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We derive the expression for a general element of an SO(n) matrix. All elements
are obtained from a single element of the matrix. This has applications in recently
developed methods for computing Lyapunov exponents.
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1. Introduction. Matrix representations of the SO(n) group have played an

important role in mathematical physics [5, 6]. They continue to be used in

many fields to this day [4, 7, 8]. They also play a crucial role in new methods

for computing Lyapunov exponents [2, 3].

In this paper, we obtain the expression for a general element of an SO(n)
matrix Q(n) for n ≥ 3. This offers significant advantages in generalizing the

recent Lyapunov spectrum calculation methods [2, 3] to higher dimensions.

We demonstrate that expressions for all elements can be obtained from the

expression of a single matrix element by suitable operations. As an example

of the application of these results, we derive the elements of an SO(3) matrix

in Section 3. The standard expressions are obtained as expected.

2. General element of an SO(n) matrix. In this section, we derive the ex-

pression for a general element of an SO(n)matrix denoted byQ(n) (for n≥ 3).

In all the expressions below, it is implicitly assumed that n≥ 3.

We start by deriving the expression for the elementQ(n)
1n . Then we prove that

all other elements of Q(n) can be obtained from this single element and give

explicit expressions for these elements. This method is based on the represen-

tation of the group SO(n) as a product of n(n−1)/2 n×nmatrices, which are

simple rotations in the (i−j)th coordinates [1].

Proposition 2.1. An SO(n)matrixQ(n) can be represented as the following

product of simple rotations (see [1]):

Q(n) =O(1,2)O(1,3) ···O(1,n) ···O(n−1,n), (2.1)

where O(i,j) is given as
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O(i,j)kl =




1, if k= 1≠ i,j;

cosθr , if k= l= i or j;

sinθr , if k= i, l= j;
−sinθr , if k= j, l= i;
0, otherwise,

(2.2)

where r = (i−1)(2n−i)/2+j−i.
Let

T(1) =O(1,2)O(1,3) ···O(1,n),
T (2) =O(2,3)O(2,4) ···O(2,n),

...

T(k) =O(k,k+1)O(k,k+2) ···O(k,n),
...

T(n−1) =O(n−1,n).

(2.3)

We see that the matrix T(1) depends only on the first (n−1) θi’s, namely, θ1,
θ2, . . . ,θn−1, and the matrix T(2) depends only on the next (n−2) θi’s, namely,

θn,θn+1, . . . ,θ2n−3, and so on. Finally, the matrix T(n−1) depends only on one θi,
namely, θn(n−1)/2. Thus, a general matrix T(k) is parameterized by the following

θi’s, namely, θm(n,k),θm(n,k)+1, . . . ,θp(n,k), where m(n,k) and p(n,k) are given

by

m(n,k)= (k−1)(2n−k)+2
2

, (2.4)

p(n,k)= k(2n−k−1)
2

. (2.5)

Therefore,

Q(n) = T(1)T (2) ···T(n−1). (2.6)

The matrix T(k) (k= 1,2, . . . ,n−1) is given by




1 0 ··· 0

0 0 ··· 0
... R(k)

0



, (2.7)

where R(k) is an (n−k+1)× (n−k+1) matrix parameterized by θm(n,k)+1,
θm(n,k)+2, . . . ,θp(n,k), where m(n,k) and p(n,k) are given by (2.4) and (2.5),
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respectively. The elements of R(k) are given as follows:

R(k)11 =
p(n,k)∏

r=m(n,k)
cosθr , (2.8)

R(k)12 = sinθm(n,k), (2.9)

and for j = 3,4, . . . ,n−(k−1),

R(k)1j =


j−3∏
r=0

cosθm(n,k)+r


sinθm(n,k)+j−2. (2.10)

The second row (j = 1,2, . . . ,n−(k−1)) is given by

R(k)2j =
∂

∂θm(n,k)
R(k)1j . (2.11)

The rest of the rows (i = 3,4, . . . ,n− (k− 1) and j = 1,2, . . . ,n− (k− 1)) are

given by

R(k)ij =
∂

∂θm(n,k)+i−2
�(k)ij , (2.12)

where �(k)ij = Coefficient of
∏i−3
r=0 cosθm(n,k)+r in R(k)1j .

