IJMMS 2003:50, 3189-3194
PII. S0161171203206074
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

DISTRIBUTION OF SPECIAL SEQUENCES
MODULO A LARGE PRIME

M. Z. GARAEV and KA-LAM KUEH

Received 18 June 2002

We study the sets {g*¥—gY (modp):1<x, ¥y <N}and {xy:1<x, ¥y <N} where
p is a large prime number, g is a primitive root, and p2/3 < N < p.
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1. Introduction. Let p be alarge prime number, g a primitive root (modp),
and N a given positive integer, N < p. In a series of papers, the distribution of
powers g" (mod p) has been investigated by [1, 2, 4, 5]. Vajaitu and Zaharescu
[5] considered the question of A. Odlyzko concerning the set of differences

A:={g*¥-g”(modp):1<x, vy <N} (1.1)

As it was indicated in [5], A. Odlyzko asks for which values of N the set A
contains all residue classes (mod p). The conjecture is that one can take N to
be as small as p!/?*¢, for any positive £ and p > ¢ with some ¢ = c(&). From
the result of Rudnick and Zaharescu [4] it follows that in Odlyzko’s problem
one can take N = ¢cop3/4logp for some absolute constant cy.

One of the main results of [5] is that for the exceptional set of Odlyzko’s
problem we have

pilogp
N3

#{h(modp):h¢ A} < (1.2)

It then follows that for N > p?2/3+¢ almost all the residues (modp) belong
to A.
Denote

B={xy(modp):1<x, vy <N} (1.3)

Vajaitu and Zaharescu [5] put another problem similar to that of Odlyzko: for
which values of N can we be sure that the set B contains all residue classes
(modp)? They conjectured that N can be taken to be as small as p'/2*¢ and
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observed that one can take N = c;p3/4logp. This problem is also related to
the pair correlation problem for sequences of the form «n?(mod1). For this
account, see Rudnick et al. [3].

In this paper, using an elementary approach we slightly improve by a factor
of log p estimate (1.2) and the estimate for N in Odlyzko’s problem and obtain
estimate (1.2) with the set B instead of A, see Theorems 1.1, 1.2, and 1.3.

THEOREM 1.1. For any prime number p, any primitive root g(modp), and
N = 10p3/4, the set A contains the complete residue system (modp).

THEOREM 1.2. For any prime number p, any primitive root g(modp), and
any positive integer N < p,
p3
#{h(modp):h¢ A} < N3 (1.4)
THEOREM 1.3. For any prime number p and any positive integer N < p,

p3logp

#{h(modp):h ¢ B} < NE

(1.5)

We require the following lemma (see [6, Exercise 14, page 92] and the so-
lution in [6, page 142]) which will be used in the proof of Theorems 1.1 and
1.2.

LEMMA 1.4. Letm > 1, (a,m) = 1. Then

m-1m-1 o
> vix)e(y)ermilaxyim | < mXy, (1.6)
x=0 y=0

where v(x), o(y) are complex numbers and
m—1 ) m—1 )
Slvio|T=x, D le| =Y. (1.7)
x=0 =0

2. Proof of Theorem 1.1. Note that 0 € A. Let h be any integer, h = 0(modp),
N =10p3/4, and denote N; = [N/4]. Our aim is to prove that J > 0, where J is
the number of solutions in integers x, y, z, and t of the congruence equation

g% —g” —hg' = 0(modp) (2.1)
subject to the condition
Ni+1=<x,y,z<2N;, 1<t=<Nj. (2.2)

In order to prove it we write J in terms of rational trigonometric sums:

p-1 2N; 2Ny 2N1 N

pi=> 3 > > zezma(gx”—gy—hgf)/v). (2.3)

a=0x=N1+1 y=N1+1 z=N1+1 t=1
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Picking up the term with a = 0 and estimating other terms by their absolute
values, we obtain

p-1 2Ny 2N
pJ=Ni->| S e2milag*g®/p)
a=1| x=N1+1 z=N1+1
(2.4)
2N; Ny
~ z e2milag” /p) z e2milahg'/p) |
y=Nj+1 t=1

We will apply Lemma 1.4 to the double inner sum. To do that, we define
v(u) =po(u) =1if u = g*¥(modp) for some N; +1 < x < 2Nj. For all other u,
we put v(u) = ¢(u) = 0. Then Lemma 1.4 gives

