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A two-dimensional nonlinear aerodynamics representation analysis is proposed
for the investigation of inviscid flowfields of unsteady airfoils. Such problems are
reduced to the solution of a nonlinear multidimensional singular integral equation
as the source and vortex strength distributions are dependent on the history of
these distributions on the NACA airfoil surface. A turbulent boundary layer model
is further investigated, based on the formulation of the unsteady behaviour of the
momentum integral equation. An application is finally given to the determination
of the velocity and pressure coefficient field around an aircraft by assuming linear
vortex distribution.
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1. Introduction. Over the last years, an increasing interest has been con-

centrated on the study of nonlinear multidimensional singular integral equa-

tions because of their application to the solution of modern and complicated

problems of solid and fluid mechanics theory. Such problems are solved by

computational methods as closed-form solutions are not possible to be de-

termined. The algorithms which are used for the numerical evaluation of the

nonlinear singular integral equations consist with the latest high technology

for the solution of modern problems of solid mechanics, fluid mechanics, and

aerodynamics.

The design of the new generation aircrafts with very high speeds has recently

become too important, driven by the needs of aircraft powerplant and turbine

designers. The target of the aeronautical industries all over the world is to

achieve a competitive technological advantage in certain strategic areas of new

and rapidly developing advanced technologies. Such a considerably market

share includes the design of new generation of large aircrafts with very high

speeds. Furthermore, the new technology aerodynamic problems are reduced

to the solution of nonlinear multidimensional singular integral equations, used

for the determination of the velocity and pressure coefficient field around the

NACA airfoils.

Hess and Smith [6] were the first scientists who investigated aerodynamic

panel methods for studying airfoils with zero lift. In their study, they modeled
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the airfoil with either distributed potential source panels for nonlifting flows,

or vortex panels for flow with lift. The above method was further extended

by Djojodihardjo and Widnall [4], Robert and Saaris [22], Summa [26], Bristow

[1], Bristow and Hawk [2], and Lewis [18], as they studied three-dimensional

steady and unsteady flows by combining source and vortex singularities. Fur-

thermore, Sarpkaya and Schoaff [24] extended the unsteady panel methods to

the modeling of separated wakes using discrete vortices.

Beyond the above, some potential flow models were investigated by Ham

[5], Deffenbaugh and Marshall [3], Kiya and Arie [9], and Sarpkaya and Kline

[23], and the separating boundary layers were represented by an array of dis-

crete vortices, emanating from a known separation point location on the airfoil

surface.

During the last years, several other scientists made extensive calculations

by using unsteady turbulent boundary layer methods. Among them Singleton

and Nash [25], Nash et al. [21], Lyrio et al. [19], McCroskey and Pucci [20], and

Kim et al. [8].

Recently, nonlinear singular integral equation methods were proposed by

Ladopoulos [10, 11, 12, 13, 14] for the solution of fluid mechanics problems

and by Ladopoulos and Zisis [15, 16] for two-dimensional fluid mechanics

problems applied to turbomachines.

In the present paper, the aerodynamic problem of the unsteady flow of a

two-dimensional NACA airfoil which is moving by a velocity UA is reduced to

the solution of a nonlinear multidimensional singular integral equation. This

nonlinearity is valid as the source and vortex strength distributions are de-

pendent on the history of the vorticity and source distributions on the NACA

airfoil surface. Furthermore, a turbulent boundary layer analysis is investi-

gated, based on the formulation of the unsteady behaviour of the momentum

integral equation.

An application is finally given to the determination of the velocity and pres-

sure coefficient field around an aircraft by assuming linear vortex distribution.

2. Nonlinear two-dimensional aerodynamics analysis. Consider the mo-

tion of a two-dimensional airfoil through a homogeneous and inviscid fluid

(Figure 2.1).

The airfoil plus the wake comprise a complete lifting system which makes

the motion irrotational for all time [10, 11, 12, 13, 14]. Because of this irrota-

tionality, the local fluid velocity U is valid

∇×U = 0. (2.1)

Let H be the total velocity potential. Then, by replacing the fluid velocity U

with the total velocity potential, one obtains

U =∇H. (2.2)
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Figure 2.1. A two-dimensional airfoil of surface S in an homoge-
neous and inviscid fluid.

