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The unsteady two-dimensional flow of a viscoelastic second-grade fluid impinging
on an infinite plate is considered. The plate is making harmonic oscillations in its
own plane. A finite difference technique is employed and solutions for small and
large frequencies of the oscillations are obtained.

2000 Mathematics Subject Classification: 65L06, 65L12, 76D05.

1. Introduction. In the past two decades, the importance of non-Newtonian

viscoelastic liquids have become evident due to their occurrence in industrial

processes. Behaviour of viscoelastic fluids cannot be accurately described by

the Newtonian fluid model. The equations of motion of viscoelastic fluids are

highly nonlinear and one order higher than the Navier-Stokes equations.

The two-dimensional stagnation point flow is an interesting problem in the

history of fluid dynamics and has received considerable attention. Beard and

Walters [2] used boundary-layer equations to study two-dimensional flow near

a stagnation point of a viscoelastic fluid. Dorrepaal et al. [3] investigated the

behavior of a viscoelastic fluid impinging on a flat rigid wall at an arbitrary

angle of incidence. Labropulu et al. [5] studied the oblique flow of a viscoelastic

fluid impinging on a porous wall with suction or blowing.

Unsteady stagnation point flow of a Newtonian fluid has also been studied

extensively. Rott [8] and Glauert [4] have studied the stagnation point flow

of a Newtonian fluid when the plate performs harmonic oscillations in its

own plane. Srivastava [9] has studied the same problem for a non-Newtonian

second-grade fluid. He used the Karman-Pohlhausen method to solve the re-

sulting equations.

This paper considers the unsteady two-dimensional flow of an incompress-

ible viscoelastic second-grade fluid impinging on an infinite flat plate. We as-

sume that the plate is making harmonic oscillations in its own plane. Series

method is employed to evaluate the solution for small and large frequencies

of the oscillations. The resulting differential equations are solved numerically

using a finite difference method developed by Ariel [1].

2. Flow equations. The flow of a viscous incompressible non-Newtonian

second-grade fluid, neglecting thermal effects and body forces, is governed
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by

divV∼= 0, ρV̇∼= divT≈ (2.1)

when the constitutive equation for the Cauchy stress tensor T≈ which describes

second-grade fluids given by Rivlin and Ericksen [7] is

T≈=−p I≈+µA1≈ +α1A2≈ +α2A2
1≈
, A1≈ = (gradV∼

)+(gradV∼
)T ,

A2≈ = Ȧ1≈ +
(
gradV∼

)TA1≈ +A1≈
(
gradV∼

)
.

(2.2)

Here V∼ is the velocity vector field, p the fluid pressure function, ρ the con-

stant fluid density,µ the constant coefficient of viscosity, andα1,α2 the normal

stress moduli.

Considering the flow to be plane, we take V∼ = (u(x,y,t),v(x,y,t)) and

p = p(x,y,t) so that our flow equations (2.1) and (2.2) take the form

∂u
∂x

+ ∂v
∂y

= 0, (2.3)

∂u
∂t
+u∂u

∂x
+v ∂u

∂y
+ 1
ρ
∂p
∂x

= ν∇2u+ α1

ρ

{
∂
∂t
(∇2u

)

+ ∂
∂x

[
2u
∂2u
∂x2

+2v
∂2u
∂x∂y

+4
(
∂u
∂x

)2

+2
∂v
∂x

(
∂v
∂x

+ ∂u
∂y

)]

+ ∂
∂y

[(
u
∂
∂x

+v ∂
∂y

)(
∂v
∂x

+ ∂u
∂y

)
+2
∂u
∂x
∂u
∂y

+2
∂v
∂x
∂v
∂y

]}

+ α2

ρ
∂
∂x

[
4
(
∂u
∂x

)2

+
(
∂v
∂x

+ ∂u
∂y

)2
]
,

(2.4)

∂v
∂t
+u∂v

∂x
+v ∂v

∂y
+ 1
ρ
∂p
∂y

= ν∇2v+ α1

ρ

{
∂
∂t
(∇2v

)

+ ∂
∂x

[(
u
∂
∂x

+v ∂
∂y

)(
∂v
∂x

+ ∂u
∂y

)
+2
∂u
∂x
∂u
∂y

+2
∂v
∂x
∂v
∂y

]

