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ON UNSTEADY TWO-PHASE FLUID FLOW DUE TO
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We examine the unsteady flow of a two-phase fluid generated by the nontorsional
oscillations of a disk when the disk and the fluid at infinity rotate noncoaxially
with the same angular velocity. The solutions are obtained for both the fluid and
the particle velocities in closed form. It is found that the solutions remain valid
for all values of the frequency of oscillations of the disk including the resonant
frequency, which is equal to the angular velocity of rotation. But, in absence of
particles, only in the case of resonance no oscillatory solution is possible, which is
similar to that of solid-body rotation as pointed out by Thornley (1968). It is also
shown that, unlike the case of single-disk configuration, no unique solution exists
in a double-disk configuration, a result which is the reverse to that of solid-body
rotation. Finally, the results are presented graphically to determine the quantita-
tive response of the particle on the flow.
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1. Introduction. The dynamics of rotating fluids is particularly important

in the analysis of flow phenomena associated with the atmospheric, oceanic,

geophysical, and astrophysical problems. Thornley [3] investigated the flow

generated in a semi-infinite expanse of viscous fluid bounded by the infinite

rigid disk in the presence of the particles in the fluid. However, if the fluid is

clean, no physically meaningful resonant solutions are possible in the existing

flow configuration, which is an event similar to that of Thornley [3]. Moreover,

it is found that, contrary to the case of single-disk geometry, infinite number of

solutions exist for the flow confined between two noncoaxially rotating parallel

disks. Finally, the results are evaluated quantitatively with a view to examine

the effect of particles on the flow.

2. Formulation of the problem. We consider the flow of a two-phase fluid

due to an oscillating disk in the xy-plane rotating about the z-axis normal

to the disk with an angular velocity Ω in Cartesian coordinate system. The

particulate fluid at z = ∞ rotates, with the same angular velocity, about an

axis parallel to the z-axis passing through the point (x1,y1). For this type of

motion the velocity fields for the fluid and the particles may be taken in the

form
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u1 =−Ω
[
y−g1(z,t)

]
, u2 =Ω

[
x−f1(z,t)

]
, u3 = 0,

v1 =−Ω
[
y−g2(z,t)

]
, v2 =Ω

[
x−f2(z,t)

]
, v3 = 0,

(2.1)

where �u = (u1,u2,u3), and �v = (v1,v2,v3) represent, respectively, the fluid

and the particle velocities.

Following Saffman [2], the unsteady motion of a two-phase fluid with uni-

formly distributed particles, occupying the semi-infinite space z > 0, is gov-

erned by the equations

∂u1

∂t
+u1

∂u1

∂x
+u2

∂u1

∂y
=− 1

ρ
∂p
∂x

+ν
(
∂2u1

∂x2
+ ∂

2u1

∂y2
+ ∂

2u1

∂z2

)
+ k
τ
(
v1−u1

)
,

∂u2

∂t
+u1

∂u2

∂x
+u2

∂u2

∂y
=− 1

ρ
∂p
∂y

+ν
(
∂2u2

∂x2
+ ∂

2u2

∂y2
+ ∂

2u2

∂z2

)
+ k
τ
(
v2−u2

)
,

∂p
∂z

= 0,

∂v1

∂t
+v1

∂v1

∂x
+v2

∂v1

∂y
= 1
τ
(
u1−v1

)
,

∂v2

∂t
+v1

∂v2

∂x
+v2

∂v2

∂y
= 1
τ
(
u2−v2

)
,

(2.2)

where k and τ are, respectively, the concentration and the relaxation time of

the particles in the fluid.

Substituting (2.1) in (2.2), we get

Ω
{
ν
∂2g1

∂z2
− ∂g1

∂t
−Ωf1+ kτ

(
g2−g1

)}= 1
ρ
∂p
∂x

−Ω2x, (2.3)

Ω
{
ν
∂2f1

∂z2
− ∂f1

∂t
+Ωg1+ kτ

(
f2−f1

)}=− 1
ρ
∂p
∂y

+Ω2y, (2.4)

∂g2

∂t
+Ωf2 =Ωx+ 1

τ
(
g1−g2

)
, (2.5)

∂f2

∂t
−Ωg2 =Ωy+ 1

τ
(
f1−f2

)
, (2.6)

∂p
∂z

= 0. (2.7)

From (2.7), it follows that p is independent of z. Hence, on eliminating p from

(2.3) and (2.4), we get

ν
∂3w1

∂z3
− ∂

2w1

∂z∂t
−iΩ∂w1

∂z
+ k
τ

(
∂w2

∂z
− ∂w1

∂z

)
= 0 (2.8)

with w1 = f1+ig1 and w2 = f2+ig2.

