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It is well known that Poisson binomial distribution can be approximated by Poisson
distribution. In this paper, we give a nonuniform bound of this approximation by
using Stein-Chen method.
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1. Introduction and main result. LetX1,X2, . . . ,Xn be independent, possibly

not identically distributed, Bernoulli random variables with P(Xi = 1) = 1−
P(Xi = 0) = pi and let Sn = X1+X2+···+Xn. The sum of this kind is often

called a Poisson binomial random variable. In the case where the “success”

probabilities are all identical,pi = p, S is the binomial random variable �(n,p).
Let λ =∑n

i=1pi and let �λ be the Poisson random variable with parameter λ,

that is, P(�λ =ω)= e−λλω/ω! for all nonnegative integersω. It has long been

known that if pi’s are small, then the distribution of Sn can be approximated

by a distribution of �λ (see, e.g., Chen [2]).

In this paper, we investigate the bound of this approximation. As an illus-

tration, we look at the case of p1 = p2 = ··· = pn = p. There are at least three

known uniform bounds: Kennedy and Quine [6] showed that, for 0< λ≤ 2−√2,

∣∣P(Sn ≤ω)−P(�λ ≤ω
)∣∣≤ 2λ

[
(1−p)n−1−e−np], (1.1)

Barbour and Hall [1] showed that

∣∣P(Sn ≤ω)−P(�λ ≤ω
)∣∣≤min(p,λp), (1.2)

and Deheuvels and Pfeifer [5] proved that

∣∣P(Sn ≤ω)−P(�λ ≤ω
)∣∣

≤ λpe−λ
{
(np)(a−1)(a−np)

a!
− (np)

(b−1)(b−np)
b!

}
+R (1.3)

with a = [np + 1/2 + √np+1/4], b = [np + 1/2 − √np+1/4], and |R| ≤
(1/2)(2p)3/2/(1−√2p), for 0<p < 1/2, and [x] is understood to be the inte-

ger part of x.
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For the general case, Le Cam [7] investigated and showed that

∞∑
ω=0

∣∣∣∣P(Sn =ω)− e−λλωω!

∣∣∣∣≤ 16
λ

n∑
i=1

p2
i . (1.4)

It can be observed that the constant 16/λ will be large when λ is small. Stein

[10] used the method of Chen [3] to improve the bound and showed that

∣∣P(Sn ≤ω)−P(�λ ≤ω
)∣∣≤ (λ−1∧1

) n∑
i=1

p2
i (1.5)

for ω = 0,1,2, . . . ,n and λ−1∧1 =min(λ−1,1). In case when λ tends to 0, one

can see that (1.5) becomes

∣∣P(Sn ≤ω)−P(�λ ≤ω
)∣∣≤ n∑

i=1

p2
i . (1.6)

In this paper, we consider a nonuniform bound when λ is small, that is,

λ∈ (0,1] and ω∈ {1,2, . . . ,n−1}. Note that, when ω ∉ {1,2, . . . ,n−1}, we can

compute the exact probabilities, that is,

P
(
Sn = 0

)= n∏
i=1

(
1−pi

)
, P

(
Sn =n

)= n∏
j=1

pj,

P
(
Sn =ω

)= 0, ω=n+1,n+2, . . . .

(1.7)

In finding the uniform bound, there are several techniques which can be used;

for example,

(i) the operator method initiated in Le Cam [7],

(ii) the semigroup approach due to Deheuvels and Pfeifer [4],

(iii) the Chen-Stein technique, see Chen [3] and Stein [10],

(iv) direct computations as in Kennedy and Quine [6],

(v) the coupling method, see Serfling [8] and Stein [10].

In the present paper, our argument closely follows the Chen-Stein technique

in Chen [3] and Stein [10]. The following theorem is our main result.

Theorem 1.1. Let λ∈ (0,1] and ω0 ∈ {1,2, . . . ,n−1}. Then

∣∣P(Sn =ω0
)−P(�λ =ω0

)∣∣≤ 1
ω0

n∑
i=1

p2
i . (1.8)

2. Proof of the main result. Stein [9] gave a new technique to find a bound

in the normal approximation to a distribution of a sum of dependent random

variables. His technique was free from Fourier methods and relied instead on

the elementary differential equation

f ′(ω)−wf(ω)= h(ω)−N(h), (2.1)
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where h is a function that is used to test convergence and N(h) = E[h(Z)]
where Z is the standard normal. Chen [3] applied Stein’s ideas in the Poisson

setting. Corresponding to the differential equation in the normal case above,

one has an analogous difference equation

λf(ω+1)−ωf(ω)= h(ω)−�λ(h), (2.2)

where �λ(h) = E[h(�λ)] and f and h are real-valued functions defined on

Z+∪{0}. Let ω0 ∈ {1,2, . . . ,n−1} and define h,hω0 : Z+∪{0} →R by

h(ω)=

1, if ω=ω0,

0, if ω≠ω0,
hω0(ω)=


1, if ω≤ω0,

0, if ω>ω0.
(2.3)

Then we see that the solution f of (2.2) can be expressed in the form

fω0(ω)=




(ω−1)!
ω0!

λω0−ω�λ
(
1−hω−1

)
, if ω0 <ω,

− (ω−1)!
ω0!