+ ∂
∂y

[
2u

∂2v
∂x∂y

+2v
∂2v
∂y2

+4
(
∂v
∂y

)2

+2
∂u
∂y

(
∂v
∂x

+ ∂u
∂y

)]}

+ α2

ρ
∂
∂y

[
4
(
∂v
∂y

)2

+
(
∂v
∂x

+ ∂u
∂y

)2
]
,

(2.5)

where ν = µ/ρ is the kinematic viscosity.
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The continuity equation (2.3) implies the existence of a stream function

ψ(x,y,t) such that

u= ∂ψ
∂y
, v =−∂ψ

∂x
. (2.6)

Substitution of (2.6) in (2.4) and (2.5) and elimination of pressure from the

resulting equations using pxy = pyx yields

∂
∂t
(∇2ψ

)− α1

ρ
∂
∂t
(∇4ψ

)− ∂
(
ψ,∇2ψ

)
∂(x,y)

+ α1

ρ
∂
(
ψ,∇4ψ

)
∂(x,y)

−ν∇4ψ= 0. (2.7)

Having obtained a solution of (2.7), the velocity components are given by (2.6)

and the pressure can be found by integrating (2.4) and (2.5).

The shear stress component τ12 of the Cauchy stress T≈ is given by

τ12 = µ
{
∂2ψ
∂y2

− ∂
2ψ
∂x2

+α1

[
∂ψ
∂y

(
∂3ψ
∂x∂y3

− ∂
3ψ
∂x3

)
− ∂ψ
∂x

(
∂3ψ
∂y3

− ∂3ψ
∂x2∂y

)

+2
∂2ψ
∂x∂y

∂2ψ
∂y2

+2
∂2ψ
∂x2

∂2ψ
∂x∂y

]}
.

(2.8)

3. Solutions. We consider the two-dimensional flow of an incompressible

fluid against an infinite plate normal to the flow. We assume that the plate

makes harmonic oscillations on its own plane and its velocity in thex-direction

is aeiωt where a and ω are constants.

The boundary conditions are then given by

∂ψ
∂y

= aeiωt, ∂ψ
∂x

= 0 at y = 0,

∂ψ
∂y

= cx as y �→∞.
(3.1)

Following Glauert [4], we assume that

ψ= cxf(y)+aeiωtg(y). (3.2)

The boundary conditions take the form

f(0)= f ′(0)= 0, g′(0)= 1,

f ′(∞)= 1, g′(∞)= 0.
(3.3)

Using (3.2) in (2.7), we obtain

νf (iv)+c(ff ′′′ −f ′f ′′)− α1c
ρ
(
ff (v)−f ′f (iv))= 0,

νg(iv)−iωg′′ + α1

ρ
iωg(iv)+c(fg′′′ −f ′′g′)− α1c

ρ
(
fg(v)−f (iv)g′)= 0.

(3.4)
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Table 3.1. Numerical values of F ′′(0), φ′0(0), φ
′
1(0), and φ′2(0) for

different values of We.

We F ′′(0) φ′0(0) φ′1(0) φ′2(0)

0.0 1.23259 −0.811318 −0.49307 0.0945488

0.1 1.36954 −0.86709 −0.547302 0.0658565

0.2 1.5873 −0.947485 −0.633897 0.0221985

0.3 2.11092 −1.10879 −0.842867 −0.0761073

Nondimensionalizing using

η=
√
c
ν
y, f (y)=

√
ν
c
F(η), g(y)=

√
ν
c
G(η), (3.5)

we get

F(iv)+FF ′′′ −F ′F ′′ +We
(
FF(v)−F ′F(iv))= 0,

G(iv)+FG′′′ −F ′′G′ +We
(
FG(v)−F(iv)G′)− iω

c
G′′ − iωWe

c
G(iv) = 0,

(3.6)

where We =−α1c/ρν is the Weissenberg number.

Integrating (3.6) once with respect to η and using the conditions at infinity,

we have

F ′′′ +FF ′′ −F ′2+We
(
FF(iv)−2F ′F ′′′ +F ′′2)=−1,

F(0)= 0, F ′(0)= 0, F ′(∞)= 1,
(3.7)

G′′′ +FG′′ −F ′G′ +We
(
FG(iv)−F ′G′′′ +F ′′G′′ −F ′′′G′)− iω

c
(
G′ +WeG′′′

)= 0,

G′(0)= 1, G′(∞)= 0. (3.8)

System (3.7) has been solved numerically by many authors (Beard and

Walters [2] and Ariel [1]). Using the shooting method with the finite difference

technique described by Ariel [1], we find that F ′′(0) = 1.23259 when We = 0.

