COEFFICIENTS OF SINGULARITIES OF THE BIHARMONIC PROBLEM OF NEUMANN TYPE: CASE OF THE CRACK

WIDED CHIKOUCHE and AISSA AIBÈCHE

Received 13 April 2001

This paper concerns the biharmonic problem of Neumann type in a sector V. We give a representation of the solution u of the problem in a form of a series $u=\sum_{\alpha \in E} c_{\alpha} r^{\alpha} \phi_{\alpha}$, and the functions ϕ_{α} are solutions of an auxiliary problem obtained by the separation of variables.

2000 Mathematics Subject Classification: 35B65, 35C10, 35 J25.

1. Introduction. Let V be a sector of angle $\omega \leq 2 \pi$ defined by

$$
\begin{equation*}
V=\left\{(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2} ; 0<r<\rho, 0<\theta<\omega\right\} \tag{1.1}
\end{equation*}
$$

and Σ the circular boundary part defined by

$$
\begin{equation*}
\Sigma=\left\{(\rho \cos \theta, \rho \sin \theta) \in \mathbb{R}^{2} ; 0<\theta<\omega\right\} . \tag{1.2}
\end{equation*}
$$

We are interested in the study of functions u, belonging to the Sobolev spaces $H^{2}(V)$, solutions of

$$
\begin{gather*}
\Delta^{2} u=0 \quad \text { in } V, \\
M u=T u=0 \quad \text { for } \theta=0, \omega, \tag{1.3}
\end{gather*}
$$

where

$$
\begin{align*}
M u & =v \triangle u+(1-v)\left(\partial_{1}^{2} u n_{1}^{2}+2 \partial_{12} u n_{1} n_{2}+\partial_{2}^{2} u n_{2}^{2}\right), \\
T u & =-\frac{\partial \Delta u}{\partial n}+(1-v) \frac{d}{d s}\left(\partial_{1}^{2} u n_{1} n_{2}-\partial_{12} u\left(n_{1}^{2}-n_{2}^{2}\right)-\partial_{2}^{2} u n_{1} n_{2}\right), \tag{1.4}
\end{align*}
$$

v is a real number called Poisson coefficient ($0<v<1 / 2$).
We show that these functions u are written under the form

$$
\begin{equation*}
u(r, \theta)=\sum_{\alpha \in E} c_{\alpha} r^{\alpha} \phi_{\alpha}(\theta), \tag{1.5}
\end{equation*}
$$

E is the set of solutions of the equation in α

$$
\begin{equation*}
\sin ^{2}(\alpha-1) \omega=\left(\frac{1-v}{3+v}\right)^{2}(\alpha-1)^{2} \sin ^{2} \omega, \quad \operatorname{Re} \alpha>1 \tag{1.6}
\end{equation*}
$$

For the study of the solutions of (1.6), see, for example, Blum and Rannacher [1] and Grisvard [2].

We are going to calculate the coefficients c_{α} of development (1.5). These calculations have already been done by Tcha-Kondor [3] for the Dirichlet's boundary conditions. He has established, thanks to the Green's formula, a relation of biorthogonality between the functions ϕ_{α} and ϕ_{β} allowing him to calculate the coefficients c_{β}. We follow the same approach. This needs the writing in the domain V of an appropriate Green formula. Using this formula, we establish a relation of biorthogonality between the functions ϕ_{α} and ϕ_{β}, which is reduced under some conditions to the simple relation obtained by Tcha-Kondor, which enables us to calculate the coefficients c_{β} in the particular case of the crack ($\omega=2 \pi$).
2. Separation of variables. Replacing u by $r^{\alpha} \phi_{\alpha}(\theta)$ in problem (1.3) leads us to the boundary value problem

$$
\begin{gather*}
\phi_{\alpha}^{(4)}(\theta)+\left[\alpha^{2}+(\alpha-2)^{2}\right] \phi_{\alpha}^{\prime \prime}(\theta)+\alpha^{2}(\alpha-2)^{2} \phi_{\alpha}(\theta)=0, \tag{2.1}\\
{\left[v \alpha^{2}+(1-v) \alpha\right] \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}=0, \quad \theta=0, \quad \theta=\omega,} \tag{2.2}\\
{\left[(2-v) \alpha^{2}-3(1-v) \alpha+2(1-v)\right] \phi_{\alpha}^{\prime}+\phi_{\alpha}^{(3)}=0, \quad \theta=0, \theta=\omega .} \tag{2.3}
\end{gather*}
$$