λω0−ω�λ
(
hω−1

)
, if ω0 ≥ω> 0,

0, if ω= 0,

(2.4)

λE
[
fω0

(
Sn+1

)]−E[Snfω0

(
Sn
)]= P(Sn =ω0

)−P(�λ =ω0
)
. (2.5)

Let S(i)n = Sn−Xi for i = 1,2, . . . ,n. By using the facts that each Xj takes on

values 0 and 1 and that Xj ’s are independent, we have

E
[
Snfω0

(
Sn
)]= n∑

i=1

piE
[
f
(
S(i)n +1

)]

= λE[fω0

(
Sn+1

)]+ n∑
i=1

piE
[
fω0

(
S(i)n +1

)−fω0

(
Sn+1

)]

= λE[fω0

(
Sn+1

)]+ n∑
i=1

piE
{
Xi
[
fω0

(
S(i)n +1

)−fω0

(
S(i)n +2

)]}

= λE[fω0

(
Sn+1

)]+ n∑
i=1

p2
i E
[
fω0

(
S(i)n +1

)−fω0

(
S(i)n +2

)]
,

(2.6)

which implies, by (2.5), that

P
(
Sn =ω0

)−P(�λ =ω0
)= n∑

i=1

p2
i E
[
fω0

(
S(i)n +2

)−fω0

(
S(i)n +1

)]
. (2.7)
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From (2.4), it follows that

fω0(ω+2)−fω0(ω+1)

=




−λω0−ω−2 ω!
ω0!

[
(ω+1)�λ

(
hω+1

)−λ�λ
(
hω
)]
, if ω≤ω0−2,

λω0−ω−2 ω!
ω0!

[
(ω+1)�λ

(
1−hω+1

)+λ�λ
(
hω
)]
, if ω=ω0−1,

λω0−ω−2 ω!
ω0!

[
(ω+1)�λ

(
1−hω+1

)−λ�λ
(
1−hω

)]
, if ω≥ω0.

(2.8)

Case 1 (ω≤ω0−2). Since

(ω+1)�λ
(
hω+1

)−λ�λ
(
hω
)= e−λω+1∑

k=0

λk

k!
(ω+1−k), (2.9)

we have

∣∣fω0(ω+2)−fω0(ω+1)
∣∣= λ(ω0−2)−ω ω!

ω0!


e−λω+1∑

k=0

λk

k!
(ω+1−k)




≤ (ω+1)!
ω0!


e−λω+1∑

k=0

λk

k!




≤
(
ω0−1

)
!

ω0!

= 1
ω0

,

(2.10)

where we have used the facts that λ ∈ (0,1] and 0 ≤ω+1−k ≤ω+1 in the

first inequality and the conditions ω≤ω0−2 and e−λ
∑ω+1
k=0 (λk/k!)≤ 1 in the

second inequality.

Case 2 (ω=ω0−1). We have

∣∣fω0(ω+2)−fω0(ω+1)
∣∣= λ−1

ω0


ω0e−λ

∞∑
k=ω0+1

λk

k!
+λe−λ

ω0−1∑
k=0

λk

k!




≤ λ
−1

ω0


e−λ ∞∑

k=ω0+1

k
λk

k!
+e−λ

ω0−1∑
k=0

(k+1)
λk+1

(k+1)!




= λ
−1

ω0
E
[
�λ
]

= 1
ω0

.

(2.11)
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Case 3 (ω≥ω0). Since

1λω+2

(ω+2)!
+ 2λω+3

(ω+3)!
+ 3λω+4

(ω+4)!
+···

≤ λω−ω0+2

[
ω0λω0

ω0!
(
ω0+1

)···(ω+2)
+

(
ω0+1

)
λω0+1(

ω0+1
)
!
(
ω0+2

)···(ω+3)
+···

]

≤ λω−ω0+2(
ω0+1

)(
ω0+2

)···(ω+2)


 ∞∑
k=ω0

kλk

k!




≤ eλλω−ω0+2E
[
�λ
]

(
ω0+1

)(
ω0+2

)···(ω+2)

= eλλω−ω0+3(
ω0+1

)(
ω0+2

)···(ω+2)
,

(ω+1)�λ
(
1−hω+1

)−λ�λ
(
1−hω

)=−e−λ ∞∑
k=ω+2

λk

k!

(
k−(ω+1)

)
< 0,

(2.12)

we have

∣∣fω0(ω+2)−fω0(ω+1)
∣∣= λω0−ω−2 ω!

ω0!
e−λ

∞∑
k=ω+2

λk

k!

(
k−(ω+1)

)

≤ λω!
(ω+2)!

≤ 1
(ω+1)(ω+2)

.

(2.13)

From Cases 1, 2, and 3, we conclude that

∣∣fω0(ω+2)−fω0(ω+1)
∣∣≤ 1

ω0
. (2.14)

By (2.7) and (2.14), we have

∣∣P(Sn =ω0
)−P(�λ =ω0

)∣∣
≤

 n∑
i=1

p2
i


E[∣∣fω0

(
S(i)n +2

)−fω0

(
S(i)n +1

)∣∣]≤ 1
ω0

n∑
i=1

p2
i .

(2.15)
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