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A numerical method based on cubic spline with exponential fitting factor is given
for the selfadjoint singularly perturbed two-point boundary value problems. The
scheme derived in this method is second-order accurate. Numerical examples are
given to support the predicted theory.
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1. Introduction. We consider the following selfadjoint singularly perturbed

two-point boundary value problem:

Ly ≡−ε(a(x)y ′)′ +b(x)y = f(x) on (0,1),

y(0)= η0, y(1)= η1,
(1.1)

where η0, η1 are given constants and ε is a small positive parameter. Further,

the coefficients f(x), a(x), and b(x) are smooth functions and satisfy

a(x)≥ a> 0, a′(x)≥ 0, b(x)≥ b > 0. (1.2)

Under these conditions, the operator L admits a maximum principle [8].

The problems in which a small parameter multiplies to a highest derivative

arise in various fields of science and engineering, for instance, fluid mechan-

ics, fluid dynamics, elasticity, quantum mechanics, chemical reactor theory,

hydrodynamics, and so forth.

Out of the three principal approaches to solve such problems numerically,

namely, the finite-difference methods, the finite-element methods, and the

spline approximation methods, the first two have been used by several authors.

Niijima [6] gave uniformly second-order accurate difference schemes whereas

Miller [5] gave sufficient conditions for the uniform first-order convergence of

a general three-point difference scheme. Boglaev [3] and Schatz and Wahlbin

[9] used finite-element techniques to solve such problems. It is known that the

most classical methods fail when ε is small relative to the mesh width h that

is used for discretization of the operator L.
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In this paper, we have used the third approach, namely, the spline approx-

imation method, to solve problems of type (1.1). There are two possibilities

to obtain small truncation error inside the boundary layer(s). The first is to

choose a fine mesh there, whereas the second one is to choose a difference for-

mula reflecting the behaviour of the solution(s) inside the boundary layer(s).

The present work deals with the second approach, whereas the first one is

currently under the investigation of the authors.

We have reduced the original problem (i.e., problem (1.1)) to the normal form.

In the normalized form, we replace the perturbation parameter ε affecting the

highest derivative by a fitting factor σ(x,ε). Using cubic spline, this factor

is determined in such a way that the truncation error of the corresponding

scheme for the boundary layer function(s), in the case of constant coefficients,

should be equal to zero. This procedure is known as the exponential fitting or

the introducing of artificial viscosity [2, 4]. By making use of the continuity of

the first-order derivative of the spline function, the resulting spline difference

scheme gives a tridiagonal system which can be solved efficiently by the well-

known algorithms.

In Section 2, we give a brief description of the method. The derivation of the

difference scheme has been given in Section 3. The fitting factor is determined

in Section 4, whereas the second-order accuracy of the method is shown in

Section 5. To demonstrate the applicability of the proposed method, four nu-

merical examples have been solved in Section 6 and the results are presented

along with their comparison with those obtained by other authors. Finally, the

discussion on these numerical results, along with some comparisons with the

results obtained earlier by others, is presented in Section 7.

2. Description of the method. Rewrite (1.1) as

y ′′ +P(x)y ′ +Q(x)y = R(x), (2.1)

where

P(x)= a
′(x)
a(x)

, Q(x)=− b(x)
εa(x)

, R(x)=− f(x)
εa(x)

. (2.2)

Let

y(x)=U(x)V(x), (2.3)

and transform (2.1) into the normal form, that is,

V ′′ +A(x)V = B(x), (2.4)
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where

A(x)=Q(x)− 1
2
P ′(x)− 1

4

(
P(x)

)2,

B(x)= R(x)exp
(

1
2

∫
P(x)dx

)
,

U(x)= exp
(
− 1

2

∫
P(x)dx

)
, x ∈ (0,1),

(2.5)

with

V(0)= y(0)
U(0)

=α0, V(1)= y(1)
U(1)

=α1, α0,α1 ∈R. (2.6)

Multiplying (2.4) throughout by −ε (where 0< ε ≤ 1), we get

−εV ′′ +W(x)V = Z(x),
V(0)=α0, V(1)=α1,

(2.7)

where

W(x)=−εA(x), Z(x)=−εB(x). (2.8)

We define the fitting comparison problem associated with (2.7) by

−σ(x,ε)V ′′ +W(x)V = Z(x),
V(0)=α0, V(1)=α1,

(2.9)

where σ(x,ε) is an exponential fitting factor which is to be determined sub-

sequently.