Numerical values of F ′′(0) for different values of We are shown in Table 3.1.

Figure 3.1 shows the profiles of F ′ for various We. We observed that as the

elasticity of the fluid increases, the velocity near the wall increases. Figure 3.2

depicts the profiles of F for various We.
Letting φ(η)=G′(η), then system (3.8) becomes

φ′′ +Fφ′ −F ′φ+We
(
Fφ′′′ −F ′φ′′ +F ′′φ′ −F ′′′φ)− iω

c
(
φ+Weφ′′

)= 0

φ(0)= 1, φ(∞)= 0.
(3.9)
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Figure 3.1. Variation of F ′(η) with We.
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Figure 3.2. Variation of F(η) with We.

The only parameter in (3.9) is the frequency ratioω/c. Series solutions will

be developed, valid for small and large values of ω/c, respectively.
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Figure 3.3. Variation of φ0(η) with We.

3.1. Small values of ω/c. Consider the case where ω = 0, which implies

that the plate velocity has the constant value a. Letting φ = φ0, then system

(3.9) gives

φ′′0 +Fφ′0−F ′φ0+We
(
Fφ′′′0 −F ′φ′′0 +F ′′φ′0−F ′′′φ0

)= 0,

φ0(0)= 1, φ0(∞)= 0.
(3.10)

This system is solved numerically by using a shooting method and it is found

that forWe = 0,φ′0(0)=−0.811318 which is in good agreement with the value

obtained by Glauert [4]. Numerical values of φ′0(0) for different values of We
are shown in Table 3.1. Figure 3.3 depicts the profiles of φ0 for various values

of We.
For small but nonzero values of ω/c, we let

φ(η)=
∞∑
n=0

(
iω
c

)n
φn(η)=φ0(η)+ iωc φ1(η)+

(
iω
c

)2

φ2(η)+··· . (3.11)

Substituting (3.11) into (3.9), we get, for n≥ 1,

φ′′n+Fφ′n−F ′φn+We
(
Fφ′′′n −F ′φ′′n+F ′′φ′n−F ′′′φn

)=φn−1+Weφ′′n−1,

φn(0)= 0, φn(∞)= 0.
(3.12)
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Figure 3.4. Variation of φ′1(η) with We.

This system can be solved numerically either by using the perturbation

technique or by a finite difference scheme. Numerical integration of system

(3.12) for n = 1 using a finite difference technique gives, for We = 0, φ′1(0) =
−0.49307 which is in good agreement with Glauert’s value [4]. Numerical val-

ues ofφ′1(0) for different values ofWe are shown in Table 3.1. Figure 3.4 shows

the profiles of φ1 for various values of We.
Numerical integration of system (3.12) for n = 2 using a finite difference

technique gives, for We = 0, φ′2(0) = 0.0945488 which is in good agreement

with Glauert’s value [4]. Numerical values of φ′2(0) for different values of We
are shown in Table 3.1. Figure 3.5 depicts the profiles of φ2 for various values

of We.
The oscillating component of the shear stress on the wall is given by

τ12

ρa2
=
√
cν
a2
eiωt

[
φ′0(0)+

iω
c
φ′1(0)−WeF ′′(0)

]
, (3.13)

where F ′′(0), φ′0(0), and φ′1(0) are given in Table 3.1 for different values of

We. WhenWe = 0, the value of the shear stress on the wall is in good agreement

with the value obtained by Glauert [4].

3.2. Large values of ω/c. When ω/c is large, we let

Y =
√
iω
c
η=

√
iω
ν
y. (3.14)
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Letting
√
iω/c =α, then d/dη= d/αdY and (3.9) takes the form

1
α2

d2φ
dY 2

+ 1
α

[
F
dφ
dY

− dF
dY
φ
]

+ 1
α3
We
[
F
d3φ
dY 3

− dF
dY
d2φ
dY 2

+ d
2F
dY 2

dφ
dY

− d
3F
dY 3

φ
]
− 1
α2
φ−We

α4

d2φ
dY 2

= 0.

(3.15)

Since We is small for most fluids which behave as second-order fluids (see

Markovitz and Coleman [6]), we follow Srivastava [9] and take We to be of the

order of α2. Thus, We =mα2 and (3.15) becomes

(1−m)d
2φ
dY 2

+α
[
F
dφ
dY

− dF
dY
φ
]

+mα
[
F
d3φ
dY 3

− dF
dY
d2φ
dY 2

+ d
2F
dY 2

dφ
dY

− d
3F
dY 3

φ
]
−φ= 0.

