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The concepts of Bernoulli numbers Bn, Bernoulli polynomials Bn(x), and the gen-
eralized Bernoulli numbers Bn(a,b) are generalized to the one Bn(x;a,b,c) which
is called the generalized Bernoulli polynomials depending on three positive real
parameters. Numerous properties of these polynomials and some relationships
between Bn, Bn(x), Bn(a,b), and Bn(x;a,b,c) are established.
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1. Introduction. It is well known that Bernoulli’s numbers and polynomials

play important roles in mathematics. They are main objects in the theory of

special functions [5]. Their definitions can be given as follows.

Definition 1.1. The numbers Bn, 0 ≤ n ≤ ∞, are called Bernoulli num-

bers if

φ(t)= t
et−1

=
∞∑
n=0

Bn
n!
tn, |t|< 2π. (1.1)

Definition 1.2. The functions Bn(x), 0≤n≤∞, are called Bernoulli poly-

nomials if they satisfy

φ(x;t)= text

et−1
=

∞∑
n=0

Bn(x)
n!

tn, |t|< 2π, x ∈R. (1.2)

The usual definition of higher-order Bernoulli polynomials is

tσ eut(
et−1

)σ =
∞∑
n=0

Bσn (u)
n!

tn, |t|< 2π. (1.3)

In [2, 4] the second and third authors generalized the concept of Bernoulli

numbers as follows.
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Definition 1.3. Let a,b > 0 and a �= b. The generalized Bernoulli numbers

Bn(a,b) are defined by

φ(t;a,b)= t
bt−at =

∞∑
n=0

Bn(a,b)
n!

tn, |t|< 2π
| lnb− lna| . (1.4)

Among other things, some basic properties and relationships between Bn,

Bn(x), and Bn(a,b) were also studied in [2, 4] initially and originally.

In this note, we first give definitions of the generalized Bernoulli polynomi-

als, which generalize the concepts stated above, and then research their basic

properties and relationships with Bernoulli numbers Bn, Bernoulli polynomials

Bn(x), and the generalized Bernoulli numbers Bn(a,b).

2. Definitions and properties of generalized Bernoulli polynomials. It is

easy to see that the following definition is a natural and essential generalization

of the concepts of Bernoulli numbers Bn, Bernoulli polynomials Bn(x), and the

generalized Bernoulli numbers Bn(a,b).

Definition 2.1. Let a,b,c > 0 and a �= b. The generalized Bernoulli poly-

nomials Bn(x;a,b,c) for nonnegative integer n are defined by

φ(x;t;a,b,c)= tcxt

bt−at =
∞∑
n=0

Bn(x;a,b,c)
n!

tn, |t|< 2π
| lnb− lna| , x ∈R.

(2.1)

The generalized Bernoulli polynomials Bn(x;a,b,c) have the following prop-

erties which are stated as theorems below.

Theorem 2.2. Let a,b,c > 0 and a �= b. For x ∈R and n≥ 0,

Bn(x;1,e,e)= Bn(x), Bn(0;a,b,c)= Bn(a,b),
Bn(0;1,e,e)= Bn, Bn(x;a,b,1)= Bn(a,b), Bn(x;1,e,1)= Bn,

(2.2)

Bn(x;a,b,c)=
n∑
k=0

(
n
k

)
[lnc]n−kBk(a,b)xx−k, (2.3)

Bn(x;a,b,c)=
n∑
k=0

(
n
k

)
[lnc]n−k[lnb− lna]k−1Bk

(
lna

lna− lnb

)
xx−k, (2.4)

Bn(x;a,b,c)=
n∑
k=0

k∑
j=0

(−1)k−j
(
n
k

)(
k
j

)
[lnc]n−k[lna]k−j

[
ln
b
a

]j−1

Bjxx−k.

(2.5)
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Proof. Applying Definition 1.3 to the term t/(bt−at) and expanding the

exponential function cxt at t = 0 yields

tcxt

bt−at =

 ∞∑
k=0

Bk(a,b)
k!

tk



 ∞∑
i=0

xi(lnc)i

i!
ti



=
∞∑
k=0

k∑
i=0

(lnc)k−i

i!(k−i)!Bi(a,b)x
k−itk

=
∞∑
n=0


 n∑
k=0

(
n
k

)
(lnc)n−kBk(a,b)xn−k


 tn
n!
.