The relation similar to orthogonality for the biharmonic operator is given by the following theorem.

Theorem 2.1. Let ϕ_{α} and ϕ_{β} be solutions of (2.1) with α and β solutions of (1.6). So, for $\alpha \neq \bar{\beta}$, we have the following relation:

$$
\begin{align*}
& {\left[\phi_{\alpha}, \phi_{\beta}\right]=\int_{0}^{\omega}\left\{\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}-\frac{v(\alpha+\bar{\beta})+(3-v)-2 \alpha}{\alpha-\bar{\beta}} \phi_{\alpha}^{\prime \prime}\right] \bar{\phi}_{\beta}\right.} \\
& \left.+\left[\left(\bar{\beta}^{2}-2 \bar{\beta}\right) \bar{\phi}_{\beta}+\frac{v(\alpha+\bar{\beta})+(3-v)-2 \bar{\beta}}{\alpha-\bar{\beta}} \bar{\phi}_{\beta}^{\prime \prime}\right] \phi_{\alpha}\right\} d \theta \tag{2.4}\\
& =0 .
\end{align*}
$$

Proof. We use the following Green formula:

$$
\begin{equation*}
\int_{V}\left(v \triangle^{2} u-u \triangle^{2} v\right) d x=\int_{\Gamma}\left\{\left(u T v+\frac{\partial u}{\partial n} M v\right)-\left(v T u+\frac{\partial v}{\partial n} M u\right)\right\} d \sigma \tag{2.5}
\end{equation*}
$$

(Γ is the boundary of V). For two functions u, v solutions of (1.3), we get the Green's formula in the following form:

$$
\begin{equation*}
\int_{\Sigma}\left\{\left(u T v+\frac{\partial u}{\partial n} M v\right)-\left(v T u+\frac{\partial v}{\partial n} M u\right)\right\} d \sigma=0 \tag{2.6}
\end{equation*}
$$

On Σ, we have, for the function $u_{\alpha}=r^{\alpha} \phi_{\alpha}$,

$$
\begin{align*}
\frac{\partial u_{\alpha}}{\partial n} & =\frac{\partial u_{\alpha}}{\partial r}=\alpha r^{\alpha-1} \phi_{\alpha} \\
M u_{\alpha} & =r^{\alpha-2}\left\{\left[\alpha^{2}-(1-v) \alpha\right] \phi_{\alpha}+v \phi_{\alpha}^{\prime \prime}\right\} \tag{2.7}\\
T u_{\alpha} & =r^{\alpha-3}\left\{-\alpha^{2}(\alpha-2) \phi_{\alpha}+[(v-2) \alpha+(3-v)] \phi_{\alpha}^{\prime \prime}\right\} .
\end{align*}
$$

The theorem results from the application of formula (2.6) to the biharmonic functions $u_{\alpha}=r^{\alpha} \phi_{\alpha}$ and $\bar{u}_{\beta}=r^{\bar{\beta}} \bar{\phi}_{\beta}$, and by using relations (2.7).