Putting everything together, from (2.6) we have the following lemma.

Lemma 2.2. Let Q(n) be an SO(n) matrix (n ≥ 3). Then the element Q(n)
1n is

given by the expression

Q(n)
1n =

3∑

jn−2=2

4∑

jn−3=2

···
n−1∑

j2=2

n∑

j1=2

R(1)1,j1R
(2)
j1−1,j2R

(3)
j2−1,j3 ···Rjn−2−1,2, (2.13)

where jn−1 = 2.

Next, we prove that all other elements of Q(n) can be obtained from the

single element Q(n)
1n (derived above). To show this, we need some preliminary

results contained in Lemmas 2.3 and 2.4 proved below.

Lemma 2.3. Consider a general SO(n) matrix Q(n) (n≥ 3). The expressions

for Q(n)
in ’s, i = 1,2, . . . ,n−1, do not involve the term cosθp(n,1)(= cosθn−1) in

them.

Proof. We can write the matrix Q(n) as

Q(n) = R(1)Γ (
since T(1) = R(1)), (2.14)
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where Γ is of the form

Γ = T(2)T (3) ···T(n−1) =




1 0 ··· 0

0
... A(n−1)

0



. (2.15)

HereA(n−1) is a general SO(n−1)matrix parameterized byθn,θn+1, . . . ,θn(n−1)/2.

Thus, Q(n)
in (i= 1,2, . . . ,n−1) is given by

Q(n)
in =

n∑

k=2

R(1)ik A
(n−1)
k−1,n−1. (2.16)

From this equation, we see that R(1)i1 ’s (i = 1,2, . . . ,n−1) are absent in the ex-

pressions for Q(n)
in (i = 1,2, . . . ,n−1). Also, by (2.9), (2.10), (2.11), and (2.12),

which give the expressions for R(k)ij ’s, we see that the term cosθn−1 is absent

in all the R(1)ik ’s, where i = 1,2, . . . ,n− 1 and k = 2,3, . . . ,n. Finally, A(n−1) is

parameterized by θn,θn+1, . . . ,θn(n−1)/2 and hence does not contain the term

cosθn−1. Therefore, Q(n)
in (i= 1,2, . . . ,n−1) does not involve the term cosθn−1.

This proves the lemma.

Lemma 2.4. For n≥ 3, Q(n)
nn =

∏n−1
k=1 cosθp(n,k), where

p(n,k)= k(2n−k−1)
2

. (2.17)

This lemma is easily proved by mathematical induction and hence we omit

the proof.

We are now in a position to prove that we can obtain all rows of Q(n) given

only the first row.

Lemma 2.5. Let Q(n) be an SO(n) matrix (n≥ 3). Let Q(n)
1i , i= 1,2, . . . ,n, be

its first row. Then the second row is given by the following equation:

Q(n)
2l =

∂Q(n)
1l

∂θ1
, l= 1,2, . . . ,n. (2.18)

The other rows are given by the following expression:

Q(n)
il = ∂�(n)

il
∂θi−1

, i= 3,4, . . . ,n; l= 1,2, . . . ,n, (2.19)

where

�(n)
il = Coefficient of

i−2∏
r=1

cosθr in Q(n)
1l . (2.20)
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Proof. A general SO(n) matrix Q(n) is given by

Q(n) = T(1)Γ , (2.21)

where T(1) and Γ are given by (2.3) and (2.15), respectively. The matrix T(1)

is parameterized by the following (n− 1) θ’s, namely, θ1,θ2, . . . ,θn−1 while

Γ is given by (2.15), where A(n−1) is an SO(n− 1) matrix, parameterized by

(n−1)(n−2)/2 θ’s, namely, θn,θn+1, . . . ,θn(n−1)/2. Thus, Q(n)
i1 , i = 1,2, . . . ,n,

is given by

Q(n)
i1 = R(1)i1 . (2.22)

Using this equation and (2.11), we obtain

Q(n)
21 = ∂Q

(n)
11

∂θ1
. (2.23)