(2.6)

Combining (2.6) and (2.1) and equating their coefficients of tn produces for-

mula (2.3).

The following two formulae were provided in [2, 4]:

Bn(a,b)= (lnb− lna)n−1Bn
(

lna
lna− lnb

)
, (2.7)

Bn(a,b)=
n∑
i=0

(−1)n−i(lnb− lna)i−1(lna)n−i
(
n
i

)
Bi. (2.8)

Substituting (2.7) and (2.8) into (2.3) leads to (2.4) and (2.5).

The formulae in (2.2) are obvious.

Now we give some results about derivatives and integrals of the generalized

Bernoulli polynomials Bn(x;a,b,c) as follows.

Theorem 2.3. Let a,b,c > 0, a �= b, n≥ 0, and x ∈R. For any nonnegative

integer � and real numbers α and β,

∂�Bn(x;a,b,c)
∂x�

= n!
(n−�)! (lnc)

�Bn−�(x;a,b,c), (2.9)

∫ β
α
Bn(t;a,b,c)dt = 1

(n+1) lnc
[
Bn+1(β;a,b,c)−Bn+1(α;a,b,c)

]
, (2.10)

where B0(x;a,b,c)= 1/(lnb− lna).

Proof. Formula (2.9) follows from standard arguments and induction.

Integrating on both sides of (2.9) with respect to variable x for � = 1 gives

formula (2.10).

Theorem 2.4. Let a,b,c > 0, a �= b, n≥ 0, and x ∈R. Then

Bn(x+1;a,b,c)=
n∑
k=0

(
n
k

)
(lnc)n−kBk(x;a,b,c), (2.11)

Bn(x+1;a,b,c)= Bn
(
x;
a
c
,
b
c
,c
)
, (2.12)
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and, for m≥ 2,

Bm(x+1;a,b,c)

= Bm(x;a,b,c)+m(lnc)m−1xm−1

+
m−1∑
k=0

(
m
k

)[
(lna)m−k−(lnb)m−k+(lnc)m−k]Bk(x;a,b,c).

(2.13)

Proof. By the definition of the generalized Bernoulli polynomials, we have

tc(x+1)t

bt−at =
∞∑
n=0

Bn(x+1;a,b,c)
n!

tn, (2.14)

tc(x+1)t

bt−at =
tcxt

bt−at ·c
t

=

 ∞∑
n=0

Bn(x;a,b,c)
n!

tn



 ∞∑
k=0

(lnc)k

k!
tk



=
∞∑
n=0

∑n
k=0

(
n
k

)
(lnc)n−kBk(x;a,b,c)

n!
tn.

(2.15)

Combining (2.14) and (2.15) and equating their coefficients of tn leads to for-

mula (2.11).

Similarly, since

tc(x+1)t

bt−at =
tcxt

(b/c)t−(a/c)t =
∞∑
n=0

Bn(x;a/c,b/c,c)
n!

tn, (2.16)

equating the coefficients of tn in (2.14) and (2.16) leads to formula (2.12).

Straightforward computation gives

tc(x+1)t

bt−at = tc
xt+ tc

xt(at−bt+ct)
bt−at

=
∞∑
n=0

(lnc)nxn

n!
tn+1

+

 ∞∑
n=0

Bn(x;a,b,c)
n!

tn



 ∞∑
�=0

[
(lna)�−(lnb)�+(lnc)�]

�!
t�



=
∞∑
n=0

(lnc)nxn

n!
tn+1

+
∞∑
n=0


 n∑
�=0

(
n
�

)[
(lna)n−�−(lnb)n−�+(lnc)n−�]B�(x;a,b,c)


 tn
n!
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= B0(x;a,b,c)+[1+B1(x;a,b,c)+B0(x;a,b,c)(lna− lnb+ lnc)
]
t

+
∞∑
n=2

[
n(lnc)n−1xn−1+Bn(x;a,b,c)

] tn
n!

+
∞∑
n=2



n−1∑
�=0

(
n
�

)[
(lna)n−�−(lnb)n−�+(lnc)n−�]B�(x;a,b,c)


 t

n

n!
.

(2.17)

Equating (2.1) and (2.17) yields (2.13).

