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We introduce a new approach to the fractional derivatives of the analytical func-
tions using the Taylor series of the functions. In order to calculate the fractional
derivatives of f , it is not sufficient to know the Taylor expansion of f , but we
should also know the constants of all consecutive integrations of f . For example,
any fractional derivative of ex is ex only if we assume that the nth consecutive
integral of ex is ex for each positive integer n. The method of calculating the frac-
tional derivatives very often requires a summation of divergent series, and thus, in
this note, we first introduce a method of such summation of series via analytical
continuation of functions.

2000 Mathematics Subject Classification: 26A33, 40H05.

1. Introduction. The great and famous mathematician L. Euler was criti-

cized by the mathematicians in the following centuries for working very freely

with the infinite processes. More concretely, he was criticized for very free cal-

culating with the divergent series. Further, the mathematical analysis was quite

strongly founded using ε−δ criteria. Later in the 20th century, he was partially

rehabilitated by the development of the calculus of the divergent series. How-

ever, by introducing an axiomatic approach, this note shows that Euler was,

indeed, centuries in front of his time.

The theory of the fractional derivatives is an important part of the analy-

sis, and the book of Samko et al. [1] is a basic monograph on that topic. In

this note, the summation of series is considered; more precisely, summation

of “divergent” series and a method of fractional derivatives. Although both of

them are present in the literature, there is a basically new view of these two

parts of the analysis. In Section 2, quite a strong method of summation is in-

troduced, which considers a large class of series. It is used in Section 3 in order

to effectively calculate the fractional derivatives of a given function. The ana-

lytic functions should be treated as given series but not classically according

to the set theory of functions. Indeed, this theory should be considered as an

axiomatic theory. This new approach can find application in solving equations

and systems of equations with fractional derivatives. In [3], the formula for

Dk(f) is given, where D is a linear differential operator. That result, together

with the present ones, can be used for solving equations and systems with

fractional derivatives.
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At the end of this section, we present the simple numerical identity:

π
8
= 1

3
+ 1

1·3·5 −
1

3·5·7 +
1

5·7·9 −
1

7·9·11
+··· . (1.1)

It is easy to verify by a computer that the previous equality is true on 10,20, . . .
decimals, but it is very difficult (or impossible) to prove the previous identity

using the methods of the standard analysis. On the other hand, using the the-

ory presented in this note, it is very easy to prove this equality. It shows a

necessity of a new theory.

2. Summation of series using analytic continuation. In this section, we in-

troduce a method of summation of series. This method is very strong, which

means that, for given series
∑∞
i=0ai, all possible values (of convergence) are de-

termined; it tends to infinity or the series is unsummable, that is, divergent. We

assume the convention that convergent series will mean convergent according

to the method that follows, while the convergence in the classical sense will

be called “ordinary convergence.” Generally, we consider series with complex

elements ai.
Let a series

∑∞
i=0ai be given such that limsupn→∞ |an|1/n <∞. Suppose that

f is an analytic function regular in a neighborhood of the point z0 and its

expansion is

f(z)= b0+b1
(
z−z0

)+b2
(
z−z0

)2+··· , (2.1)

and suppose also that there exists z1 ∈ C such that

bi
(
z1−z0

)i = ai (0≤ i <∞). (2.2)

Then, three cases are possible.

(1) If f can be analytically continued to the point z1, where z1 is a regular

point of f , then
∑∞
i=0ai converges to any possible value of the analytically

continued function f at z1, that is,
∑∞
i=0ai ∈A= {f(z1)}.

(2) If z1 is a singular point of f , then
∑∞
i=0ai is said to converge or tend to

infinity.

(3) If z1 does not belong to the domain of analytic continuation of f , then

we say that
∑∞
i=0ai diverges, that is, it is unsummable.

Note that, without loss of generality, we can always assume that z0 = 0, and

we should find f(1) where

f(z)= a0+a1z+a2z2+··· . (2.3)

The condition limsupn→∞ |an|1/n <∞ provides that the right side of (2.3) de-

fines an analytic function that is regular at z = 0.
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Example 2.1. The series 1+1+1+··· tends to ∞ because f(z) = 1+z+
z2+z3+··· = 1/(1−z) has a singular point z = 1.

Example 2.2. Find the sum 1+2+22+23+··· . Since

f(z)= 1+2z+22z2+23z3+··· = 1
1−2z

, (2.4)

we obtain 1+2+22+23+··· = f(1)= 1/(1−2)=−1.