The approximate solution of problem (2.9) is sought in the form of the cubic

spline function Sj(x), which is defined as follows: let

x0 = 0, xj = x0+jh, j = 1(1)n, h= xj−xj−1, xn = 1. (2.10)

For the valuesV(x0),V(x1), . . . ,V(xn), there exists an interpolating cubic spline

with the following properties:

(i) Sj(x) coincides with a polynomial of degree 3 on each interval [xj−1,xj],
j = 1(1)n;

(ii) Sj(x)∈ C2[0,1];
(iii) Sj(xj)= V(xj), j = 0(1)n.

Hence, analogous to [1], the cubic spline can be given as

Sj(x)=
(
xj−x

)3

6h
Mj−1+

(
x−xj−1

)3

6h
Mj

+
(
Vj−1− h

2Mj−1

6

)(xj−x
h

)
+
(
Vj− h

2Mj

6

)(x−xj−1

h

)
,

(2.11)
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where

x ∈ [
xj−1,xj

]
, h= xj−xj−1, j = 1,2, . . . ,n,

Mj = S′′j
(
xj
)
, j = 0,1, . . . ,n.

(2.12)

Using this spline function, we will derive the difference scheme in Section 3,

which will give us the approximate solution of V(x). Since U(x) is known,

therefore the solution to the original problem will be obtained using (2.3).

3. Derivation of the scheme. Differentiating (2.11) and denoting the ap-

proximate solution to V(x) by ν(x), we get

S′j(x)=−
(
xj−x

)2

2h
Mj−1+

(
x−xj−1

)2

2h
Mj

+
(νj−νj−1

h

)
−
(Mj−Mj−1

6

)
h.

(3.1)

Since Sj(x)∈ C2[0,1], therefore we must have

S′j
(
xj
)= S′j+1

(
xj
)
. (3.2)

Using (3.1), (3.2), and (2.9), we obtain the difference scheme

Rνj =QZj, j = 1,2, . . . ,n−1, (3.3)

where

Rνj = r−j νj−1+rcj νj+r+j νj+1, (3.4)

QZj = q−j Zj−1+qcjZj+q+j Zj+1, (3.5)

ν0 =α0, νn =α1, (3.6)

r−j =−1

(
1−h

2Wj−1

6σ−j

)
1
h
, r+j =−1

(
1−h

2Wj+1

6σ+j

)
1
h
, rcj =2

(
1+h

2Wj
3σcj

)
1
h

(3.7)

q−j =
h

6σ−j
, q+j =

h
6σ+j

, qcj =
2h

3σcj
, (3.8)

where σ−j = σj−1, σ+j = σj+1, σcj = σj , and σj is to be determined.

Remark 3.1. The scheme without using fitting factor will be given by

r−j =−1

(
1−h

2Wj−1

6ε

)
1
h
, r+j =−1

(
1−h

2Wj+1

6ε

)
1
h
, rcj =2

(
1+h

2Wj
3ε

)
1
h
,

q−j =
h
6ε
, q+j =

h
6ε
, qcj =

2h
3ε
.

(3.9)
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4. Determination of the fitting factor. In order to get a suitable fitting fac-

tor σ(x,ε), we will use the following lemma.

Lemma 4.1 [4]. Let V(x)∈ C4[0,1]. LetW ′(0)=W ′(1)= 0. Then the solution

of problem (2.7) has the form

V(x)= d(x)+e(x)+g(x), (4.1)

where

d(x)= q0 exp

[
−x

{
W(0)
ε

}1/2
]
,

e(x)= q1 exp

[
−(1−x)

{
W(1)
ε

}1/2
]
,

(4.2)

q0 and q1 are bounded functions of ε independent of x and

∣∣g(k)(x)∣∣≤N(1+(ε)1−k/2), k= 0,1,2,3,4 (4.3)

N is a constant independent of ε.