By considering U∞ the outward velocity (Figure 2.1) and h the velocity po-

tential due to the presence of the airfoil, (2.2) can be further written as

U =U∞+∇h. (2.3)

Beyond the above, the use of Green’s theorem [17] results in the following

relation for the velocity potential h(x, t), with t the time, at any point x in a

continuous acyclic irrotational flow:

h(x, t)= −1
2π

∫
S

ω[ξ,t,h]
r

dS+ 1
2π

∫
S+W

δ[ξ,t,h]
∂
∂n1

(
1
r

)
dS (2.4)

in which S denotes the surface of the airfoil (Figure 2.1), W the surface of the

wake, n1 the surface normal at the source point ξ (Figure 2.1), ω[ξ,t,h] the

source strength distribution, δ[ξ,t,h] the vortex strength distribution, and r
the distance equal to

r = |x−ξ|. (2.5)

Moreover, (2.4) takes the following form, which denotes a two-dimensional

nonlinear singular integral equation:

h(x, t)= −1
2π

∫
S

ω[ξ,t,h]
r

dS+ 1
2π

∫
S+W

δ[ξ,t,h]
r 2

dS. (2.6)

The kinematical surface tangency condition on the surface of the airfoil is

equal to (see [7])

1∣∣∇S(x, t)∣∣
∂S(x, t)
∂t

+ ∂f
∂n2

+U∞ ·n2 = 0, (2.7)

where n2 denotes the surface normal at the field point x (Figure 2.1).
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For a body fixed coordinate system, this condition takes the form

1∣∣∇S(x, t)∣∣
∂S(x, t)
∂t

=−(UA+ωA×x
)·n2 (2.8)

in which UA denotes the airfoil translation velocity and ωA the airfoil angular

rotation.

From (2.7) and (2.8), it follows that

∂h
∂n2

+(U∞−UA−ωA×x
)·n2 = 0. (2.9)

Hence, by inserting (2.9) into (2.6), a two-dimensional nonlinear singular

integral equation follows:

1
2π

∫
S
ω[ξ,t,h]

∂
∂n2

(
1
r

)
dS+ 1

2π

∫
S+W

δ[ξ,t,h]
∂
∂n2

(
1
r 2

)
dS

=−(U∞−UA−ωA×x
)·n2.

(2.10)

The nonlinear singular integral equation (2.10) can be further written as

1
2π

∫
S

ω[ξ,t,h]
r 2

dS+ 1
π

∫
S+W

δ[ξ,t,h]
r 3

dS = (U∞−UA−ωA×x
)·n2. (2.11)

Finally, by solving the nonlinear integral equation (2.11) with the corre-

sponding boundary conditions, the velocity at any field point will be deter-

mined through (2.7).

3. Nonlinear airloads analysis. By using the unsteady Bernoulli equation,

valid at any point in an irrotational ideal flow, the pressure distribution on the

airfoil can be determined as

P = P∞−ρ
[
∂H
∂t
+ 1

2
(∇H)2

]
, (3.1)

where ρ is the fluid density.

By using the derivation of the previous section, (3.1) becomes

P = P∞−ρ
[
∂h
∂t
+(U∞−UA−ωA×x

)·∇h+ 1
2
(∇h)2

]
. (3.2)

Beyond the above, (3.2) takes the form

P = P∞−ρ

∂H
∂t
+(U∞−UA−ωA×x

)·∇SH

+ ∂H
∂n1

(
U∞−UA−ωA×x

)·n1+ 1
2

(∇SH)2+ 1
2

(
∂H
∂n1

)2



(3.3)
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if we replace ∇h by the surface gradient ∇Sh:

∇h=∇Sh+ ∂h
∂n1

εn1 . (3.4)

Because of (2.11), (3.3) takes the form

P = P∞−ρ
[
∂H
∂t
+(U∞−UA−ωA×x

)·∇SH
− 1

2

{(
U∞−UA−ωA×x

)·n1
}2+ 1

2

(∇SH)2
]
,

(3.5)

which will be used for the computations.

The basic object of the present paper is to develop a general nonlinear model

for the determination of the velocity field around a NACA airfoil in a two-

dimensional unsteady flow. This problem was reduced to the solution of a

two-dimensional nonlinear singular integral equation, while the above form of

nonlinearity was obtained because of the special kind of the general type of

the source and vortex strength distribution.