Remark 2.2. This relation between the functions ϕ_{α} and ϕ_{β} is similar to the relation of biorthogonality obtained when the functions ϕ_{α} and ϕ_{β} fulfill (2.1) with the Dirichlet's boundary conditions $\phi_{\alpha}=\phi_{\alpha}^{\prime}=\phi_{\beta}=\phi_{\beta}^{\prime}=0$ for $\theta=0$ and $\theta=\omega$. In this case, the relation is simplified because we have

$$
\begin{equation*}
\int_{0}^{\omega} \phi_{\alpha} \phi_{\beta}^{\prime \prime} d \theta=\int_{0}^{\omega} \phi_{\alpha}^{\prime \prime} \phi_{\beta} d \theta \tag{2.8}
\end{equation*}
$$

Remark 2.3. By a double integration by parts, we get

$$
\begin{equation*}
\int_{0}^{\omega} \phi_{\alpha} \phi_{\beta}^{\prime \prime} d \theta=\int_{0}^{\omega} \phi_{\alpha}^{\prime \prime} \phi_{\beta} d \theta+\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}-\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega} \tag{2.9}
\end{equation*}
$$

COROLLARY 2.4. Let ϕ_{α} and ϕ_{β} be solutions of (2.1) with α and β solutions of (1.6); in addition,

$$
\begin{equation*}
\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}-\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega}=0 \tag{2.10}
\end{equation*}
$$

So, for $\alpha \neq \bar{\beta}$, we have the following relation:

$$
\begin{equation*}
\left[\phi_{\alpha}, \phi_{\beta}\right]=\int_{0}^{\omega}\left\{\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right] \bar{\phi}_{\beta}+\left[\left(\bar{\beta}^{2}-2 \bar{\beta}\right) \bar{\phi}_{\beta}+\bar{\phi}_{\beta}^{\prime \prime}\right] \phi_{\alpha}\right\} d \theta=0 \tag{2.11}
\end{equation*}
$$

REMARK 2.5. For $u_{\alpha}=r^{\alpha} \phi_{\alpha}$, we have

$$
\begin{equation*}
\triangle u_{\alpha}-\frac{2}{r} \frac{\partial u_{\alpha}}{\partial r}=r^{\alpha-2}\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right] . \tag{2.12}
\end{equation*}
$$

Let P be the operator $P=\triangle-(2 / r)(\partial / \partial r)$. From Corollary 2.4 and Remark 2.5, we deduce the following corollary.

COROLLARY 2.6. Set $u_{\alpha}=r^{\alpha} \phi_{\alpha}(\theta)$ and $\bar{u}_{\beta}=r^{\bar{\beta}} \bar{\phi}_{\beta}$, where ϕ_{α} and ϕ_{β} are solutions of (2.1) with α and β solutions of (1.6); in addition,

$$
\begin{equation*}
\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}-\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega}=0 \tag{2.13}
\end{equation*}
$$

If $\alpha \neq \bar{\beta}$, we have the following relation:

$$
\begin{equation*}
\int_{\Sigma}\left(P u_{\alpha} \bar{u}_{\beta}+u_{\alpha} P \bar{u}_{\beta}\right) d \sigma=0 \tag{2.14}
\end{equation*}
$$

Now, using Corollary 2.6, we calculate the coefficients c_{α} of the development of the solution u of (1.3). The calculations will be done in the case of the crack ($\omega=2 \pi$), which is a very important case of singularity of domains. The explicit knowledge of the roots manifestly simplifies the calculations.
3. Case of a crack. The crack corresponds to $\omega=2 \pi$; if we replace this value in (1.6), we find that solutions α of (1.6) are the real values $k / 2$. In this case, all the roots are of multiplicity 2.