The matrix of the system (3.3) is inverse monotone if h2Wi/6σi ≤ 1, i = j,
j±1. Thus, we take a fitting factor in the following way:

σ−j =
h2Wj−1

6
µ(ρ), σ+j =

h2Wj+1

6
µ(ρ), σcj =

h2Wj
6

µ(ρ), (4.4)

where µ(ρ) (with ρ at xj given by ρj =
√
Wj/ε) is to be determined.

We require that the truncation error for the boundary layer functions should

be equal to zero when W(x)=W = constant.

From the condition Rdj = 0 for W(x)=W = constant, we have

µ(ρ)= 1+ 3
2sinh2(ρh/2)

. (4.5)

The condition Rej = 0 forW(x)=W = constant will give the same µ(ρ). There-

fore, we define

µ(ρ)= 1+ 3
2sinh2(ρh/2)

, when W(x)=W = constant,

µ
(
ρj
)= 1+ 3

2sinh2(ρjh/2)
, when W(x)≠ constant .

(4.6)

Hence, the variable fitting factor σj is defined as

σj = h
2Wj
6

µ
(
ρj
)
. (4.7)
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5. Proof of the uniform convergence. Throughout the paper,M will denote

a positive constant which may take different values in different equations (in-

equalities) but are always independent of h and ε.
The scheme (3.3), (3.8) can be written in the matrix form

Aν = Z, (5.1)

where A is a matrix of the system (3.3) and ν and Z are corresponding vectors.

Now, the local truncation error τj(φ) of the scheme (3.3) is defined by

τj(φ)= Rφj−Q(Lφ)j, (5.2)

where φ(x) is an arbitrary sufficiently smooth function.

Therefore,

τj(V)= RVj−Q(LV)j = R
(
Vj−νj

)
�⇒ R(Vj−νj)= τj(V)
�⇒max

j

∣∣Vj−νj∣∣≤ ∥∥A−1
∥∥max

j

∣∣τj(V)∣∣. (5.3)

In order to estimate the values |Vj−νj|, we will estimate the truncation error

τj(V) and the norm of the matrix A−1.

From (4.7), it is obvious that

0≤ σj ≤Mh2 �⇒ ∣∣σj−ε∣∣≤Mh2 for ε ≤ Ch2, (5.4)

where C is some positive constant. Now, for the case Ch2 ≤ ε, we see that

σj−ε= h
2Wj
6

+ε
[ (

hρj/2
)2

sinh2 (hρj/2) −1

]
�⇒ ∣∣σj−ε|≤Mh2 for Ch2≤ε. (5.5)

Hence,

∣∣σj−ε∣∣≤Mh2, (5.6)

that is, σj approximates ε with the error O(h2).

Estimation of truncation error and the norm ofA−1. From Lemma

4.1, we have

τj(V)= τj(d)+τj(e)+τj(g). (5.7)

We will estimate separately the parts of τj(V).
First, we consider the case in which Ch2 ≤ ε.
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We will start with d(x). We calculate

Rdj = r−j dj−1+rcj dj+r+j dj+1 (5.8)

Q(Ld)j = q−j Zj−1+qcjZj+q+j Zj+1

= q−j
(−εd′′j−1+Wj−1dj−1

)
+qcj

(−εd′′j +Wjdj)+q+j (−εd′′j+1+Wj+1dj+1
)
.

(5.9)

Now, from Lemma 4.1, we have

d(x)= q0 exp

[
−x

{
W(0)
ε

}1/2
]

(5.10)

implies

dj−1 = dj exp

h
√
W0

ε

, dj+1 = dj exp

−h
√
W0

ε

, (5.11)

d′′j−1 =
(
W0

ε

)
dj exp

h
√
W0

ε

, d′′j+1 =
(
W0

ε

)
dj exp

−h
√
W0

ε

, (5.12)

d′′j =
(
W0

ε

)
dj. (5.13)