Similarly, from (2.5) and (2.6), we get

∂3w2

∂z∂t
−iΩ∂w2

∂z
= 1
τ

(
∂w1

∂z
− ∂w2

∂z

)
. (2.9)
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On eliminating w2 from (2.8) with the help of (2.9), we have

ν
∂4w1

∂t∂z3
−ν

(
iΩ− 1

τ

)
∂3w1

∂z3
− ∂3w1

∂z∂t2
− 1+k

τ
∂2w1

∂t∂z
−Ω

{
Ω+ i(1−k)

τ

}
∂w1

∂z
= 0.

(2.10)

Equation (2.10) is to be solved with the boundary conditions

w1 = aeint+be− int at z = 0, (2.11a)

w1 = x1+iy1 at z =∞ (2.11b)

along with the assumption that the solutions are bounded at infinity.

3. Solution of the problem. In view of the boundary condition (2.11a), we

suggest the solution of (2.10) as

W1 = F0(z)+aF1(z)eint+bF2(t)e− int. (3.1)

Substituting (3.1) in (2.10) and utilizing the boundary conditions, the fluid

velocity for the case σ (=n/Ω) < 1 can be obtained as

w1(z,t)=
(
x1+iy1

)(
1−e−m0z

)+aeint−m1z+be− int−m2z, (3.2)

where

mjz = ξj
(
Aj+iBj

)
,

Aj =
{(
P2
j +1

)1/2+Pj
}1/2

, Bj =
{(
P2
j +1

)1/2−Pj
}1/2

,

ξj = Cjξ, j = 0,1,2,

ξ =
(
Ω
2ν

)1/2
z, C0 =

(
1−k+Ω2τ2

1+Ω2τ2

)1/2

,

C1 =
(

1+σ −k(1−σ)+Ω2τ2(1+σ)(1−σ)2
1+Ω2τ2(1−σ)2

)1/2

,

C2 =
(

1−σ −k(1+σ)+Ω2τ2(1−σ)(1+σ)2
1+Ω2τ2(1+σ)2

)1/2

,

P0 = Ωkτ
1−k+Ω2τ2

, P1 = Ωkτ(1−σ)2
1+σ −k(1−σ)+Ω2τ2(1+σ)(1−σ)2 ,

P2 = Ωkτ(1+σ)2
1−σ −k(1+σ)+Ω2τ2(1−σ)(1+σ)2 .

(3.3)
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Equating the real and imaginary parts of (3.2) by taking a = a1+ ia2 and b =
b1+ib2, we get

f1 = x1
(
1−e−A0ξ0 cosB0ξ0

)−y1e−A0ξ0 sinB0ξ0

+e−A1ξ1
{
a1 cos

(
B1ξ1−nt

)+a2 sin
(
B1ξ1−nt

)}
+e−A2ξ2

{
b1 cos

(
B2ξ2+nt

)+b2 sin
(
B2ξ2+nt

)}
,

g1 = x1e−A0ξ0 sinB0ξ0+y1
(
1−e−A0ξ0 cosB0ξ0

)
+e−A1ξ1

{
a2 cos

(
B1ξ1−nt

)−a1 sin
(
B1ξ1−nt

)}
+e−A2ξ2

{
b2 cos

(
B2ξ2+nt

)−b1 sin
(
B2ξ2+nt

)}
.

(3.4)

In particular, where k = 0, the fluid velocity corresponding to clean fluid mo-

tion for σ < 1 is given by

f1 = x1
(
1−e−ξ cosξ

)−y1e−ξ sinξ

+e−ξ
√

1+σ
{
a1 cos

(
ξ
√

1+σ −nt
)
+a2 sin

(
ξ
√

1+σ −nt
)}

+e−ξ
√

1−σ
{
b1 cos

(
ξ
√

1−σ +nt
)
+b2 sin

(
ξ
√

1−σ +nt
)}
,

g1 = x1e−ξ sinξ+y1
(
1−e−ξ cosξ

)
+e−ξ

√
1+σ

{
a2 cos

(
ξ
√

1+σ −nt
)
−a1 sin

(
ξ
√

1+σ −nt
)}

+e−ξ
√

1−σ
{
b2 cos

(
ξ
√

1−σ +nt
)
−b1 sin

(
ξ
√

1−σ +nt
)}
.

