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We study the birthday problem and some possible extensions. We discuss the uni-
modality of the corresponding exact probability distribution and express the mo-
ments and generating functions by means of confluent hypergeometric functions
U(−;−;−) which are computable using the software Mathematica. The distribu-
tion is generalized in two possible directions, one of them consists in considering
a random graph with a single attracting center. Possible applications are also in-
dicated.
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1. Introduction. In the present paper, we study the birthday problem which

may be formulated in various manners: consider, for example, a smoker who

draws matches from a matchbox that contains initially n (unused) matches.

Whenever he needs a match, he draws one at random and returns the used

match into the box. He continues drawing matches until a used one is en-

countered for the first time. The probability p(n)k that the first used match is

encountered in the kth draw is given by (see, e.g., [5, equation (7.1), page 47])

p(n)k = n!(k−1)
(n−k+1)!nk

for k= 2, . . . ,n+1. (1.1)

Forn= 365, (1.1) represents the probability that among k persons can be found

two persons with the same birthday (in this case the matches correspond to

the 365 days of the year).

The distribution (1.1) also plays an important role in the study of character-

istics of random mappings (random graphs): we consider a random mapping

T of a finite set X = {1,2, . . . ,n} into itself, assuming that T assigns indepen-

dently to each x ∈X its unique image y ∈X with probability 1/n for all y ∈X.

Denote by G the directed graph with vertex set X, containing an arrow from x
to y if and only if T(x)= y . The set of successors of the element x ∈ X in T
is defined as

ST (x)=
{
x,T(x),T 2(x), . . . ,Tn−1(x)

}
, (1.2)
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where T 0(x) = x and Tk(x) = T(Tk−1(x)) for k ≥ 1. Denoting by sT (x) the

number of elements in ST (x), the probability that a vertex x has k successors

is given by

P
(
sT (x)= k

)= (n−1)!k
(n−k)!nk = p

(n)
k+1 (1.3)

(see [8, equation (3.2), page 1047]).

The distribution (1.1) and diverse extensions have been intensively studied

(see, e.g., [1, 3, 4, 5, 7, 8, 10, 11, 12, 13, 17, 20, 21, 22, 23, 24, 25, 26, 27]).

In the next section, we study some basic properties of distribution (1.1) and

indicate possible applications. Moments and generating functions are deter-

mined in Section 3, using the well-known U -function. In Section 4, we study a

very general type of distribution defined by means of directed weighted trees,

which generalizes (1.1). Among others, these results yield a recurrence relation

for the moments of distribution (1.1). In Section 5, we generalize (1.1), consid-

ering the distribution of the number of successors in a random graph with a

single attracting center.

2. Some basic properties of the distribution. The following proposition

proves that the distribution in (1.1) is unimodal. (To simplify the notation, we

write pk instead of p(n)k in the following.)

Proposition 2.1. The probabilities pk satisfy

p2 < ···<pk0 ≥ pk0+1 > ···>pn+1, (2.1)

where k0 is the smallest integer greater than or equal to 1/2+√n+1/4.

Moreover, pk0 = pk0+1 if and only if 1/2+√n+1/4 is an integer.

Proof. We have pk−1 <pk if and only if

n!(k−2)
(n−k+2)!nk−1

<
n!(k−1)

(n−k+1)!nk
. (2.2)

Multiplying this inequality by (n−k+2)!nk/n! results in the equivalent condi-

tion (k−2)n < (k−1)(n−k+2) which can be written as k2−3k−(n−2) < 0 or

k < 3/2+√n+1/4. Hence, pk−1 < pk if k ≤ k0. Analogously, we get pk > pk+1

for k ≥ k0 if 1/2+√n+1/4 is not an integer. If this number is an integer, we

get pk0 = pk0+1 and pk > pk+1 for k≥ k0+1.

Beyond the index k0 above it is interesting to determine the index k1(k1 ≥
k0) which maximizes the difference

∆k = pk−pk+1 = (n−1)!
(n−k+1)!nk

(
k2−k−n). (2.3)
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This index is an equivalent to a turning point of a distribution in the continuous

case. Similar to the above consideration, it can be shown that ∆k <∆k+1 if

(3n+1)k−k3−n (2.4)

is positive and that ∆k > ∆k+1 if (2.4) is negative. We get the following propo-

sition.