Putting all these expressions into (5.8) and (5.9), and since

τj(d)= Rdj−Q(Ld)j, (5.14)

we get

τj(d)= dj−1

(
− 1
h
+ hW0

6σ−j

)
+dj

(
2
h
+ 2hW0

3σcj

)
+dj+1

(
− 1
h
+ hW0

6σ+j

)
. (5.15)

From (5.6), σj = ε+O(h2), and using the above expressions for dj−1 and dj+1,

we have

∣∣τj(d)∣∣≤ Mh3dj
ε2

. (5.16)

But the expression for d(x) involves q0 in the numerator, which is a bounded

function of ε independent of x. Therefore, we get

∣∣τj(d)∣∣≤ Mh3

ε
. (5.17)

Now

e(x)= q1 exp

[
−(1−x)

{
W(1)
ε

}1/2
]

(5.18)
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implies

ej−1 = ej exp

−h
√
W1

ε

, ej+1 = ej exp

h
√
W1

ε

, (5.19)

e′′j−1 =
(
W1

ε

)
ej exp

−h
√
W1

ε

, e′′j+1 =
(
W1

ε

)
ej exp

h
√
W1

ε

, (5.20)

e′′j =
(
W1

ε

)
ej, (5.21)

and the similar construction as was for d(x) will give us

∣∣τj(e)∣∣≤ Mh3

ε
. (5.22)

Now,

τj(g)= Rgj−Q(Lg)j (5.23)

implies

τj(g)=− 1
h
(
gj−1−2gj+gj+1

)+ εh
6

(
g′′j−1

σ−j
+ 4g′′j
σcj

+ g
′′
j+1

σ+j

)
. (5.24)

Expanding gj−1, gj+1, and their derivatives in terms of gj and its derivatives,

and using (5.6), we get

∣∣τj(g)∣∣≤Mh3
∣∣∣g(iv)j

∣∣∣. (5.25)

Therefore, using Lemma 4.1, we obtain

∣∣τj(g)∣∣≤ Mh3

ε
. (5.26)

From (5.17), (5.22), and (5.26), we have

∣∣τj(V)∣∣≤ Mh3

ε
when Ch2 ≤ ε. (5.27)

Now we consider the case in which Ch2 ≥ ε.
We introduce the notations

r−j = r−j
(
Wj−1

)
, r+j = r+j

(
Wj+1

)
, r cj = rcj

(
Wj

)
,

q−j = q−j
(
Wj−1

)
, q+j = q+j

(
Wj+1

)
, qcj = qcj

(
Wj

)
.

(5.28)

Since we have determinedσ(x,ε) in such a way that the truncation error for the

boundary layer function(s) is equal to zero in the case ofW(x)=W = constant,



EXPONENTIALLY FITTED SPLINE APPROXIMATION METHOD . . . 3881

thus τj(d)= 0 when W(x)=W = constant. We will denote this expression by

τ̃j(d). Therefore,

τj(d)= τj(d)− τ̃j(d)
= [{

r−j
(
Wj−1

)−r−j (W0
)}−{q−j (Wj−1

)−q−j (W0
)}(
Wj−1−W0

)]
dj−1

+[{rcj (Wj)−rcj (W0
)}−{qcj (Wj)−qcj (W0

)}(
Wj−W0

)]
dj

+[{r+j (Wj+1
)−r+j (W0

)}−{q+j (Wj+1
)−q+j (W0

)}(
Wj+1−W0

)]
dj+1.

(5.29)

Using (3.8) and (5.6), and since∣∣Wj−1−W0

∣∣≤Mx2
j−1,

∣∣Wj−W0

∣∣≤Mx2
j ,

∣∣Wj+1−W0

∣∣≤Mx2
j+1,

(5.30)

we obtain

∣∣τj(d)∣∣≤ Mh [
x2
j−1dj−1+x2

j dj+x2
j+1dj+1

]
. (5.31)

Now, using the fact that (see, e.g., Doolan et al. [4])

xexp
(
− cx
ε

)
≤M

(
ε
c

)
exp

(
− cx

2ε

)
(5.32)

and dj ’s involve q0 which is a bounded function of ε, we obtain

x2
j−1dj−1 ≤Mε2, x2

j dj ≤Mε2, x2
j+1dj+1 ≤Mε2. (5.33)