We are going to represent u as follows:

$$
\begin{gather*}
u=\sum_{\alpha \in E} c_{\alpha} u_{\alpha}+\sum_{\alpha \in E} d_{\alpha} v_{\alpha}, \quad E=\left\{\frac{k}{2}, k>2\right\}, \tag{3.1}\\
u_{\alpha}=r^{\alpha} \varphi_{\alpha}, \quad v_{\alpha}=r^{\alpha} \psi_{\alpha},
\end{gather*}
$$

φ_{α} are the even solutions in θ

$$
\begin{equation*}
\varphi_{\alpha}(\theta)=r^{\alpha}\left[\cos (\alpha-2) \theta+\frac{4-(1-v) \alpha}{(1-v) \alpha} \cos \alpha \theta\right] \tag{3.2}
\end{equation*}
$$

and ψ_{α} the odd solutions in θ

$$
\begin{equation*}
\psi_{\alpha}(\theta)=r^{\alpha}\left[\sin (\alpha-2) \theta-\frac{4+(1-v)(\alpha-2)}{(1-v) \alpha} \sin \alpha \theta\right] \tag{3.3}
\end{equation*}
$$

In this case $(\omega=2 \pi)$, we have $\alpha=k / 2$, then

$$
\begin{equation*}
\varphi_{\alpha}^{\prime}(\omega)=\varphi_{\alpha}^{\prime}(0)=0, \quad \psi_{\alpha}(\omega)=\psi_{\alpha}(0)=0 \tag{3.4}
\end{equation*}
$$

hence, $\left[\varphi_{\alpha}^{\prime}, \varphi_{\beta}\right]_{0}^{\omega}=\left[\varphi_{\alpha}, \varphi_{\beta}^{\prime}\right]_{0}^{\omega}=0$ and $\left[\psi_{\alpha}^{\prime}, \psi_{\beta}\right]_{0}^{\omega}=\left[\psi_{\alpha}, \psi_{\beta}^{\prime}\right]_{0}^{\omega}=0$. But $\left[\varphi_{\alpha}^{\prime}, \psi_{\beta}\right]_{0}^{\omega}=0$ and $\left[\varphi_{\alpha}, \psi_{\beta}^{\prime}\right]_{0}^{\omega} \neq 0$. From here comes the idea of decomposing the solution u of (1.3) to its even and odd parts with respect to k

$$
\begin{gather*}
u=u_{1}+u_{2}, \\
u_{i}=\sum_{\alpha \in E_{i}}\left(c_{\alpha} u_{\alpha}+d_{\alpha} v_{\alpha}\right), \quad i=1,2, \tag{3.5}\\
E_{1}=\{n, n>1\}, \quad E_{2}=\left\{\frac{2 n+1}{2}, 2 n>1\right\} .
\end{gather*}
$$

3.1. Calculation of c_{β} and d_{β}. We consider the integrals

$$
\begin{align*}
& \int_{\Sigma}\left(P u_{i} u_{\beta}+u_{i} P u_{\beta}\right) d \sigma, \quad \int_{\Sigma}\left(P u_{i} v_{\beta}+u_{i} P v_{\beta}\right) d \sigma \tag{3.6}\\
& \text { if } \alpha \in E_{1}, \text { then } \varphi_{\alpha}(\omega)=\varphi_{\alpha}(0), \quad \psi_{\alpha}^{\prime}(\omega)=\psi_{\alpha}^{\prime}(0) \\
& \text { if } \alpha \in E_{2}, \text { then } \varphi_{\alpha}(\omega)=-\varphi_{\alpha}(0), \quad \psi_{\alpha}^{\prime}(\omega)=-\psi_{\alpha}^{\prime}(0) \tag{3.7}
\end{align*}
$$

Equations (3.4) and (3.7) allow us to apply Corollary 2.6 to functions u_{α} and u_{β} (resp., u_{α}, v_{β} and v_{α}, v_{β}); then, we obtain

$$
\begin{align*}
& \int_{\Sigma}\left(P u_{i} u_{\beta}+u_{i} P u_{\beta}\right) d \sigma=2 c_{\beta} \int_{\Sigma} u_{\beta} P u_{\beta} d \sigma+d_{\beta} \int_{\Sigma}\left(P v_{\beta} u_{\beta}+v_{\beta} P u_{\beta}\right) d \sigma \\
& \int_{\Sigma}\left(P u_{i} v_{\beta}+u_{i} P v_{\beta}\right) d \sigma=c_{\beta} \int_{\Sigma}\left(P u_{\beta} v_{\beta}+u_{\beta} P v_{\beta}\right) d \sigma+2 d_{\beta} \int_{\Sigma} v_{\beta} P v_{\beta} d \sigma \tag{3.8}
\end{align*}
$$