Proposition 2.2. The index k1 is the smallest integer k such that (2.4) is

nonpositive.

For large numbers n, the indices k0 and k1 satisfy k0 ≈ √n and k1 <
√

3n
(see (2.4)), that is, there is an increasing degree of antisymmetry. Ifn converges

to ∞, pk0 (and thus all pk) converges to 0 since for large n,

pk0 =
n!
(
k0−1

)
(
n−k0+1

)
!nk0

= n···
(
n−k0+2

)
nk0

(
k0−1

)

≤ n
k0−1

nk0

(
k0−1

)= k0−1
n

≈ 1√
n
.

(2.5)

The distribution (1.1) might have practical applications. Among others, it

could be useful to estimate the size of a population. Suppose, for example,

that biologists want to estimate the number of fishes of a certain species in a

lake. They could proceed as follows: catching a fish repeatedly, mark it every

time and put it back into the water. The number k of fishes (of the considered

species) that had to be caught until the first marked fish was encountered

represents the test statistics. Let n denote the (unknown) size of the fish pop-

ulation, the observed value k occurs with probability pk (see (1.1)). By means

of the maximum likelihood method, the number of fishes can be estimated by

the value of n that maximizes pk (k fixed).

Example 2.3. We assume that k= 101; for example, when the 101th fish is

caught, a previously marked fish is encountered for the first time. This event

occurs with probability

p(n)101 =
(n−1)!100
(n−100)!n100

(2.6)

if n denotes the size of the fish population. Generally, p(n)k is a unimodal func-

tion in n for every fixed k and

p(n+1)
k

p(n)k

= n
n+2−k

(
n

n+1

)k−1

, (2.7)
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that is,

p(n+1)
k (≷)p(n)k ⇐⇒ n

n+2−k
(

n
n+1

)k−1

(≷)1. (2.8)

This implies p(5017)
101 <p(5016)

101 >p(5015)
101 , that is, p(n)101 is maximized for n= 5016

which is the estimator for the size of the fish population.

As the above calculations illustrate, the population size is approximately

given by n= k2/2 for a sufficiently large population. In this case we have (see

[8, page 1047])

(n−1)!k
(n−k)!nk ≈

k
n
e−k

2/(2n). (2.9)

The right-hand side of this relation is maximized for n= k2/2 when k is fixed.

The above method represents an alternative to the estimating procedure for

a fish population described in [9, Chapter 14].

Further applications of the probability distribution (1.1) are conceivable in

quantitative linguistics, in the framework of testing the hypothesis that there

is a tendency in language to repeat already used text elements (see [29]).

3. Moments and generating functions. In order to express the moments we

make use of the well-known confluent hypergeometric function U(r ;r +n;x)
defined by (see, e.g., [19, page 116] and [28, page 41])

U(r ;r +n;x)=
n−1∑
k=0

r (k)(n−k)(k)
k!

x−k−r , n,r = 1,2, . . . , x > 0, (3.1)

where α(k) =α(α+1)···(α+k−1) denotes the rising factorial. Computation

of this function is easily done by using the software Mathematica. For themth

rising factorial moment (m= 0,1, . . .), we get

E
[
X(m)

]= E[X(X+1)···(X+m−1)
]

=
n+1∑
k=2

k(k+1)···(k+m−1)
n!(k−1)

(n−k+1)!nk

=
n+1∑
k=2

(k+m−1)!
(k−2)!

n!
(n−k+1)!nk

= (m+1)!
n

n−1∑
k=0

(k+m+1)!(n−1)!
(m+1)!k!(n−k−1)!nk

= (m+1)!
n

n−1∑
k=0

(m+2)(k)(n−k)(k)
k!

(
1
n

)k

= (m+1)!nm+1U(m+2;m+n+2;n).

(3.2)
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Figure 3.1. The dependence of the mean E(X) on n.