Example 2.3. The radius of ordinary convergence of the series

f(z)= z+z2+0·z3+z4+0·z5+0·z6+0·z7+z8+··· =
∞∑
n=0

z2n (2.5)

is equal to 1. But f(z) cannot be analytically continued for |z|> 1. Hence, the

series

2+22+0+24+0+0+0+28+··· (2.6)

is “essentially” divergent.

Example 2.4. We consider the series

S = 1+ 1
2

1
2
+ 1/2·−1/2

2!
1
22
+ 1/2·−1/2·−3/2

3!
1
23
+··· . (2.7)

Since

f(z)= 1+ 1
2
z+ 1/2·−1/2

2!
z2+ 1/2·−1/2·−3/2

3!
z3+··· = (1+z)1/2, (2.8)

the series S tends to both
√

3/2 and −√3/2. It seems odd to accept that S =
−√3/2. But we write f as

f(z)=
√

1+z = 11/2+ 1
2
·1−1/2 ·z1+ 1/2·−1/2

2!
·1−3/2 ·z2

+ 1/2·−1/2·−3/2
3!

·1−5/2 ·z3+···
(2.9)

we notice that both sides of this equality may take two values. Indeed, if we

take 11/2 = 1 and hence 1−1/2 = 11/2/1 = 1, 1−3/2 = 11/2/12 = 1, and so on,

then we get S = √3/2. If we take 11/2 = −1 and hence 1−1/2 = 11/2/1 = −1,

1−3/2 = 11/2/12 =−1, and so on, then we get S =−√3/2.

Remark 2.5. We considered all the series
∑∞
i=0ai such that

limsup
n→∞

∣∣an∣∣1/n <∞. (2.10)
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But, until now, we are not able to do anything if

limsup
n→∞

∣∣an∣∣1/n =∞. (2.11)

In this case, we can require a differential equation which satisfies the function

f(z)= a0+a1z+a2z2+··· .
Example 2.6. Find the sum

S = 1!−2!+3!−4!+··· . (2.12)

We consider the function

f(z)= 1!z2−2!z3+3!z4−4z5!+··· . (2.13)

Then,

f ′(z)= 2!z1−3!z2+4!z3−··· = 1
z2

(
z2−f(z)),

f ′(z)+ 1
z2
f(z)−1= 0.

(2.14)

Hence,

f(z)= e1/z
(
C+

∫ z
0
e−1/tdt

)
(2.15)

and C = 0 because f(0)= 0. Thus, we obtain

S = e
∫ 1

0
e−1/tdt. (2.16)

Now, we give some properties of convergence of series. Most of them follow

from the standard results of the continuation of the functions of complex

variables.

(1) If S = a0+a1+a2+··· and limsupn→∞ |an|1/n <∞, then the sum does

not change if a finite number of summands change their places or arbitrarily

are grouped.

Proof. It is sufficient to prove that the following equalities:

a0+a1+a2+··· = S, a1+a2+a3+··· = S−a0 (2.17)

are equivalent. The functions

f(z)= a0+a1z+a2z2+··· , g(z)= a1+a2z+a3z2+··· (2.18)
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have the same domain of continuation and everywhere holds f(z) = zg(z)+
a0. Thus,

f(1)= S iff g(1)= S−a0. (2.19)

Remark 2.7. Note that property (1) does not hold if the word “finite” is

replaced by “infinite.” For example, 1−1+0+1−1+0+1−1+0+··· = 1/3,

but 1−1+1−1+··· = 1/2.

(2) If the series
∑∞
i=0ai ordinarily converges to S, then S is one of the values

of convergence of the series considered. In other words, ordinary convergence

to S implies convergence to S.

(3) If the series
∑∞
i=0ai and

∑∞
i=0bi are such that

limsup
n→∞

∣∣an∣∣1/n <∞, limsup
n→∞

∣∣bn∣∣1/n <∞ (2.20)

and the series converge to A and B, respectively, then
∑∞
i=0(λai+µbi) con-

verges to λA+µB.

(4) If the series
∑∞
i=0ai and

∑∞
i=0bi are such that

limsup
n→∞

∣∣an∣∣1/n <∞, limsup
n→∞

∣∣bn∣∣1/n <∞ (2.21)

and the series converge to A and B, respectively, then the convolute product

of these two series converges to AB.