Direct calculation gives us

$$
\begin{gather*}
\int_{\Sigma}\left(P u_{\beta} v_{\beta}+u_{\beta} P v_{\beta}\right) d \sigma=0, \\
\int_{\Sigma} u_{\beta} P u_{\beta} d \sigma=\frac{2 \rho^{2 \beta-1} \omega}{(1-v)^{2} \beta}[\beta(1-v)(3+v)-8] \tag{3.9}\\
\int_{\Sigma} v_{\beta} P v_{\beta} d \sigma=-\frac{2 \rho^{2 \beta-1} \omega}{(1-v)^{2} \beta}[(1-v)(3+v)(\beta-2)+8] .
\end{gather*}
$$

So, we have just established the following proposition.
Proposition 3.1. Let u be the solution of (1.3) written in the form

$$
\begin{equation*}
u=u_{1}+u_{2} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i}=\sum_{\alpha \in E_{i}}\left(c_{\alpha} u_{\alpha}+d_{\alpha} v_{\alpha}\right) . \tag{3.11}
\end{equation*}
$$

Suppose that the series that gives u_{i} is uniformly convergent; so, if $\beta \in E_{i}, i=$ 1,2 , then

$$
\begin{align*}
& c_{\beta}=\frac{(1-v)^{2} \beta \rho^{1-2 \beta}}{4 \omega[(1-v)(3+v) \beta-8]} \int_{\Sigma}\left(P u_{i} u_{\beta}+u_{i} P u_{\beta}\right) d \sigma, \tag{3.12}\\
& d_{\beta}=\frac{-(1-v)^{2} \beta \rho^{1-2 \beta}}{4 \omega[(1-v)(3+v)(\beta-2)+8]} \int_{\Sigma}\left(P u_{i} v_{\beta}+u_{i} P v_{\beta}\right) d \sigma .
\end{align*}
$$

Remark 3.2. We have $\zeta \in \widetilde{H}^{3 / 2}(\Sigma)$, the trace of u on Σ and $\chi \in H^{1 / 2}(\Sigma)$, the trace of $P u$ on Σ. If ζ belongs to the space $H^{4}(] 0,2 \pi[)$ and χ to $H^{2}(] 0,2 \pi[)$, then we have a uniform convergence of the series in $\bar{V}_{\rho_{0}}$ for all $\rho_{0} \leq \rho$, [3].
3.2. Independence of the coefficients. We are going to prove that the coefficients c_{β} (resp., d_{β}) of the development of the solution u of (1.3) are independent from ρ.

We have the following result.
Theorem 3.3. The coefficients c_{β} and d_{β} are independent from ρ.
Proof. In order to prove that c_{β} is independent from ρ, we are going to show that its derivative with respect to ρ is null, and by observing the expression of c_{β} (Proposition 3.1), we just have to prove that

$$
\begin{equation*}
\gamma_{\beta}=\rho^{1-2 \beta} \int_{\Sigma}\left(P u_{i} u_{\beta}+u_{i} P u_{\beta}\right) d \sigma \tag{3.13}
\end{equation*}
$$

has the null derivative with respect to ρ.
By derivation in regard to r, we have

$$
\begin{align*}
\gamma_{\beta}^{\prime}=\int_{0}^{\omega}\{ & \frac{\partial \Delta u_{i}}{\partial r} r^{2-\beta} \varphi_{\beta}+\left[(2-\beta) \triangle u_{i}-2 \frac{\partial^{2} u_{i}}{\partial r^{2}}+\left(\beta^{2}-2\right) \frac{1}{r} \frac{\partial u_{i}}{\partial r}\right] r^{1-\beta} \varphi_{\beta} \\
& \left.+\frac{\partial u_{i}}{\partial r} r^{-\beta} \varphi_{\beta}^{\prime \prime}-\beta u_{i} r^{-\beta-1}\left[\left(\beta^{2}-2 \beta\right) \varphi_{\beta}+\varphi_{\beta}^{\prime \prime}\right]\right\} d \theta \tag{3.14}
\end{align*}
$$