2N1 2Ny

Z Z leri(angZ/p)

x=Nj+1z=Nj+1

<+/pN?. (2.5)

Hence,
p-1 2Ny Ny
pJ = N# —\/pN? S ermitag¥ip) Zeznﬂahgf/v) . (2.6)
a=0 | y=N;+1 t=1

For the sum over a, we apply Cauchy inequality. Since g is a primitive root,
then

p-1 2Ny p-1| Ny
| X el —pNy, 3| et pNy (27)
a=0| y=N1+1 a=0 | t=1
Therefore, for each integer h,
pJ > Ni—p3/2N? (2.8)

and Theorem 1.1 follows in view of N; = [N/4].

3. Proof of Theorem 1.2. Denote A = {h(modp):h ¢ A}, N; = [N/2], and
let |A| denote the cardinality of A. Then

$5 SR & e g, .

Picking up the term with a = 0, we obtain

p-1| N1 N N
_ ) S . .
N12N|A| < Z Z z p2milag*g?/p) Z e2mitag” /p) Z elmilah/p) | (3.2)
a=1|x=1z=1 y=1 heA
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We will apply Lemma 1.4 to the double inner sum in the same way as we did

<+pNZ. (3.3)

in the proof of Theorem 1.1. We obtain

N1 N;
Z z e2milag g®/p)
x=12z=1

Hence,
(3.4)

Z leri(uh/p)
heA

N
Z p2milag” /p)
y=1

p-1

NINIA| </pN? >

a=0

In analogy with Section 2, we apply Cauchy inequality to the sum over a.

Since
2

p-1| N
Z Z elmitag/p) | _ pN,
a=0| y=1

(3.5)

2

e2rri(ah/p) — P\ZL

p—-1
>
a=0

heA

then
NiNIA| <+/pNipNplAl. (3.6)

Hence, from N; = [N/2], we obtain
— 10p?
Al < N

(3.7)

This proves Theorem 1.2.

4. Proof of Theorem 1.3. Using Gauss method of estimation of trigonomet-
ric sums, one can prove the validity of the following lemma.

LEMMA 4.1. Let1 <N <p, (a,p) =1. Then
< 4/plogp. (4.1)

Indeed, if we denote by |S| the value of the left-hand side, then

N
Z eZTri(axz/p)

x=1

(4.2)

S emiayt-xnp

N N
i 2_,2
\S|2 _ z Z ean(a(y -x°)/p) <N+2
x=1y=1 l<x<y=<N

Substituting y = x +t gives

N-1N-x ,
Z z eZTri(at2+2atx/p)
x=1 t=1

IS|2 < N +
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Changing the order of summation, we obtain

p-1 1

N-1| N-t
ISIP< N+ > | > e?miatxip) | « N+ (4.4)
t=1 | x=1

= | sin(rr2at/p)|’

When t runs through reduced residue system (mod p) so does 2at. Hence,

p-1 1 (p-1)/2
ISIP <N+ > <N+ > %«plogp. (4.5)

5 | sin(rt/p) | =

We now proceed to prove Theorem 1.3. Put N; = [N/4] and denote by B;
the set

By = {x*—y*(modp), Ny <x <2Nj, 1 <y <N;}. (4.6)

Since B; C B, then |B| < |B;| where B and B; denote the complement of B and
B, in the complete residue system (modp), accordingly. Now, as in the proof
of Theorem 1.2, we have

—

p—

2
heB; a

1-1
S e2mitatxt-y?-hip) _ (), (4.7)
=1

2Ny
2.
=0 x=N}

N
y

Then it follows that

p-1] 2Ny Ni-1
NHB| < X | 3 ermiaxti || 5 gemiartin)| | 5 gemitahi) | (4.8)
a=1 | x=N; =1 heBy

Now, apply Lemma 4.1 for the sum over x and then use Cauchy inequality as
we did in the proof of Theorems 1.1 and 1.2. Then, we obtain

N?|By| </plogp\pNp|Bi]| (4.9)
whence, we get
= _ p’logp
|B: | < N (4.10)

Now, Theorem 1.3 follows from |B| < |B;|.
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