For m= 0, we obtain

nU(2;n+2;n)= 1, (3.3)

a result which is not readily available in the literature on special functions. For

m= 1, we get the mean

E(X)= 2n2U(3;n+3;n). (3.4)

Alternatively,

E(X)= n!
nn

n∑
k=0

nk

k!
=nU(1;n+2;n)=

(
e
n

)n
Γ(n+1,n), (3.5)

where Γ(α,x) is the incomplete gamma function [28, page 97]. An alternative

exact and asymptotic result for a general case, for the expected number of

repetitions necessary for one of the alternatives to occur a certain number of

times, was given by Klamkin and Newman [17].

Thus, we get

2nU(3;n+3;n)=U(1;n+2;n), (3.6)

another result not easily available.

The dependence of the mean E(X) on n is illustrated in Figure 3.1. It may

be noted that for n= 365, E(X)= 24,6166.

The variance of X is given by

V(X)= E[X(X+1)
]−E[X]−(E(X))2

= 6n3U(4;n+4;n)−2n2U(3;n+3;n)−4n4U2(3;n+3;n).
(3.7)



3832 P. N. RATHIE AND P. ZÖRNIG

The moments about the origin can be calculated using the relation (see [16,

page 6])

xn =
n∑
k=0

S̄(n,k)x(k), (3.8)

where S̄(n,k) denote the Stirling numbers of the fourth kind. We obtain the

r th moments of X as a linear combination of the polynomial U(−;−;n):

µ′r = E
(
Xr
)= r∑

k=0

S̄(r ,k)E
[
X(k)

]

=
r∑
k=0

S̄(r ,k)(k+1)!nk+1U(k+2;k+n+2;n).

(3.9)

Since U(−;−;n) can be expressed as a linear combination of incomplete

gamma functions, so is µ′r in a complicated manner. Dwass [4] considered

higher asymptotic moments ofX. Holst [10] commented that moments of order

statistics from the gamma distribution can be used to get higher moments.

The central moments µr are obtained from the relation

µr = E(X−µ)r =
r∑
k=0

(−1)k
(
r
k

)
µkµ′r−k. (3.10)

Finally, the probability generating function P(s) and the moment generating

function MX(t) can be expressed as

P(s)= E(sX)= n+1∑
k=2

pksk =
n+1∑
k=2

n!(k−1)sk

(n−k+1)!nk
=nU

(
2;n+2;

n
s

)
, (3.11)

MX(t)= E
(
etX

)= n+1∑
k=2

n!(k−1)etk

(n−k−1)!nk
=nU(2;n+2;ne−t

)
, (3.12)

respectively, and the characteristic function is obtained from (3.12), substitut-

ing it for t, where i=√−1.

4. A general type of distribution. Let T be a directed tree with the root 0

such that all arcs are leaving from the root, that is, 0 is the unique source and

δ−(v)= 1 for every vertex v ≠ 0 (δ−(v) denotes the indegree of v , that is, the

number of arcs entering into v). We associate a positive weight with all arcs of

T , such that the sum of the weights of all arcs leaving a vertex is 1. Furthermore,

we associate a weight w(v) with every vertex v of T such that w(0) = 1 and
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Figure 4.1. Example of a directed weighted tree.

for every vertex v ≠ 0, we define w(v) as the product of the weights of the

arcs on the unique path from 0 to v . An example of a directed weighted tree

is shown in Figure 4.1, where the vertex weights are only indicated when the

vertex is a leaf (represented by shaded circles).

Proposition 4.1. For every directed weighted tree of the above type, the

weights of the leaves sum up to 1.

Then result can be easily proved by induction.

Obviously, every tree of the above type defines a discrete probability dis-

tribution when the weights of the leaves are interpreted as the probabilities.

We consider now the tree in Figure 4.2 with the vertices 0,1, . . . ,n, �2, . . . ,�n+1,

where �i, i= 2, . . . ,n+1, represent the leaves.

