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CS-MODULES AND ANNIHILATOR CONDITIONS
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We study S-R-bimodules §Mp with the annihilator condition S = Ig(A) + ls(B)
for any closed submodule A, and a complement B of A, in Mg. Such annihila-
tor condition has a direct connection with the CS-condition for M. We make
use of this to give a new characterization of CS-modules. Bimodules Mg for
which ryls(A) = A (for every closed submodule A of Mg) are also dealt with.
Such modules are called W*-modules. We give the extra added annihilator condi-
tions to W*-modules to be equivalent to the continuous (quasicontinuous) mod-
ules.

2000 Mathematics Subject Classification: 16D80.

1. Introduction. Let R and S be rings and let M be a bimodule. For any
X<Mand T < S, write lg(X)={seS:sX=0andry(T)={meM:Tm=
0}. Let A: S — End(MR) be the canonical ring homomorphism. For each s € S,
we identify A(s) with s. A submodule A is essential in M (denoted by A <¢ M)
if AnB + 0 for every nonzero submodule B of M. A submodule A is closed
in M if it has no proper essential extensions in M. A <® M signifies that A
is a direct summand of M (or simply a summand). A module M is called a
CS-module if every closed submodule of M is a summand. The module M is
continuous if it is a CS-module and satisfies condition (C): if A = B < M with
A <® M, then B <® M. A generalization of condition (C») is (GC>) (see [4]):if A is
a submodule of M with A = M, then A <® M. The module M is quasicontinuous
if it is a CS-module and satisfies condition (Cs): if A,B <® M with AnB = 0,
then A& B <® M. It is known that M is quasicontinuous if and only if M =
A® B whenever A and B are complements of each other in M (see [3, Theorem
2.8)).

Camillo et al. [1] have dealt with Ikeda-Nakayama rings that are related to
continuous and quasicontinuous rings.

For a bimodule ¢My, Wisbauer et al. [4] have studied the annihilator con-
dition ls(ANB) = Is(A) + ls(B) for any submodules A and B of Mg, and the
condition S = Is(A) + ls(B) for any submodules A and B of My with AnB = 0.
Consequently, they obtained new characterizations of quasicontinuous mod-
ules. We adapt their ideas here to study a variation of the above annihilator
condition which is connected to CS-modules, and obtain a new characterization
of CS-modules in Section 2.
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In Section 3, we study the bimodules ¢My which satisfy the following con-
dition:

S =15(A)+1s(B) (1.1)

for any two relative complements A and B in Mg. Such modules are clearly
quasicontinuous modules, while there are quasicontinuous modules which do
not satisfy condition (1.1). For example, consider R as a commutative integral
domain with field of quotients Q and let M = Q @ Q. In Lemma 3.2, we give
a necessary and sufficient condition for quasicontinuous modules to satisfy
condition (1.1). In the case of S = End(Mg), every quasicontinuous module
must have condition (1.1). As a generalization of this condition, we introduce
the concept of W*-modules (bimodules Mg for which A = ryls(A) for ev-
ery closed submodule A of Mg). It is clear that any bimodule with condition
(1.1) is a W*-module, while in general the converse is not true. Proposition 3.8
indicates when a W*-module satisfies condition (1.1).

In Section 4, we discuss the equivalence between W*-modules and contin-
uous (quasicontinuous) modules over an arbitrary ring S. Then we draw the
consequences when S is the endomorphism ring of Mg.

2. CS-modules and annihilator conditions. The proofs of the lemmas and
propositions, presented in this section, are adaptations of the arguments in
[4].

LEMMA 2.1. Let Mg be a bimodule. If for every closed submodule A of Mg
there exists a complement B of A in Mg such that S = ls(A) + Ls(B), then My is
a CS-module.

PROOF. Let A be a closed submodule of M. Then by assumption there
exists a complement B of A in My such that S = I[g(A) + lg(B). Write 1g =
u+ v, where u € lg(A) and v € lg(B). It follows that a = va for all a € A,
b=ubforallb e B,and vB = uA =0. Thus B < r; (V) € vy (v?) and vy (v2) N
A = 0. Since B is a complement of A in Mg, we have B = vy (v) = ny(v2).
Similarly, A = vy (u) = 7y (u?). Now we show that (vu)M = 0. Let vum =
a+ b, where m € M, a € A, and b € B. Noting that vu = uv, we have that
(v2u?)m = (vu)(a+b) = 0. Hence u’m € ry (v?) = vy (v), and this gives that
u?vm = vu’m = 0. Then vim € vy (u?) = ry(u); and thus vum = uvm = 0.
So (vu)M n (A+B) = 0. Since A + B is essential in Mg, (vu)M = 0. So uM <
ry(v) =B and vM < ry(u) = A and hence M = vM+uM = A+B = A®B.
Therefore A is a summand of Mg. O

REMARK 2.2. The converse of Lemma 2.1 is not true. For example, there
are torsion-free CS-modules over commutative integral domains, which do not
satisfy the given condition in Lemma 2.1.