Theorem 2.8. Let � be the domain where the analytic function f can be

continued. If f is regular at the pointα∈ �, then the function can be represented

as power series in the form

f(z)=
∞∑
n=0

f (n)(α)
n!

(z−α)n (2.22)

in the whole domain �.

In Section 3, series of the type
∑∞
i=−∞ai are used. If

∑∞
i=0ai converges to A

and
∑∞
i=1a−i converges to B, then we say that

∑∞
i=−∞ai converges to A+B. The

following generalization of Theorem 2.8 also holds.

Theorem 2.9. Let � be the domain where the analytic function f can be

continued. If f decomposes in the ring r1 < |z−α|< r2 in the Laurent’s series

f(z)=
∞∑

i=−∞
ai(z−α)i, (2.23)

then the right-hand side of (2.23) converges to f(z) in the whole domain �.

3. Fractional derivatives. Now, we are ready to introduce fractional deriva-

tives. First, we consider a class of analytic functions “axiomatically” as the
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formal series

f(z)=
∞∑

i=−∞
ai

zi+α

(i+α)!
(
ai ∈ C

)
(3.1)

for α∈R or α∈ C, where β!= Γ(β+1). Note that two functions

∞∑
i=−∞

ai
zi+α

(i+α)!
∞∑

i=−∞
bi

zi+α

(i+α) (3.2)

are different if there exists an index i∈ Z such that ai ≠ bi.
If α∈ Z, then, without loss of generality, we assume that α= 0 and consider

the Taylor’s series

f(z)=
∞∑

i=−∞
ai
zi

i!
. (3.3)

In this case, we need an additional assumption. Assume that the analytic func-

tion f is regular at z = 0, and let

f(z)=
∞∑
i=0

f (i)(0)
i!

zi. (3.4)

Formally, we can write it as

f(z)=
∞∑

i=−∞

f (i)(0)
i!

zi (3.5)

because (−1)! · 0 = 0!, (−2)!(−1) · 0 = 0!, . . . , (−1)! = (−2)! = ··· = ±∞, and

f (−1)(z) = ∫ z0 f(t)dt+C1, f (−2)(z) = ∫ z0 f (−1)(t)dt+C2, . . . . Hence, f (−1)(0) =
C1, f (−2)(0)= C2, f (−3)(0)= C3, . . . , and (3.5) can be written as

f(z)= ···+ C3

(−3)!
z−3+ C2

(−2)!
z−2+ C1

(−1)!
z−1+

∞∑
i=0

f (i)(0)
i!

zi. (3.6)

Note that if we change the constants of integration C1,C2,C3, . . . , we obtain

the same analytic function according to the classical set theory of analytic

functions. We assume (by definition) here that by changing the constantsC1,C2,
C3, . . . we obtain different functions. The reason will be obvious later. Thus, we

can summarize as follows: an analytic function f , regular at z = 0, is uniquely

determined by f(0), f (i)(0) (i= 1,2,3, . . .) and by the constants of integration

C1,C2,C3, . . . .

Remark 3.1. For the sake of simplicity, we consider the analytic function

of type (3.1), but, without loss of generality, we can consider functions of type∑∞
i=−∞ai(z−z0)i+α/(i+α)!.
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Now, let f be given by series (3.1). Then, we define pth derivative (p ∈ C) by

f (p)(z)=
∞∑

i=−∞
ai

zi+α−p

(i+α−p)! . (3.7)

As a direct consequence of the definition, we have the following property.

(1) For any p,q ∈ C and any analytic function f , the following holds

(
f (p)

)(q) = f (p+q). (3.8)

The Leibniz equality also holds in the following form.

(2) For any p ∈ C and any analytic functions f and g, the following holds

(fg)(p) =
∞∑

i=−∞
p!
f (i+α)

(i+α)! ·
g(p−i−α)

(p−i−α)! . (3.9)

Proof. Because of the linearity of the operator, it is sufficient to assume

that

f(z)= z
u

u!
, g(z)= z

v

v !
. (3.10)

Then,

(fg)(p) =
(
(u+v)!
u!v !

· zu+v

(u+v)!
)(p)

= (u+v)!
u!v !