On Σ, we have

$$
\begin{gather*}
\frac{\partial \Delta u_{i}}{\partial r}=-T u_{i}+(1-v)\left(\frac{1}{r^{3}} \frac{\partial^{2} u_{i}}{\partial \theta^{2}}-\frac{1}{r^{2}} \frac{\partial^{3} u_{i}}{\partial r \partial \theta^{2}}\right), \tag{3.15}\\
(2-\beta) \triangle u_{i}-2 \frac{\partial^{2} u_{i}}{\partial r^{2}}=-\beta M u_{i}+[2-(1-v) \beta]\left[\frac{1}{r} \frac{\partial u_{i}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u_{i}}{\partial \theta^{2}}\right] .
\end{gather*}
$$

Reinjecting these formulas in the expression of γ_{β}^{\prime}, we obtain

$$
\begin{align*}
\gamma_{\beta}^{\prime}= & -\int_{0}^{\omega}\left(M u_{i} \beta r^{1-\beta} \varphi_{\beta}+T u_{i} r^{2-\beta} \varphi_{\beta}\right) d \theta \\
& +\int_{0}^{\omega}\left\{\left(\left[\beta^{2}-(1-v) \beta\right] \varphi_{\beta}+\varphi_{\beta}^{\prime \prime}\right) \frac{\partial u_{i}}{\partial r}-(1-v) \frac{\partial^{3} u_{i}}{\partial r \partial \theta^{2}} \varphi_{\beta}\right\} r^{-\beta} d \theta \\
& +\int_{0}^{\omega}\left\{[2-(1-v)(\beta-1)] \frac{\partial^{2} u_{i}}{\partial \theta^{2}} \varphi_{\beta}-\beta u_{i}\left[\left(\beta^{2}-2 \beta\right) \varphi_{\beta}+\varphi_{\beta}^{\prime \prime}\right]\right\} r^{-1-\beta} d \theta \tag{3.16}
\end{align*}
$$

By a double integration by parts, we verify that

$$
\begin{align*}
\int_{0}^{\omega} \frac{\partial^{2} u_{i}}{\partial \theta^{2}} \varphi_{\beta} d \theta & =\int_{0}^{\omega} u_{i} \varphi_{\beta}^{\prime \prime} d \theta \tag{3.17}\\
\int_{0}^{\omega} \frac{\partial^{3} u_{i}}{\partial r \partial \theta^{2}} \varphi_{\beta} d \theta & =\int_{0}^{\omega} \frac{\partial u_{i}}{\partial r} \varphi_{\beta}^{\prime \prime} d \theta \tag{3.18}
\end{align*}
$$

Reinjecting in the expression of γ_{β}^{\prime} and putting $\rho^{1-2 \beta} \cdot \rho$ in factor, we obtain

$$
\begin{align*}
\gamma_{\beta}^{\prime}= & -\rho^{1-2 \beta} \int_{0}^{\omega}\left[M u_{i}\left(\beta r^{\beta-1} \varphi_{\beta}\right)+T u_{i}\left(r^{\beta} \varphi_{\beta}\right)\right] \rho d \theta \\
& +\rho^{1-2 \beta} \int_{0}^{\omega}\left[\left(\left[\beta^{2}-(1-v) \beta\right] \varphi_{\beta}+v \varphi_{\beta}^{\prime \prime}\right) r^{\beta-2}\right] \frac{\partial u_{i}}{\partial r} \rho d \theta \\
& +\rho^{1-2 \beta} \int_{0}^{\omega}\left\{-\beta^{2}(\beta-2) \varphi_{\beta}+[-(2-v) \beta+(3-v)] \varphi_{\beta}^{\prime \prime}\right\} r^{\beta-3} u_{i} \rho d \theta . \tag{3.19}
\end{align*}
$$