The next lemma follows from [4, Lemma 3].
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LEMMA 2.3. Let sMy be a bimodule, where sM is faithful, and let Mr = A®B.
If the projection f of M onto A along B is given by f(m) = sm for some s € S,
and allm € M, then S = lg(A) +lg(B).

For any submodules A and B of M; and any t € S, define &; : A+B — M,
a+b — ta (see [4]).

PROPOSITION 2.4. Let sMy be a bimodule such that sM is faithful. The fol-
lowing are equivalent:

(1) Mg is CS and for any f? = f € End(Mp), there exists s € S such that
f(m) =sm, for allm € Mg;

(2) for every closed submodule A of Mg, there exists a complement B of A in
My such that S = lg(A) +ls(B);

(3) for every closed submodule A of Mg, there exists a complement B of A in
My such that S = ls(A) @ lg(B);

(4) for every closed submodule A of Mg, there exists a complement B of A in
My such that for every t € S, the diagram

0——A+B——>M
atl (2.1)
M

can be extended by A(s), for some s € S.

PROOF. (1)=(2). Let A be a closed submodule of Mg. Since My is a CS-
module, there exists f2 = f € End(Mg) such that A = fM. By (1), there exists
s € S such that f(m) = sm, for all m € Mg. Hence (s> —s)M = (f?—f)M = 0.
Since M is faithful, it follows that s is an idempotent in S. Now we have

ls(A) =ls(fM) =1ls(sM) = ls(s) =S(1-5). (2.2)

Similarly, ls(B) = Sg, where B =: (1— f)M. Thus S = I5(A) + ls(B).

(2)=(1). It is clear by Lemma 2.1 that My is CS. Now let f2 = f € End(Mg),
and denote A = f(M). By (2), there exists a complement B of A in My such
that S = Ig(A) + [s(B). The argument of the proof of Lemma 2.1 shows that
M = Ao B. Let 1t be the projection of M onto A along B. Then

ls(A) =lg(mTM) = {s e S:sT =0} (2.3)
(by considering s the homomorphism given by left multiplication by s) and

Is(B) =ls((1—mm)M) = {s € S:s(1—-m) = 0}. (2.4)
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Let 1 =5"+5s,where s’ € lg(A) and s € lg(B). Thus s'mt =0 and s(1 —1) = 0.
It follows that 0 = s(1—1) = (1 —s')(1 — 1) = 1 — 11 — §’. Therefore f(m) =
w(m) = sm for all m € M.

(2)=(3). From the argument in the proof of Lemma 2.1, we have M = A® B.
Since ¢M is faithful, we have 0 = l¢(M) = ls(A+B) = ls(A)hlg(B) and hence
S=1s(A)@ls(B).

(3)=(4). Let A be a closed submodule of M. By (3), there exists a complement
B of A such that S = lg(A) ® Ig(B). Write t = u + v, where u € lg(A) and
velg(B). Then x;(a+b) =ta=(u+v)<a=va=v(a+b)=A)a+b).

(4)=(2). Let A be a closed submodule of Mg. By (4), there exists a complement
B of A in My satisfying diagram (2.1). By (4), there exists s € S such that A(s)
extends «;. Thus, for all a € A and b € B, ta = «;(a+b) = A(s)(a+ b) =
s(a + b). It follows that (1 —s)a+ (-s)b = 0, for all a € A and b € B. So
1-s5sels(A) and —s € Ig(B) and hence 1 = (1 —5) — (=s) € ls(A) + l5(B).
Therefore S = Is(A) +ls(B). ]

COROLLARY 2.5. The following are equivalent for a bimodule sMg with S =
End(Mg):

(1) Mg is a CS-module;

(2) for every closed submodule A of Mg, there exists a complement B of A in
Mpg such that S = 1ls(A) +ls(B);

(3) for every closed submodule A of Mg, there exists a complement B of A in
My such that S = ls(A)®lg(B);

(4) for every closed submodule A of My, there exists a complement B of A
in My such that for every t € S, diagram (2.1) can be extended by some
g:M— M.

PROPOSITION 2.6. Let S be the center of End(Mg). The following are equiv-
alent:
(1) for every closed submodule A of Mg, there exists a complement B of A in
My such that S = 1g(A) +1ls(B);
(2) Mg is CS and every idempotent of End(Mpg) is central;
(3) Mg is CS and every closed submodule of My is fully invariant.