The weights of the leaves (probabilities) are

pk =




1−c1, for k= 2,

c1c2 ···ck−2(1−ck−1), for 3≤ k≤n,
c1c2 ···cn−1, for k=n+1,

(4.1)

which obviously sum up to 1. For ci = (n−i)/n, i = 1, . . .n−1, we obtain the

probability distribution (1.1) as a special case. In this case a vertical (horizontal)

arc represents the selection of an unused (used) match; the vertex i can be

interpreted as the stage of the system with i used matches in the box, while �i
represents the encounter of a used match for the first time in the ith draw.
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Figure 4.2. A tree representing a probability distribution.

The moments about the origin of distribution (4.1) can be expressed as

µ′r = E
(
Xr
)

= 2r
(
1−c1

)+ n∑
i=3

c1c2 ···ci−2
(
1−ci−1

)
ir +(n+1)r c1c2 ···cn−1

= 1+
n∑
i=1

[
(i+1)r −ir ]c1c2 ···ci−1.

(4.2)

Using (4.2), we finally state some interrelations between the moments about

the origin of distribution (1.1). Thus, we obtain

µ′r = 1+
n∑
i=1

[
(i+1)r −ir ] (n−1)!

(n−i)!ni−1
. (4.3)
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Alternatively the µ′r can be written as (see (1.1))

µ′r =
n+1∑
k=2

(n−1)!(k−1)kr

(n−k+1)!nk−1
=

n∑
i=1

(n−1)!i(i+1)r

(n−i)!ni . (4.4)

Defining bi = (n−1)!/(n−i)!ni−1 and Tr =
∑n
i=1biir , relations (4.3) and (4.4)

read

µ′r = 1+
n∑
i=1

[
(i+1)r −ir ]bi = 1+

n∑
i=1

r−1∑
j=0

(
r
j

)
ijbi = 1+

r−1∑
j=0

(
r
j

)
Tj, (4.5)

µ′r =
1
n

n∑
i=1

i(i+1)rbi = 1
n

n∑
i=1

r∑
j=0

(
r
j

)
ij+1bi = 1

n

r∑
j=0

(
r
j

)
Tj+1. (4.6)

Combining (4.5) and (4.6) yields the following recurrence relations for Tr and

µ′r , respectively:

Tr+1 =n−rTr +
r−1∑
j=0

[
n
(
r
j

)
−
(
r
j−1

)]
Tj for r = 0,1, . . . ,

µ′r = (n+1)µ′r−1+Tr−1−Tr for r = 1,2, . . . .

(4.7)

For small values of r , (4.7) gives

T1 =n, T2 =nT0, T3 = 2n2−nT0, T4 =n(1+3n)T0−3n2,

µ′1 = T0+1, µ′2 = T0+2n+1, µ′3 = (3n+1)T0+3n+1,

µ′4 = (2n+1)T0+8n2+4n+1,

(4.8)

where T0 can be computed as (see Section 3)

T0 = µ′1−1= E(X)−1= n!
nn

n−1∑
k=0

nk

k!

= 2n2U(3;n+3;n)−1.

(4.9)

5. Generalization of the distribution by means of an attracting center. We

now generalize the random mapping considered in the introduction, assuming

that the vertex 1 is an attracting center, that is, T assigns independently to

each x ∈ X the image 1 with probability q and the image y with probability
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p = (1−q)/(n−1) for y = 2, . . . ,n (see, e.g., [14, page 191]; related models

of random graphs are studied in [2, 15]). The probability that the attracting

center 1 has k successors is given by

P
(
s(1)= k)= P(Tr (x)≠ x, T(x), . . . ,T r−1(x) (0< r ≤ k−1);

Tk(x)= Tj(x) for a j with 0≤ j ≤ k−1
)

= (1−q)(1−q−p)(1−q−2p)···(1−q−(k−2)p
)[
q+(k−1)p

]

= [q+(k−1)p
]k−2∏
j=0

(1−q−jp).

(5.1)

Since

1−q−jp = p(n−1−j), (5.2)

we get

P
(
s(1)= k)= [q+(k−1)p

]
pk−1

k−2∏
j=0

(n−1−j)

= [q+(k−1)p
]
pk−1 (n−1)!

(n−k)! for k= 1, . . . ,n.