By taking account of (2.7), whose expressions appear explicitly in γ_{β}^{\prime}, we obtain

$$
\begin{equation*}
\gamma_{\beta}^{\prime}=\rho^{1-2 \beta}\left\{-\int_{\Sigma}\left(M u_{i} \frac{\partial u_{\beta}}{\partial n}+T u_{i} u_{\beta}\right) d \sigma+\int_{\Sigma}\left(M u_{\beta} \frac{\partial u_{i}}{\partial n}+T u_{\beta} u_{i}\right) d \sigma\right\}=0 \tag{3.20}
\end{equation*}
$$

since we come back to the Green's formula (2.6) applied to u_{i} and u_{β}.
We follow the same analysis to prove the independence of d_{β} with respect to ρ.
3.3. Convergence of the series. We write c_{α} and d_{α} in the form

$$
\begin{equation*}
c_{\alpha}=I_{i} \rho^{-\alpha}, \quad d_{\alpha}=j_{i} \rho^{-a} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{i}=\rho \frac{(1-v)^{2} \alpha}{4 \omega[(1-v)(3+v) \alpha-8]} \int_{\Sigma}\left\{P u_{i} \varphi_{\alpha}+u_{i}\left[\left(\alpha^{2}-2 \alpha\right) \varphi_{\alpha}+\varphi_{\alpha}^{\prime \prime}\right] \rho^{-2}\right\} d \sigma \\
& J_{i}=-\rho \frac{(1-v)^{2} \alpha}{4 \omega[(1-v)(3+v)(\alpha-2)+8]} \int_{\Sigma}\left\{P u_{i} \psi_{\alpha}+u_{i}\left[\left(\alpha^{2}-2 \alpha\right) \psi_{\alpha}+\psi_{\alpha}^{\prime \prime}\right] \rho^{-2}\right\} d \sigma \tag{3.22}
\end{align*}
$$

The solution u of (1.3) is then written as follows:

$$
\begin{align*}
u & =u_{1}+u_{2}, \tag{3.23}\\
u_{i} & =\sum_{\alpha \in E_{i}}\left[\left(\frac{r}{\rho}\right)^{\alpha} I_{i} \varphi_{\alpha}+\left(\frac{r}{\rho}\right)^{\alpha} J_{i} \psi_{\alpha}\right] . \tag{3.24}
\end{align*}
$$

We have the following result.
Theorem 3.4. The series (3.24) converges as soon as $r<\rho$.
Proof. Set

$$
\begin{align*}
N_{i, \alpha} & =\int_{0}^{\omega}\left\{P u_{i} \varphi_{\alpha}+u_{i}\left[\left(\alpha^{2}-2 \alpha\right) \varphi_{\alpha}+\varphi_{\alpha}^{\prime \prime}\right] \rho^{-2}\right\} d \theta \\
& =\int_{0}^{\omega} P u_{i} \varphi_{\alpha} d \theta+\left(\alpha^{2}-2 \alpha\right) \rho^{-2} \int_{0}^{\omega} u_{i} \varphi_{\alpha} d \theta+\rho^{-2} \int_{0}^{\omega} u_{i} \varphi_{\alpha}^{\prime \prime} d \theta . \tag{3.25}
\end{align*}
$$

We show that $N_{i, \alpha}$ is a product of $1 / \alpha$ by limited term for α large.
According to (3.17), we have

$$
\begin{equation*}
\int_{0}^{\omega} u_{i} \varphi_{\alpha}^{\prime \prime} d \theta=\int_{0}^{\omega} u_{i}^{\prime \prime} \varphi_{\alpha} d \theta \tag{3.26}
\end{equation*}
$$