Also, from (2.12), we have

R(1)i1 = ∂�(1)i1
∂θi−1

, i= 3,4, . . . ,n, (2.24)

where (see (2.22) and (2.20))

�(1)i1 =�(n)
i1 . (2.25)

Thus,

∂�(1)
i1

∂θi−1
= ∂�(1)i1
∂θi−1

= R(1)i1 =Q(n)
i1 , i= 3,4, . . . ,n. (2.26)

Now, for l= 2,3, . . . ,n, we have

Q(n)
il =

n∑

k=2

R(1)ik A
(n−1)
k−1,l−1. (2.27)

Putting i= 1, we get

Q(n)
1l =

n∑

k=2

R(1)1k A
(n−1)
k−1,l−1. (2.28)

Since A(n−1)
k−1,l−1’s do not involve the first (n−1) θ’s, namely, θ1,θ2, . . . ,θn−1, we

obtain (for k= 2,3, . . . ,n)

∂
∂θ1

(
R(1)1k A

(n−1)
k−1,l−1

)
= R(1)2k A

(n−1)
k−1,l−1. (2.29)

Summing over k (k= 2,3, . . . ,n) and using (2.28) and (2.23), we get

∂
∂θ1

Q(n)
1l =Q(n)

2l , l= 1,2, . . . ,n. (2.30)
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Thus, the second row ofQ(n), namely,Q(n)
2l (l= 1,2, . . . ,n) obeys the hypothesis

(2.18). We will now prove the hypothesis for the rest of its rows.

Let

�(1)il = Coefficient of
i−2∏
r=1

cosθr in R(1)1l , i= 3,4, . . . ,n, (2.31)

�ik = Coefficient of
i−2∏
r=1

cosθr in R(1)1k A
(n−1)
k−1,l−1, i= 3,4, . . . ,n; k= 2,3, . . . ,n.

(2.32)

Therefore, (see (2.28) and (2.20))

n∑

k=2

�ik =�(n)
il . (2.33)

Since A(n−1)
k−1,l−1’s do not involve θ1,θ2, . . . ,θn−1, we have from (2.32)

�ik =A(n−1)
k−1,l−1�(1)ik , (2.34)

where �(1)ik = Coefficient of
∏i−2
r=1 cosθr in R(1)1k .

Thus, (see (2.12))

∂�ik
∂θi−1

=A(n−1)
k−1,l−1

∂�(1)ik
∂θi−1

=A(n−1)
k−1,l−1R

(1)
ik . (2.35)

Summing both sides over k (k= 2,3, . . . ,n), we obtain

n∑

k=2

∂�ik
∂θi−1

=
n∑

k=2

R(1)ik A
(n−1)
k−1,l−1 =Q(n)

il . (2.36)

But, from (2.33),

n∑

k=2

∂�ik
∂θi−1

= ∂
(∑n

k=2 �ik
)

∂θi−1
= ∂�(n)

il
∂θi−1

. (2.37)

Thus,

∂�(n)
il

∂θi−1
=Q(n)

il , (2.38)

where �(n)
il = Coefficient of

∏i−2
r=1 cosθr in Q(n)

1l for l= 2,3, . . . ,n.

Combining the above equation with (2.26), we obtain the following:

Q(n)
il = ∂�(n)

il
∂θi−1

, i= 3,4, . . . ,n; l= 1,2, . . . ,n, (2.39)

where �(n)
il = Coefficient of

∏i−2
r=1 cosθr in Q(n)

1l . Thus, (2.30) and (2.39) prove

the lemma.
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We next prove a result analogous to Lemma 2.5, but for columns instead of

rows. Combining Lemmas 2.5 and 2.6 will give us the desired result of obtaining

all elements of Q(n) from a single element.

Lemma 2.6. For n ≥ 3, given the nth column of Q(n), the (n−1)th column

is given by the following expression:

Q(n)
i,n−1 =

∂Q(n)
in

∂θp(n,n−1)
, i= 1,2, . . . ,n. (2.40)

The other columns are given by

Q(n)
il = ∂�(n)

il
∂θp(n,l)

, i= 1,2, . . . ,n; l= 1,2, . . . ,n−2, (2.41)

where �(n)
il = Coefficient of

∏n−1
m=l+1 cosθp(n,m) in Q(n)

in .

