right] \leq \frac{1}{\omega_{0}} \sum_{i=1}^{n} p_{i}^{2} . \tag{2.15}
\end{align*}
$$

Acknowledgment. The author would like to thank the insightful comments from the referees and financial support by Thailand Research Fund.

References

[1] A. D. Barbour and P. Hall, On the rate of Poisson convergence, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 3, 473-480.
[2] L. H. Y. Chen, On the convergence of Poisson binomial to Poisson distributions, Ann. Probab. 2 (1974), no. 1, 178-180.
[3] , Poisson approximation for dependent trials, Ann. Probab. 3 (1975), no. 3, 534-545.
[4] P. Deheuvels and D. Pfeifer, A semigroup approach to Poisson approximation, Ann. Probab. 14 (1986), no. 2, 663-676.
[5] ___ On a relationship between Uspensky's theorem and Poisson approximations, Ann. Inst. Statist. Math. 40 (1988), no. 4, 671-681.
[6] J. E. Kennedy and M. P. Quine, The total variation distance between the binomial and Poisson distributions, Ann. Probab. 17 (1989), no. 1, 396-400.
[7] L. Le Cam, An approximation theorem for the Poisson binomial distribution, Pacific J. Math. 10 (1960), 1181-1197.
[8] R. J. Serfling, Some elementary results on Poisson approximation in a sequence of Bernoulli trials, SIAM Rev. 20 (1978), no. 3, 567-579.
[9] C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II: Probability Theory (Univ. California, Berkeley, Calif, 1970/1971), University of California Press, California, 1972, pp. 583-602.
[10] _ Approximate Computation of Expectations, Institute of Mathematical Statistics Lecture Notes-Monograph Series, vol. 7, Institute of Mathematical Statistics, California, 1986.
K. Neammanee: Department of Mathematics, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: kritsana.n@chula.ac.th