Replacing φ_{α} by its expression and integrating by parts, we get

$$
\begin{equation*}
\int_{0}^{\omega} u_{i}^{\prime \prime} \varphi_{\alpha} d \theta=\frac{1}{\alpha}\left\{\frac{-\alpha}{\alpha-2} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \sin (\alpha-2) \theta d \theta-\frac{4-(1-v) \alpha}{(1-v) \alpha} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \sin \alpha \theta d \theta\right\} . \tag{3.27}
\end{equation*}
$$

On the other hand, by a triple integration by parts, we have

$$
\begin{align*}
\left(\alpha^{2}-2 \alpha\right) \int_{0}^{\omega} u_{i} \varphi_{\alpha} d \theta=\frac{1}{\alpha}\{ & \frac{\alpha^{2}}{(\alpha-2)^{2}} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \sin (\alpha-2) \theta d \theta \\
& \left.+\frac{\alpha-2}{\alpha} \frac{4-(1-v) \alpha}{(1-v) \alpha} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \sin \alpha \theta d \theta\right\} . \tag{3.28}
\end{align*}
$$

Also, by an integration by parts, we get

$$
\begin{align*}
\int_{0}^{\omega}\left(\Delta u_{i}-\frac{2}{r} \frac{\partial u_{i}}{\partial r}\right) \varphi_{\alpha} d \theta= & -\frac{1}{\alpha-2} \int_{0}^{\omega}\left(\frac{\partial \Delta u_{i}}{\partial \theta}-\frac{2}{r} \frac{\partial^{2} u_{i}}{\partial r \partial \theta}\right) \sin (\alpha-2) \theta d \theta \\
& -\frac{1}{\alpha} \frac{4-(1-v) \alpha}{(1-v) \alpha} \int_{0}^{\omega}\left(\frac{\partial \Delta u_{i}}{\partial \theta}-\frac{2}{r} \frac{\partial^{2} u_{i}}{\partial r \partial \theta}\right) \sin \alpha \theta d \theta . \tag{3.29}
\end{align*}
$$

Then, we deduce the existence of a constant C_{0} so as

$$
\begin{equation*}
\left|N_{i, \alpha}\right| \leq \frac{C_{0}}{\alpha} . \tag{3.30}
\end{equation*}
$$

Using this last inequality and remarking that φ_{α} is limited, as well as the term

$$
\begin{equation*}
\frac{(1-v)^{2} \alpha}{4 \omega[(1-v)(v+3) \alpha-8]} \tag{3.31}
\end{equation*}
$$

for large α, we deduce the existence of a constant C so as

$$
\begin{equation*}
\left|\sum_{\alpha \in E_{i}} c_{\alpha} r^{\alpha} \varphi_{\alpha}\right| \leq \sum_{\alpha \in E_{i}} \frac{C}{\alpha}\left(\frac{r}{\rho}\right)^{\alpha}, \tag{3.32}
\end{equation*}
$$

which converges as soon as $r<\rho$.
In the same way, we prove the convergence of the series $\sum_{\alpha \in E_{i}} d_{\alpha} r^{\alpha} \psi_{\alpha}$.

References

[1] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556-581.
[2] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson, Paris, 1992 (French).
[3] O. Tcha-Kondor, Nouvelles séries trigonométriques adaptées à l'étude de problèmes aux limites pour l'équation biharmonique. Étude du cas de la fissure [New trigonometric series adapted to the study of boundary value problems for the biharmonic equation. The case of the crack], C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 5, 541-544 (French).

Wided Chikouche: Département de Mathématiques, Centre Universitaire de Jijel, Ouled Aissa, BP 98, 18000 Jijel, Algeria

E-mail address: chikouche@mai1.univ-jije1.dz
Aissa Aibèche: Département de Mathématiques, Centre Universitaire de Jijel, Ouled Aissa, BP 98, 18000 Jijel, Algeria

E-mail address: aibeche@mail.univ-jije1.dz