PROOF. (1)<(2) by Proposition 2.4.

(2)=(3). Let A be a closed submodule of M. By CS, A is a direct summand of
Mpg. Then A = f(M) for some f2 = f € End(Mg). For any g € Endg (M), since
fis central by (2), g(A) = g(f(M)) = f(g(M)) < f(M) = A. This shows that A
is a fully invariant submodule of M.

(3)=(2).Let f,g € Endg (M) with f? = f. Therefore f (M) is a closed submod-
ule of Mg. By (3), g(f(M)) = f(M) and g((1 - f)(M)) = (1 - f)(M). It follows
that fgf = gf and (1-f)g(1-f) =g - f). Thus, g—gf =gl —-f) =
A-Hg-fH=g-gf-fag+faf=9-9f-fg+gf=g-fg. This shows
that fg=gf. O
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3. Condition (1.1) and its generalizations. The next lemma is clear.

LEMMA 3.1. The following are equivalent for a bimodule sMg:
(1) S =15(A) +1s(B) for any two relative complements A and B of Mg;
(2) for any submodules A and B of Mg with ANB =0, S =1s(A) +ls(B).

We say that a bimodule ¢My has condition (1.1) if it satisfies one of the
equivalent conditions of Lemma 3.1.
The next lemma follows from [4, Lemma 3].

LEMMA 3.2. Let Mg be a bimodule such that sM is faithful. Then the follow-
ing are equivalent:
(1) M has condition (1.1);
(2) M is quasicontinuous and every idempotent in End(My) is a left multipli-
cation by an element of S.

REMARK 3.3 [4, Theorem 8]. In the case of S = End(Mp), it is clear from
Lemma 3.2 that an R-module M is quasicontinuous if and only if M has condi-
tion (1.1).

PROPOSITION 3.4. Let sMgr be a bimodule which satisfies condition (1.1).
Then A = vy lg(A) for all closed submodules A of Mg.

PROOF. Let A be a closed submodule of My and B a submodule of ryls(A)
such that An B = 0. By Zorn’s lemma, there exists a complement C of A in
My with B < C. By condition (1.1), we have S = Ig(A) + Is(C) < ls(A) + Is(B),
s0 S =Ils(A) +1g(B). Since lg(A) = lgrmyls(A) < ls(B), it follows that S = Lg(B)
and hence B = 0. This shows that A <¢ ¥y lg(A). Since A is a closed submodule
of Mg, we have A = rylg(A). O

A bimodule ¢Mp, is called a W*-module if A =1ls(A) for every closed sub-
module A of Mg. It is clear by Proposition 3.4 that every bimodule ¢Myr with
condition (1.1) is a W*-module. But there are bimodules which are W*-modules
and do not satisfy condition (1.1). For example, let S = R = [f) E], where F is
any field and let M = gRg. It is clear that M is W*-module. But My is not qua-
sicontinuous, and hence M does not satisfy condition (1.1).

LEMMA 3.5. The following are equivalent for a bimodule sMg:
(1) A <ryls(A) for all submodules A of Mg;
(2) ¢Mg is a W*-module.

PROOF. (1)=(2). This implication is obvious.

(2)=(1). Let A be a submodule of My and C a maximal essential extension of
A in Mg. We have by (2) that A <® C = ryls(C). Since ryls(A) < ryls(C), we
have A < ryls(A). O

PROPOSITION 3.6. If My is a W*-module, then vy (T) = 0, or vy (T) is uni-
form for every maximal left ideal T of S.
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PROOF. Let T be amaximal leftideal of S. Since T < lgry (T), we have either
lsvm(T) =T or Lgvy(T) = S. If lgry(T) = S, then vy (T) = 0. If lgry(T) =T,
let N be a nonzero submodule of vy (T). Then T = lsvy(T) € lg(N) € S, and
the maximality of T yields T = ls(N). It follows that 7y (T) = ryls(N). Since
M is W*-module, we have by Lemma 3.5 that N <° vy (T). Therefore vy (T) is
uniform. 0

COROLLARY 3.7. Let sMg be a W*-module, where every maximal left ideal of
S is a left annihilator. Then vy (T) is uniform for every maximal left ideal T of S.

PROOF. Let T be amaximalleftideal of S. From Proposition 3.6, it is enough
to show that vy (T) = 0.Let ¥\ (T) = 0. By assumption, T = lsry(T) = 1s(0) = S,
which contradicts the maximality of T. 0O

PROPOSITION 3.8. The following are equivalent for a bimodule sMg:

(1) sMg is a W*-module and ls(A) + Ls(B) is a left annihilator for any two
relative complements A and B in Mg;

(2) sMpg has condition (1.1).