· zu+v−p

(u+v−p)! ,
∞∑

i=−∞
p!
f (i+α)

(i+α)! ·
g(p−i−α)

(p−i−α)! =
∞∑

i=−∞

p!
(i+α)!(p−i−α)!

zu−i−α

(u−i−α)!
zv+i−p+α

(v+i−p+α)! ,
(3.11)

and we have to prove that

∞∑
i=−∞

p!
(u−i−α)!(v+i−p+α)!(i+α)!(p−i−α)! =

(u+v)!
(u+v−p)!u!v !

, (3.12)

that is,

∞∑
i=−∞

(u+v−p)!
(u−i−α)!(v+i−p+α)!

p!
(i+α)!(p−i−α)! =

(u+v)!
u!v !

. (3.13)

We put a=u−α, b = v+α−p, c =α, and d= p−α. This equality is equivalent

to

∞∑
i=−∞

(a+b)!
(a−i)!(b+i)!

(c+d)!
(c+i)!(d−i)! =

(a+b+c+d)!
(a+c)!(b+d)! . (3.14)
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Indeed, comparing the coefficient in front of xa+c in the equality

(1+x)a+b ·(1+x)c+d = (1+x)a+b+c+d, (3.15)

that is,


 ∞∑
i=−∞

(a+b)!
(a−i)!(b+i)!x

a−i



 ∞∑
j=−∞

(c+d)!
(c+j)!(d−j)!x

c+j



=
∞∑

k=−∞

(a+b+c+d)!
(a+c−k)!(b+d+k)!x

a+c−k,

(3.16)

we obtain the required equality.

The left- or the right-hand side of the sum (3.6) is not very often ordinarily

convergent, and, then, the method of Section 2 should be applied. Of course,

we cannot consider all series by (3.1), but we consider only those for which the

series converge.

Note that if we apply fractional derivatives to the analytic function given by

(3.5) or (3.6), then the constants of integration Ci play a very important role.

For example, if p = 1/2, we get

f (1/2)(z)= ···+C3
z−3.5

(−3.5)!
+C2

z−2.5

(−2.5)!
+C1

z−1.5

(−1.5)!
+

∞∑
i=0

f (i)(0)
(i−0.5)!

zi−0.5

(3.17)

and C1,C2,C3, . . . are essential because (−1.5)!,(−2.5)!, . . . are different from∞.

Note that we can develop a theory of fractional derivatives without assuming

the importance of the constants of integration C1,C2, . . . , that is, only using

the classical set theory of analytic functions. For example, we can define pth

derivative of a periodic function

∞∑
n=0

an sinnx+bn cosnx (3.18)

by

∞∑
n=0

{
an
[

sin
(
nx+pπ

2

)]
+bn

[
cos

(
nx+pπ

2

)]}
np, (3.19)

generalizing the known equalities

(sinnx)(k) =nk sin
(
nx+ kπ

2

)
, (cosnx)(k) =nk cos

(
nx+ kπ

2

)
(3.20)
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for k∈N. According to this theory, it is all right, but it means that intuitively

we have accepted the following expansions of sinx and cosx:

cosx =
∞∑

k=−∞
(−1)k

x2k

(2k)!
, sinx =

∞∑
k=−∞

(−1)k
x2k+1

(2k+1)!
. (3.21)

The following example shows that this theory is not meaningless, but an

exact theory.

Example 3.2. In this theory, we show that the exponential function is much

better and more naturally defined as

ex =
∞∑

n=−∞

xn

n!
(3.22)

instead of being defined by

ex =
∞∑
n=0

xn

n!
. (3.23)

For the half derivative of the right-hand side of (3.22), we obtain

(
ex
)(1/2) = ···+ x−1.5

(−1.5)!
+ x−0.5

(−0.5)!
+ x0.5

(0.5)!
+ x1.5

(1.5)!
+··· . (3.24)

The right-hand side of (3.24) is a function f such that f ′ = f and hence f(z)=
Cez. We verify that C = 1, which means that (ex)(1/2) = ex and which is natural

to expect. Indeed, we verify (3.24) for x = 1, that is, we prove that

···+ 1
(−1.5)!

+ 1
(−0.5)!

+ 1
(0.5)!

+ 1
(1.5)!

+ 1
(2.5)!