(3.5)

The distinctive feature of the solutions (3.4) is that the flow essentially con-

sists of three distinct boundary layers on the disk. The thickness of these layers

are of orders

δr =
(

2ν
Ω

)1/2(
CrAr

)−1, r = 0,1,2, (3.6)

with δ1 < δ0 < δ2. Clearly, the thickness of the layers is modified by the pres-

ence of particles in the fluid. In fact, it decreases with increase in particle

concentration (k). On the other hand, in the absence of particles (k = 0), the

above three layers modify themselves to an Ekman layer of thickness of the

order (2ν/Ω)1/2 surrounded by two more Stokes-Ekman layers of thickness of

the orders (2ν/(Ω−n))1/2 and (2ν/(Ω+n))1/2. These three layers combine

into a single Ekman layer of thickness of the order (2ν/Ω)1/2 when n= 0.
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The fluid velocity for the case σ = (n/Ω) > 1 is given by

f1 = x1
(
1−e−α0ξ0 cosβ0ξ0

)−y1e−α0ξ0 sinβ0ξ0

+e−α1ξ1
{
a1 cos

(
β1ξ1−nt

)+a2 sin
(
β1ξ1−nt

)}
+e−α2ξ2

{
b1 cos

(
β2ξ2+nt

)+b2 sin
(
β2ξ2+nt

)}
,

g1 =y1
(
1−e−α0ξ0 cosβ0ξ0

)+x1e−α0ξ0 sinβ0ξ0

+e−α1ξ1
{
a2 cos

(
β1ξ1−nt

)−a1 sin
(
β1ξ1−nt

)}
+e−α2ξ2

{
b2 cos

(
β2ξ2+nt

)−b1 sin
(
β2ξ2+nt

)}
,

(3.7)

where αj,βj = {(q2
j +1)±qj}1/2, ξj =Djξ, ξ = (Ω/2ν)1/2z, j = 0,1,2,

D0=
(

1−k+Ω2τ2

1+Ω2τ2

)1/2

, D1=
(

1+σ +k(σ −1)+Ω2ξ2(σ +1)(σ −1)2

1+Ω2τ2(σ −1)2

)1/2

,

D2 =
(
σ −1+k(σ +1)+Ω2τ2(σ −1)(σ +1)2

1+Ω2τ2(σ +1)2

)1/2

,

q0 = Ωτk
1−k+Ω2τ2

, q1 = Ωτk(σ −1)2

1+σ +k(σ −1)+Ω2τ2(σ +1)(σ −1)2
,

q2 = Ωτk(σ +1)2

σ −1+k(σ +1)+Ω2τ2(σ −1)(σ +1)2
.

(3.8)

When the natural frequency of rotation is equal to the forced frequency n,

that is, for σ = 1, the system resonates and in this case the solution is given by

f1 = x1
(
1−e−A0ξ0 cosB0ξ0

)−y1e−A0ξ0 sinB0ξ0

+e−
√

2ξ{a1 cos
(√

2ξ−nt)+a2 sin
(√

2ξ−nt)}
+e−A∗2 ξ∗2 {b1 cos

(
B∗2 ξ

∗
2 +nt

)+b2 sin
(
B∗2 ξ

∗
2 +nt

)}
,

g1 = x1e−A0ξ0 sinB0ξ+y1
(
1−e−A0ξ0 cosB0ξ0

)
+e−

√
2ξ{a2 cos

(√
2ξ−nt)−a1 sin

(√
2ξ−nt)}

+e−A∗2 ξ∗2 {b2 cos
(
B∗2 ξ

∗
2 +nt

)−b1 sin
(
B∗2 ξ

∗
2 +nt

)}
,

(3.9)

where

ξ∗2 = C∗2 ξ, C∗2 =
(

2k
1+4Ω2τ2

)1/2
,

A∗2 ,B
∗
2 =

{(
1+4Ω2τ2)1/2−2Ωτ

}1/2
.

(3.10)

It is worth noting that, when k ≠ 0, the results (3.9) provide a meaningful

resonant solution satisfying all boundary conditions. But when k= 0, the last

terms of (3.9) do not satisfy the boundary condition at infinity. Accordingly,

in the case of clean viscous fluids, no oscillatory solution exists at a resonant
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frequency n=Ω. This phenomenon is similar to that pointed out by Thornley

[3] in the case of solid-body rotation.

To determine the particle velocity satisfying (2.9), we assume that

W2(z,t)=G0(z)+aG1(z)eint+bG2(z)e− int, (3.11)

with

W2(z,t)= aeint+be− int at z = 0. (3.12)

Substituting (3.1) and (3.11) in (2.9) and utilizing the boundary conditions,

the particle velocity is given by

W2 = F0

1−iΩτ +a
{
F1−i(Ωτ−nτ)
1−i(Ωτ−nτ)

}
eint+b

{
F2−i(Ωτ+nτ)
1−i(Ωτ+nτ)

}
e− int, n < σ

= F0

1−iΩτ +aF1eint+be− int, n= σ

= F0

1−iΩτ +a
{
F1+i(nτ−Ωτ)
1+i(nτ−Ωτ)

}
eint+b

{
F2−i(nτ+Ωτ)
1−i(nτ+Ωτ)

}
e− int, n > σ.