4. Turbulent boundary layer models. The boundary layer model which

would be ideal for the aerodynamic behaviour of the airfoil should be able

to predict both laminar and turbulent parts of the flow as well as the transi-

tion region between them. There are several boundary layer models which can

be used, like the finite difference, finite element, or integral models.

In this paper, the proposed turbulent boundary layer analysis will be based

on the formulation of the unsteady behaviour of the momentum integral equa-

tion. Hence, the unsteady momentum integral equation valid for both laminar

and turbulent flows is equal to (see Figure 4.1)

1

u2
B

∂
∂t
(
uBδ

)+ ∂d
∂S
+ 1
uB

∂uB
∂S

(2d+S)= cF
2
, (4.1)

where uB denotes the boundary layer edge velocity, t the time, δ the displace-

ment thickness, d the momentum thickness, S the surface distance, and cF is

the friction factor.

For the laminar layer, a pressure gradient parameter λ is written as

λ= d
uB
Rd
(
∂uB
∂S

+ 1
uB

∂uB
∂t

)
, (4.2)

in which Rd is the Reynolds number based on uB and d.
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Figure 4.1. Laminar and turbulent boundary layer model for aerodynamics.

Beyond the above, a solution for the laminar formulation is obtained, by

considering relations between the parameters cF/2, d, and δ. For wedge flow

solutions, one has

cF
2
= 1.91−4.13L

Rδ
,

N = (0.68−0.922L)−1,

L= 0.325−0.13λN2,

(4.3)

where N denotes the shape parameter, L the blockage factor δ/δB with δB the

boundary layer thickness, and Rδ the Reynolds number based on uδ and δ.

For the turbulent layer model, the following equation is valid:

1
uB

∂
∂S
[
uB
(
δB−δ

)]= T (4.4)

and the function T is obtained by the relations

dT
dS

= 0.025
(
TB−T

)
δB,

TB = 4.24KB
(

L
1−L

)0.916

,

KB = 0.013+0.0038e−β/15,

β= δ
τw

dP
dx

,

(4.5)

with τw the wall shear stress and dP/dx the streamwise pressure gradient.
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Shape factor relationships are obtained by the following formulas:

u
uB

= 1+µ ln
(
y
δB

)
−ϕcos2

(
πy
2δB

)
,

µ = 1
0.41

(
sgn

cF
2

)(
cF
2

)1/2
,

ϕ = 2(1−µ),
cF
2
= τw
ρu2

B
,

(4.6)

where u is the velocity in the boundary layer at a distance y from the wall and

ρ the fluid density.

Finally, the skin friction law is

cF
2
= 0.051|1−2L|1.732

(
Rδ
L

)−0.268

sgn(1−2L). (4.7)

5. Velocity and vortex coefficient field for linear vortex distribution (air-

foil with velocity). Consider the special case of a linear vortex distribution δ.

In this case the general nonlinear problem presented in previous paragraphs

will be much more simplified and will be solved as a linear problem. The geo-

metrical representation of this problem is shown in Figure 5.1.

For a linear vortex distribution δ, the fluid velocity U is given by the relation

U =
∫ A/2
−A/2

δdr
2πr

(−sinϕi+cosϕj), (5.1)

where A denotes the separating wake (Figure 5.1) and i, j the unit vectors on

the x- and y-axis, respectively.

Therefore, the fluid velocity U will be computed through the following rela-

tions, for the cases yP ≠ 0 and yP = 0:

U =




a
2π

[
xP
(
ϕ1−ϕ2

)+yP ln
∣∣∣∣r1

r2

∣∣∣∣
]
i

+ a
2π

[
xP ln

∣∣∣∣r1

r2

∣∣∣∣−A−yP(ϕ1−ϕ2
)]

j, yP ≠ 0,

a
2π

[
xP ln

∣∣∣∣r1

r2

∣∣∣∣−A
]
j, yP = 0,

(5.2)

where a is the angle of attack.
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Figure 5.1. Coordinate system for 2D airfoil of an aircraft.

Beyond the above, consider the pressure coefficient

CP = P−P∞
(1/2)ρ

(
U∞−UA

)2 , (5.3)

in which P∞ denotes the stream pressure and ρ the fluid density.