Corollary 2.5. For n≥ 1, b > 0, and x ∈R,

Bn(x+1;1,b,b)= Bn(x;1,b,b)+n(lnb)n−1xn−1. (2.18)

Remark 2.6. Taking b = e in (2.18), the following well-known result is de-

duced:

Bn(x+1)= Bn(x)+nxn−1, n≥ 1. (2.19)

Similarly, from (2.9), it follows that

B′i(t)= iBi−1(t), B0(t)= 1. (2.20)

Actually, the Bernoulli polynomials Bi(t), i ∈ N, are uniquely determined by

formulae (2.19) and (2.20), see [1, identities 23.1.5 and 23.1.6] or [5].

Theorem 2.7. Let a,b,c > 0, a �= b, n≥ 0, and x ∈R. Then

Bn(1−x;a,b,c)= (−1)nBn
(
x;
c
b
,
c
a
,c
)

= Bn
(
−x;

a
c
,
b
c
,
1
c

)
,

(2.21)

Bn(x+y ;a,b,c)=
n∑
k=0

(
n
k

)(
lnc

)n−kBk(x;a,b,c)yn−k

=
n∑
k=0

(
n
k

)(
lnc

)n−kBk(y ;a,b,c)xn−k.

(2.22)

Proof. From Definition 2.1, it follows that

tc(1−x)t

bt−at =
∞∑
n=0

Bn(1−x;a,b,c)
n!

tn. (2.23)
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Meanwhile, we have

tc(1−x)t

bt−at =
tc−xt

(b/c)t−(a/c)t =
∞∑
n=0

Bn(−x;a/c,b/c,c)
n!

tn,

tc(1−x)t

bt−at =
−tcx(−t)

(c/a)−t−(c/b)−t =
∞∑
n=0

(−1)n
Bn(x;c/b,c/a,c)

n!
tn.

(2.24)

Therefore, formula (2.21) follows from equating series expansions in (2.23)

and (2.24).

Similarly, we have

tc(x+y)t

bt−at =
∞∑
n=0

Bn(x+y ;a,b,c)
n!

tn,

tc(x+y)t

bt−at =
tcxt

bt−at ·c
yt

=

 ∞∑
n=0

Bn(x;a,b,c)
n!

tn



 ∞∑
i=0

yi(lnc)i

i!
ti



=
∞∑
n=0


 n∑
k=0

(
n
k

)
yn−k(lnc)n−kBk(x;a,b,c)


 tn
n!
,

tc(x+y)t

bt−at =
tcyt

bt−at ·c
xt

=
∞∑
n=0


 n∑
k=0

(
n
k

)
xn−k(lnc)n−kBk(y ;a,b,c)


 tn
n!
.

(2.25)

Hence, formula (2.22) follows from equating series expansions in (2.25). The

proof is complete.

Theorem 2.8. Letm andn be natural numbers. Then, for any positive num-

ber b, the following identity holds:

m∑
j=1

jn = 1
(n+1)(lnb)n

[
Bn+1(m+1;1,b,b)−Bn+1(0;1,b,b)

]

= 1
(n+1)(lnb)n

[
Bn+1(m+1;1,b,b)−Bn+1(1;1,b,b)

]
.

(2.26)

Proof. Rewriting formula (2.18) yields

xn−1 = 1
n(lnb)n−1

[
Bn(x+1;1,b,b)−Bn(x;1,b,b)

]
, (2.27)
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which implies

jn = 1
(n+1)(lnb)n

[
Bn+1(j+1;1,b,b)−Bn+1(j;1,b,b)

]
. (2.28)

Summing up on both sides of (2.28) from 0 to m or from 1 to m with respect

to j easily leads to formula (2.26).

Remark 2.9. The calculation of values of
∑m
j=1 jn is an interesting problem

that has been investigated in many works, see, for example, [3].

Remark 2.10. It follows from the identities (2.3) and (2.7), combined with

[1, identity 23.1.7], that

Bn(x;a,b,c)= (lnb− lna)n−1Bn
(

lna−x lnc
lna− lnb

)
. (2.29)

Remark 2.11. At last, it is pointed out that the Bernoulli and Euler numbers

and the Bernoulli and Euler polynomials can be further generalized to more

general results in this manner. These conclusions will be published in some

subsequent papers.
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