(5.3)

We now determine the probability P(s(x)= k), where x ∈ {2, . . . ,n}, that is, x
is not the attracting center. Two cases have to be distinguished depending on

whether the attracting center is contained in the successor set or not. In the

first case we get, assuming that T i(x)= 1 for a fixed i∈ {1, . . . ,k−1},

P
(
s(x)= k|T i(x)= 1

)
= (1−q−p)(1−q−2p)···[1−q−(i−1)p

]
q[1−q−ip]

···[1−q−(k−2)p
][
q+(k−1)p

]

= [q+(k−1)p
]
q
k−2∏
j=1

(1−q−jp)

= [q+(k−1)p
]
qpk−2

k−2∏
j=1

(n−1−j) (see (5.2))

= [q+(k−1)p
]
qpk−2 (n−2)!

(n−k)! .

(5.4)



ON THE BIRTHDAY PROBLEM: SOME GENERALIZATIONS . . . 3837

The probability that x has k successors different from 1 is given by

P
(
s(x)= k|T i(x)≠ 1 for i= 1, . . . ,k−1

)
= (1−q−p)(1−q−2p)···[1−q−(k−1)p

]
kp

= kp
k−1∏
j=1

(1−q−jp)

= kppk−1
k−1∏
j=1

(n−1−j)

= kpk (n−2)!
(n−k−1)!

.

(5.5)

Finally, we get, for x ≠ 1,

P
(
s(x)= k)= P(s(x)= k|T i(x)≠ 1 for i= 1, . . . ,k−1

)

+
k−1∑
i=1

P
(
s(x)= k|T i(x)= 1

)

= kpk (n−2)!
(n−k−1)!

+(k−1)
[
q+(k−1)p

]
qpk−2 (n−2)!

(n−k)!
= {(n−k)kp2+(k−1)q

[
q+(k−1)p

]}
pk−2 (n−2)!

(n−k)! .

(5.6)

Rewriting the last term, we get

P
(
s(x)= k)= {k2p(q−p)+k(np2+q2−2qp

)
+q(p−q)}pk−2 (n−2)!

(n−k) for k= 1, . . . ,n.
(5.7)

Obviously the two distributions in (5.3) and (5.7) result in p(n)k+1 (see (1.1)) for

q = p = 1/n.

The dependence of the distributions (5.3) and (5.7) on the choice of q is

illustrated in Figures 5.1 and 5.2 for n = 100. It is observed that (5.7) has the

same unimodal form for all q (0 < q < 1), while (5.3) is unimodal for q < 0,1
and 1/2-modal for q ≥ 0,1.

Using the relation

(n−1)!k
(n−k)!nk ≈

k
n
e−k

2/(2n) for large n, (5.8)

(see Example 2.3) we obtain

P
(
s(1)= k)≈ [q+(k−1)p

]
(pn)k−1e−k

2/(2n), (5.9)

P
(
s(x)=k)≈{k2p(q−p)+k(np2+q2−2qp

)+q(p−q)} n
n−1

(pn)k−2e−k
2/(2n).

(5.10)
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Figure 5.1. The distribution (5.3) for n= 100 and q = 0,1 (1/2-modal).
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Figure 5.2. The distribution (5.3) or (5.7) for n= 100 and q = 0,1 (unimodal).

For continuous values of k (k > 0), the right-hand sides in (5.9) and (5.10)

represent the asymptotic densities of the number of successors of the attract-

ing center 1 or a vertex x ≠ 1, respectively.

The results of this section might be interesting in random-number gener-

ation. It may be assumed that in the generation of random numbers a se-

quence x,T(x),T 2(x), . . . is constructed (see, e.g., [6] and [18, Section 3.1]),

where x ∈X = {1,2, . . . ,n} and T is a mapping selected at random from all the

nn mappings from X into itself.

If all the nn mappings are chosen with equal probability, p(n)k+1 gives the

probability that the process begins to cycle after k iterations, that is, that the

numbers x,T(x), . . . ,T k−1(x) are pairwise different while Tk(x) = T i(x) for

some i∈ {0,1, . . . ,k−1}.
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Formulas (5.3) and (5.7) give the probability of cycling after k iterations,

when mappings T that assign frequently the image 1 are preferred.
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