(3.16)

The expansion for F(η) near the wall η= 0 is

F(η)= 1
2
Aη2+ 1

6

(−1−WeA2)η3+ 1
120

A2η5+ 1
720

(−2A−WeA3)η6+··· ,
(3.17)



UNSTEADY STAGNATION POINT FLOW . . . 3805

where A= F ′′(0). Since η=αY and We =mα2, the above expansion takes the

form

F(Y)= 1
2
Aα2Y 2+ 1

6

(−1−mα2A2)α3Y 3

+ 1
120

A2α5Y 5− 1
720

(
2A+mα2A2)α6Y 6+··· .

(3.18)

Since for large values of ω/c the parameter α is small, we let

φ=
∞∑
n=0

αnφn(Y)=φ0(Y)+αφ1(Y)+α2φ2(Y)+··· . (3.19)

The boundary conditions are

φ0(0)= 1, φn(0)= 0 if n≥ 1, φn(∞)= 0 ∀n. (3.20)

Substituting (3.19) in (3.16) and equating the coefficients of different powers

of α to zero, we find that the boundary value problem for φ0(Y) is

(1−m)d
2φ0

dY 2
−φ0 = 0, φ0(0)= 1, φ0(∞)= 0, (3.21)

with solution φ0(Y)= exp[−Y/√1−m] provided m 
= 1.

The second and third equations give that φ1 and φ2 are zero. The next four

equations for φ3(Y), φ4(Y), φ5(Y), and φ6(Y) are

(1−m)d
2φ3

dY 2
−φ3 =−1

2
mAY 2d3φ0

dY 3
+mAY d

2φ0

dY 2

+
(
− 1

2
AY 2−mA

)
dφ0

dY
+AYφ0,

(1−m)d
2φ4

dY 2
−φ4 = 1

6
mY 3d3φ0

dY 3
+
(

1
6
Y 3−mY

)
dφ0

dY
+
(
− 1

2
Y 2−m

)
φ0,

(1−m)d
2φ5

dY 2
−φ5 = 0,

(1−m)d
2φ6

dY 2
−φ6 =

(
1

24
A2Y 4−m2A2

)
φ0

+
(

1
3
mA2Y 3− 1

120
A2Y 5−m2A2Y

)
dφ0

dY

+
(
− 1

2
m2A2Y 2+ 1

24
mA2Y 4

)
d2φ0

dY 2

+
(

1
6
m2A2Y 3− 1

120
mA2Y 5

)
d3φ0

dY 3

+AYφ3+
(
− 1

2
AY 2+mA

)
dφ3

dY

+mAY d
2φ3

dY 2
− 1

2
mAY 2d3φ3

dY 3
.

(3.22)
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Solving these equations and using the boundary conditions, we obtain

φ3(Y)=− A
1−me

−Y/√1−m
[

3−4m
8

Y + 3

8
√

1−mY
2+ 1

12(1−m)Y
3
]
,

φ4(Y)= e−Y/
√

1−m
[

3+4m
16
√

1−mY +
3−4m

16(1−m)Y
2

+ 1

8(1−m)√1−mY
3+ 1

48(1−m)2 Y
4
]
,

φ5(Y)= 0,

φ6(Y)= e−Y/
√

1−m
[
−
(
40m3−50m2+28m−33

)
A2

128(1−m)√1−m Y

+
(
24m3+18m2−52m+33

)
A2

128(1−m)2 Y 2

−
(
8m3−2m2+64m−33

)
A2

196(1−m)2√1−m Y 3

+
(
8m3−30m2−36m+27

)
A2

384(1−m)3 Y 4

−
(
3m2+6m−9

)
A2

480(1−m)3√1−mY
5−

(
m2−2m−4

)
A2

1440(1−m)4 Y 6

]
,

(3.23)

provided m 
= 1. If m = 0, we recover the solutions for the Newtonian fluid

obtained by Glauert [4].

The oscillating component of the shear stress on the wall is given by

τ12

ρa2
=−

√
cν
a2

[
1

α
√

1−m + (3−4m)A
8(1−m) α

2− 3+4m
16
√

1−mα
3

+
(
40m3−50m2+28m−33

)
A2

128(1−m)√1−m α5−WeA
]
.

(3.24)

If m = 0, the shear stress is in good agreement with the result obtained by

Glauert [4].
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