+··· = e. (3.25)

Using the known equality (−1/2)! = √π and the identity (x+1)! = x!(x+1),
(3.25) is equivalent to

···− 1·3·5
23

+ 1·3
22

− 1
21
+1+ 21

1
+ 22

1·3 +
23

1·3·5 +··· = e
√
π,

1
21
− 1·3

22
+ 1·3·5

23
− 1·3·5·7

24
+··· = −e√π+1+ 21

1
+ 22

1·3 +
23

1·3·5 +··· .
(3.26)

The right side of (3.26) converges ordinarily, and it can be easily calculated. In

order to calculate the sum on the left-hand side of (3.26), we apply the method

of Section 2. Let

y = 1
21
x3− 1·3

22
x5+ 1·3·5

23
x7− 1·3·5·7

24
x9+··· , (3.27)
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and we need the value y(1). From (3.27) we obtain

y ′(x)= 1·3
21

x2− 1·3·5
22

x4+ 1·3·5·7
23

x6−···

= 2
x3

(
1·3
22

x5− 1·3·5
23

x7+ 1·3·5·7
24

x9−···
)

= 2
x3

(
x3

2
−y

)
= 1− 2

x3
y

(3.28)

and hence

y = e1/x2
(
C+

∫ x
0
e−1/t2dt

)
. (3.29)

Since y(0)= 0, we obtain C = 0. Thus,

1
21
− 1·3

22
+ 1·3·5

23
− 1·3·5·7

24
+··· =y(1)= e

(∫ 1

0
e−1/t2dt

)
. (3.30)

Substituting this equality into (3.26), we get

1+ 21

1
+ 22

1·3 +
23

1·3·5 +··· = e
(√
π+

∫ 1

0
e−1/t2dt

)
. (3.31)

This identity is proved by classical methods in [4] and the proof there is much

more complicated.

If we put x =−1 in (3.24), then, instead of (3.31), we can obtain the following

equality of complex integration:

i
(

1− 21

1
+ 22

1·3 −
23

1·3·5 +···
)
= e−1

(√
π+

∫ i
0
e−1/t2dt

)
, (3.32)

where the integration is done over a curve with tangent vector at 0 toward the

positive part of the x-axis. This identity is proved in [2].

At the end of this example, we consider the equality

ex = ···+ x−1.5

(−1.5)!
+ x−0.5

(−0.5)!
+ x0.5

(0.5)!
+ x1.5

(1.5)!
+··· . (3.33)

In the left-hand side, the function ex is a single-valued function. Although the

right-hand side seems not to be single-valued because xn/2 takes two values;

we show that the right-hand side is a single-valued function too. Indeed, con-

sidering the functions x! as

x!= Γ(x+1)= lim
n→∞

nxn!
(1+x)(2+x)···(n+x) , (3.34)
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for x = k+1/2 (k∈ Z), we notice that it also takes two values like xn/2. Thus,

if we choose appropriate signs of xk/2 and (k/2)!, then equality (3.33) is true.

Example 3.3. The half derivatives of the functions

sinx =
∞∑

k=−∞
(−1)k

x2k+1

(2k+1)!
, cosx =

∞∑
k=−∞

(−1)k
x2k

(2k)!
(3.35)

are

sin
(
x+ π

4

)
=

∞∑
k=−∞

(−1)k
x2k+0.5

(2k+0.5)!
,

cos
(
x+ π

4

)
=

∞∑
k=−∞

(−1)k
x2k−0.5

(2k−0.5)!
.

(3.36)

In order to partially verify (3.36), we assume that x →∞, and we can numeri-

cally verify the following asymptotic convergences:

∞∑
i=k
(−1)i

x2i+0.5

(2i+0.5)!
∼ sin

(
x+ π

4

)
for x �→∞, k �→−∞,

∞∑
i=k
(−1)i

x2i−0.5

(2i−0.5)!
∼ cos

(
x+ π

4

)
for x �→∞, k �→−∞,

(3.37)

or, more precisely,

lim
k→−∞

[
lim
x→∞

(
sin
(
x+ π

4

)
−

∞∑
i=k
(−1)i

x2i+0.5

(2i+0.5)!

)]
= 0,

lim
k→−∞

[
lim
x→∞

(
cos

(
x+ π

4

)
−

∞∑
i=k
(−1)i

x2i−0.5

(2i−0.5)!

)]
= 0.

(3.38)
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Kostadin Trenčevski: Institute of Mathematics, St. Cyril and Methodius University,
P.O. Box 162, 1000 Skopje, Macedonia

E-mail address: kostatre@iunona.pmf.ukim.edu.mk

mailto:kostatre@iunona.pmf.ukim.edu.mk