(3.13)

It follows that the particles at infinity are unable to follow the fluid motion

due to the presence of Ω and n. But when Ω and n equal zero, the particle and

the fluid move in unison and we have W1 =W2.

We next turn our attention to the case of another disk introduced at z = d
which rotates with the angular velocity Ω about an axis parallel to the z-axis

and passing through the point (x1,y1) so that the boundary condition of

F0(z) = ∞ is replaced by W = x1 + iy1 at z = d. We focus our attention on

the solution of F0(z) only because the essential nature of F1(z) and F2(z), for

the unsteady case in (3.1), is similar to F0(z). The solution for F0(z) satisfying

(2.10), (2.11a), and the boundary condition at z = d is given by

F0(z)= C
(

1− sinhm0(d−z)+sinhm0z
sinhm0d

)
+(x1+iy1

) sinhm0z
sinhm0d

, (3.14)

where

m0 =
((
Ω
ν

)
Ωτ+i(1−k)

1−iΩτ
)1/2

. (3.15)

The result (3.14) contains an arbitrary constant C which remains undeter-

mined under the stated boundary conditions, giving a possibility of infinite

number of solutions. Similarly, the solutions of F1 and F2 also contain arbitrary

constants each is undetermined. Thus, instead of getting a unique solution as

in the case of single-disk configuration, the double-disk configuration provides

an infinite number of solutions.
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Finally, the fluid velocity near z = 0, corresponding to the case σ < 1, is

obtained from (3.4) as

f1 ∼ x1A0ξ0−y1B0ξ0

+{a1
(
1−A1ξ1

)+b1
(
1−A2ξ2

)+a2B1ξ1+b2B2ξ2
}

cosnt

+{b2
(
1−A2ξ2

)−a2
(
1−A1ξ1

)+a1B1ξ1−b1B2ξ2
}

sinnt,

g1 ∼ x1A0ξ0−y1B0ξ0

+{a2
(
1−A1ξ1

)+b2
(
1−A2ξ2

)−a1B1ξ1−b1B2ξ2
}

cosnt

+{a1
(
1−A1ξ1

)−b1
(
1−A2ξ2

)+a2B1ξ1−b2B2ξ2
}

sinnt.

(3.16)

The above results (3.16) indicate that the velocity vector near the disk is

inclined at an angle tan−1(−f/g) to the disk. For a special case in which a1 =
a2 = b1 = b2 =y1 = 1, x1 = 0, and nt =π/2, we have

f1 ∼−B0ξ0+
(
A1+B1

)
ξ1−

(
A2+B2

)
ξ2,

g1 ∼ B0ξ0−
(
A1−B1

)
ξ1+

(
A2−B2

)
ξ2

(3.17)

which, when k→ 0, gives

f1 ∼ 2
(
ξ1−ξ2

)−ξ0,

g1 ∼ ξ0
(3.18)

so that the velocity vector is inclined at an angle tan−1(1−2N), where

N = (1+σ)1/2−(1−σ)1/2. (3.19)

Thus, the angle of inclination of the velocity vector near the disk not only

depends on the particles but also on σ =n/Ω. However, when both k→ 0 and

n→ 0, the velocity vector is inclined at an angle 45◦ to the disk.

4. Conclusion. The analysis given above clearly indicates that in a noncoax-

ial system of rotation the resonance occurs at a frequency equal to angular

velocity of rotation of the disk which is not the case in a coaxial system of

solid-body rotation where the resonance occurs at a frequency equal to twice

the angular velocity of rotation of the disk as pointed out by Thornley [3].

Secondly, the difficulty in obtaining the resonant solution in the case of clean

fluid is resolved automatically in presence of the particles in the fluid.

Finally, the infinite number of solutions existing for the flow in the geometry

of two parallel disks given by Berker [1] reduce to a single unique solution for

the case of a single disk.

The quantitative evaluation of the results for f1 and g1 for various values

of flow parameters is presented in Figures 4.1, 4.2, and 4.3.
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Figure 4.1. Variations of f1 and g1 for different values of particle
concentration k and for fixed values of nt and Ωτ when σ < 1.
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Figure 4.2. Variations of f1 and g1 for different values of particle
concentration k in the resonant case and for fixed values of nt and
Ωτ when σ = 1.
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Figure 4.3. Variations of f1 and g1 for different values of particle
concentration k and for fixed values of nt and Ωτ when σ > 1.
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