By further using the unsteady Bernoulli equation, the pressure coefficient

will be simplified as follows

CP =− U2(
U∞−UA

)2 , (5.4)

which will be used for the computations.

6. Aircraft application. The previous mentioned theory of 2D unsteady in-

viscid flowfields will be applied for the computation of the velocity and pres-

sure coefficient field around an aircraft. The big evolution of the jet engine

and the high performance axial-flow compressor have considerably increased

the possibilities of turbomachines applied in aircrafts. The further application

of the new generation turbojet engines makes the design of very fast large

aircrafts possible.

In the present application, the length of the aircraft under consideration is

c = 50.0m and the airfoil section is NACA 0021 (Figure 5.1).

Also, linear vortex distribution was supposed and hence the velocity field on

the boundary around the airfoil was computed by (5.2). Moreover, the pressure

coefficients CP were calculated by (5.4) for several aircraft velocities UA and

wind velocity U∞ = 15m/s and for angle of attack a= 300.

Hence, Figures 6.1, 6.3, 6.5, and 6.7 show the pressure distribution on the

aircraft considered, for aircraft speedUA=1,2,3,4Mach, respectively (1Mach=
332m/s). Also, Figures 6.2, 6.4, 6.6, and 6.8 show the same pressure distribu-

tion on the airfoil in three-dimensional form.
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Figure 6.1. Pressure distribution around the aircraft of Figure 5.1,
for linear vortex distribution and speed 1 Mach.
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Figure 6.2. Pressure distribution (3D form) around the aircraft of
Figure 5.1, for linear vortex distribution and speed 1 Mach.
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Figure 6.3. Pressure distribution around the aircraft of Figure 5.1,
for linear vortex distribution and speed 2 Mach.
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Figure 6.4. Pressure distribution (3D form) around the aircraft of
Figure 5.1, for linear vortex distribution and speed 2 Mach.
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Figure 6.5. Pressure distribution around the aircraft of Figure 5.1,
for linear vortex distribution and speed 3 Mach.
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Figure 6.6. Pressure distribution (3D form) around the aircraft of
Figure 5.1, for linear vortex distribution and speed 3 Mach.
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Figure 6.7. Pressure distribution around the aircraft of Figure 5.1,
for linear vortex distribution and speed 4 Mach.
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Figure 6.8. Pressure distribution (3D form) around the aircraft of
Figure 5.1, for linear vortex distribution and speed 4 Mach.

From the above figures, it was shown that the values for both up and down

points on the boundary of the airfoil are continuously increasing when begin-

ning from x/c = 0 up to x/c = 1.

Special attention was given to the investigation of the aerodynamic beha-

viour of aircrafts, which is currently of continuously increasing interest. The
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special application presented has been used for the determination of the pres-

sure coefficient field around an aircraft airfoil by assuming linear vortex dis-

tribution.

7. Conclusions. A nonlinear model has been proposed in the present paper

for the determination of the velocity and pressure coefficient field around a

NACA airfoil moving by a velocity UA in two-dimensional unsteady flow. Such a

problem was reduced to the solution of a nonlinear multidimensional singular

integral equation, while this nonlinearity resulted since the source and vor-

tex strength distributions are dependent on their history on the NACA airfoil

surface.

On the other hand, closed-form solutions of the nonlinear multidimensional

singular integral equations are not possible to be determined, and hence, such

type of nonlinear equations has to be solved only by computational methods.

In this case some special algorithms must be applied.

Furthermore, a boundary layer model has been proposed in the present pa-

per. Such a model will be ideal for the aerodynamic behaviour of the airfoil

as it is able to predict both the laminar and the turbulent parts of the flow as

well as the transition region between them. The above boundary layer model

was based on the formulation of the unsteady behaviour of the momentum

integral equation.

The velocity and pressure coefficient field around an aircraft moving with

several velocities was further determined for linear vortex distribution. The

proposed method can be applied to the determination of the aerodynamic

behaviour of the new generation large aircrafts with very high speeds.

The proposed nonlinear singular integral equation methods will be in the

near future of continuously increasing interest for the solution of the general-

ized solid and fluid mechanics problems. Therefore, special attention should

be given to the improvement of singular integral equation methods, as recently

many modern problems of fluid mechanics, aerodynamics, solid mechanics,

and structural analysis, with big complicated forms, are reduced to nonlinear

forms.
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