The proof of this lemma is by induction and is straightforward (though la-

borious). So we omit the proof.

Lemma 2.6 implies that given the last column of Q(n), we can derive the

other columns. In particular, given Q(n)
1n (Lemma 2.2), we can obtain the first

row. Once the first row is known, using Lemma 2.5, all other rows can be de-

rived. Therefore, we see that from one element of Q(n), namely, Q(n)
1n we can

generate the whole SO(n) matrix by performing suitable operations. Thus we

have proved the following theorem.

Theorem 2.7. Consider an n×n SO(n) matrix Q(n) (n≥ 3). The expression

for Q(n)
1n is given by

Q(n)
1n =

3∑

jn−2=2

4∑

jn−3=2

···
n−1∑

j2=2

n∑

j1=2

R(1)1,j1R
(2)
j1−1,j2R

(3)
j2−1,j3 ···Rjn−2−1,2, (2.42)

where jn−1 = 2 and the matrices R(k) are given by (2.9), (2.10), (2.11), and (2.12).

All other elements of Q(n) can be derived from this single element. Elements of

the first row are given by

Q(n)
1,n−1 =

∂Q(n)
1n

∂θp(n,n−1)
, (2.43)

Q(n)
1l =

∂
(

�(n)
1l

)

∂θp(n,l)
, l= 1,2, . . . ,n−2, (2.44)

where �(n)
1l = Coefficient of

∏n−1
m=l+1 cosθp(n,m) in Q(n)

1n . Elements of the second

row are given by

Q(n)
2l =

∂Q(n)
1l

∂θ1
, l= 1,2, . . . ,n. (2.45)
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Elements of the remaining rows are given by

Q(n)
il = ∂�(n)

il
∂θi−1

, i= 3,4, . . . ,n; l= 1,2, . . . ,n, (2.46)

where �(n)
il = Coefficient of

∏i−2
r=1 cosθr in Q(n)

1l .

3. Example: SO(3). We will now derive the SO(3)matrix using Theorem 2.7.

We will first get the expression for Q(3)
13 (see (2.42)):

Q(3)
13 = R(1)12 R

(2)
12 +R(1)13 R

(2)
22 . (3.1)

From (2.9) and (2.10), we have

R(1)12 = sinθ1, R(1)13 = cosθ1 sinθ2. (3.2)

From (2.9) and (2.11), we get

R(2)12 = sinθ3, R(2)22 = cosθ3. (3.3)

Therefore, we obtain

Q(3)
13 = sinθ1 sinθ3+cosθ1 sinθ2 cosθ3. (3.4)

From (2.43), Q(3)
12 is given as

Q(3)
12 =

∂Q(3)
13

∂θ3
= sinθ1 cosθ3−cosθ1 sinθ2 sinθ3, (3.5)

and from (2.44), Q(3)
11 is given as

Q(3)
11 =

∂�(3)
11

∂θ2
, (3.6)

where �(3)
11 = Coefficient of

∏2
m=2 cosθp(3,m) in Q(3)

13 . Thus,

Q(3)
11 = cosθ1 cosθ2. (3.7)

The second row of Q(3) is given by (2.45):

Q(3)
2l =

∂Q(3)
1l

∂θ1
, l= 1,2,3. (3.8)

Therefore,

Q(3)
21 =−sinθ1 cosθ2,

Q(3)
22 = cosθ1 cosθ3+sinθ1 sinθ2 sinθ3,

Q(3)
23 = cosθ1 sinθ3−sinθ1 sinθ2 cosθ3.

(3.9)
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The last row is given by (2.46):

Q(3)
3l =

∂�(3)
3l

∂θ2
, l= 1,2,3, (3.10)

where �(3)
3l = Coefficient of

∏1
r=1 cosθr in Q(3)

1l . Therefore, we have

Q(3)
31 =−sinθ2,

Q(3)
32 =−cosθ2 sinθ3,

Q(3)
33 = cosθ2 cosθ3.

(3.11)

The Q(3) matrix that we have derived agrees with the standard representation

as expected.
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