PROOF. (1)=(2).Let A and B be two relative complements in Mg. Then by (1),
S =15(0) = Is(ANB) = Is(ryls(A) nryls(B)) = lsram(ls(A) +1s(B)) = Is(A) +
ls(B). Therefore M has condition (1.1).

(2)=(1). This implication is obvious. 0

4. The relation between W*-modules and (quasi-) continuous modules.
The following is an immediate consequence of Proposition 3.8.

PROPOSITION 4.1. Let ¢Mr be a bimodule with S = End(Mg). Then the fol-
lowing are equivalent:
(1) sMg is a W*-module and ls(A) + Ls(B) is a left annihilator for any two
relative complements A and B of Mg;
(2) My is quasicontinuous.

PROPOSITION 4.2. Let sMy be a bimodule, where sM is faithful. Then the
following are equivalent:
(1) sMg is a W*-module, lg(A) + ls(B) is an annihilator for any two relative
complements A and B of Mg, and Mg has GC»;
(2) My is a continuous module and every idempotent in End(Mg) is a left
multiplication by an element of S.

PROOF. (1)=(2). We have by Proposition 3.8 that My has condition (1.1).
Therefore, by Lemma 3.2, My is a quasicontinuous module. Let s € End(Mg)
be a monomorphism, with sM <¢ M. By GC; it follows that sM = M. Then by [3,
Lemma 3.14], My is a continuous module. The rest of the proof of (2) follows
from Lemma 3.2.

(2)=(1). This implication is obvious. |
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COROLLARY 4.3. Let sMg be a bimodule with S = End(Mg). Then the follow-
ing are equivalent:
(1) sMg is a W*-module, ls(A) + ls(B) is an annihilator for any two relative
complements A and B of Mg, and My has GC»;
(2) Mgy is a continuous module.
In particular, if My is of finite uniform dimension, then S is semiperfect.

PROOF. It is clear that every monomorphism f € End(Myg) is an isomor-
phism (due to GC, and M of finite uniform dimension). Hence, M satisfies the
assumptions in Camps and Dicks [2, Theorem 5], and so End(My) is semilocal.
Therefore by using [3, Proposition 3.5 and Lemma 3.7], idempotents of S/J(S)
lift to idempotents of S, and thus S is semiperfect. O

LEMMA 4.4. Let sMg be a bimodule such that every finitely generated left
ideal of S is a left annihilator of a subset of Mg, and every closed submodule of
Mg is a right annihilator of a finite subset of S. Then M has condition (1.1).

PROOF. Let A; and A, be complements of each other in Mi. Then by as-
sumption, we have A; = vy (Y;) for some finite subsets Y; of S. Again by as-
sumption, SY; = ls(K;) for some subsets K; in Mg, where i = 1,2. Now S =
lg(A] NAy) = lS(TM(Yl)ﬂTM(Yz)) = lSTM(Syl +SY,) =SY1+SY> (due to the as-
sumption and since SY; + SY5 is finitely generated). Hence S = Ig(K;) + Ls(K>) =
lSVMlS (K1) + lg?’Mlg (Kz) = lSTM(Y1) + lS’VM(Yz) = lg (Al) + ls (Ap). Therefore M
satisfies condition (1.1). 0

LEMMA 4.5. Let sMy be a bimodule and let every idempotent in End(Mg) be
a left multiplication by an element of S. If My is a CS-module, then every closed
submodule of My is a right annihilator of a finite subset of S.

PROOF. Let A be a closed submodule of M. Then by CS, there exists f2 =
f eEnd(Mg) suchthat A=ry(1-f)={meM:(1-s)m=0}=ry(l-s),
where (1-5s) € S. 0

The following corollary is an immediate consequence of Lemmas 4.4 and 4.5.

COROLLARY 4.6. Let sMr be a bimodule, where S = End(Mg). Let every
finitely generated left ideal of S be a left annihilator of a subset of M. Then
the following are equivalent:

(1) every closed submodule of M is a right annihilator of a finite subset of S;
(2) M is a CS-module.

THEOREM 4.7. Let Mg be a bimodule, where S = End(Mg). Let every finitely
generated left ideal of S be a left annihilator of a subset of M. Then the following
are equivalent:

(1) M is a CS-module;
(2) M is continuous.
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PROOF. By Lemmas 4.4 and 4.5, we have that M has condition (1.1) . By
Remark 3.3, M is quasicontinuous. To show that M is continuous, by [3, Lemma
3.14], it is enough to show that every essential monomorphism s € S is an
isomorphism. Let s € S be a monomorphism, with sM <¢ M. By assumption,
S¢ = lg(X) for some subset X of M. It follows that X = 0 and hence Sy = s.
Then s is a split monomorphism, and therefore sM = M. O
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