Hence,

∣∣τj(d)∣∣≤ Mε2

h
. (5.34)

But

ε < 1 �⇒ ε2 < ε, (5.35)

therefore,

∣∣τj(d)∣∣≤ Mεh (5.36)

implies ∣∣τj(d)∣∣≤Mh (
since ε ≤ Ch2). (5.37)

Similarly, we obtain ∣∣τj(e)∣∣≤Mh. (5.38)



3882 M. K. KADALBAJOO AND K. C. PATIDAR

Now, for τj(g), we use the form

τj(g)= ε
h

(
g′′j−1+4g′′j +g′′j+1

)
+hg′′(ξ) : xj−1 < ξ < xj+1. (5.39)

Therefore, using Lemma 4.1, we obtain

∣∣τj(g)∣∣≤Mh. (5.40)

From (5.37), (5.38), and (5.40), we have

∣∣τj(V)∣∣≤Mh. (5.41)

Estimate of ‖A−1‖. Following Varah [10], we see that

∣∣−r−j +rcj −r+j ∣∣=
∣∣∣∣∣ 1
h
− hWj−1

6σ−j
+ 2
h
+ 2hWj

3σcj
+ 1
h
− hWj+1

6σ+j

∣∣∣∣∣
=
∣∣∣∣ 4
h
− h

6

(
Wj−1−4Wj+Wj+1

) 1
ε+O(h2

)∣∣∣∣
(5.42)

using (5.6),

∣∣−r−j +rcj −r+j ∣∣≥

M1h
ε
, Ch2 ≤ ε,

M1

h
, Ch2 ≥ ε,

(5.43)

implies

∥∥A−1
∥∥≤


M2ε
h
, Ch2 ≤ ε,

M2h, Ch2 ≥ ε,
(5.44)

where M1 and M2 (= 1/M1) are constants independent of h and ε.
From (5.3), (5.27), (5.41), and (5.44), we have the following theorem.

Theorem 5.1. Let W(x),Z(x) ∈ C2[0,1], W(x) ≥ W > 0, and W ′(0) =
W ′(1) = 0. Let νj , j = 0,1, . . . ,n be the approximate solution of (2.7), obtained

using (3.3) and (3.8). Then, there is a constant M independent of ε and h such

that

max
j

∣∣V(xj)−νj∣∣≤Mh2. (5.45)

6. Test examples and numerical results. In this section, we present some

numerical results which illustrate Theorem 5.1.
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Example 6.1 [11]. Consider problem (1.1) with

a(x)= 1, b(x)= 1+x(1−x)

f(x)= 1+x(1−x)+[2√ε−x2(1−x)]exp
[
− 1−x√

ε

]
+[2√ε−x(1−x)2]exp

[
− x√

ε

]
y(0)= 0, y(1)= 0.

(6.1)

Its exact solution is given by

y(x)= 1+(x−1)exp
[
− x√

ε

]
−xexp

[
− 1−x√

ε

]
. (6.2)

Example 6.2 [7]. Consider problem (1.1) with

a(x)= 1, b(x)= 4
(x+1)4

[
1+√ε(x+1)

]
,

f (x)=− 4
(x+1)4

[{
1+√ε(x+1)+4π2ε

}
cos

(
4πx
x+1

)
−2πε(x+1)sin

(
4πx
x+1

)
+ 3

{
1+√ε(x+1)

}
1−exp

(−1/
√
ε
)],

y(0)= 2, y(1)=−1.

(6.3)

Its exact solution is given by

y(x)=−cos
(

4πx
x+1

)
+ 3

{
exp

(−2x/
√
ε(x+1)

)−exp
(−1/

√
ε
)}

1−exp
(−1/

√
ε
) . (6.4)

Example 6.3 [4]. Consider problem (1.1) with

a(x)= 1+x2, b(x)= cosx
(3−x)3 ,

f (x)= 4
(
3x2−3x+1

)[(
x− 1

2

)2

+2

]
,

y(0)=−1, y(1)= 0.

(6.5)

Its exact solution is not available.

Example 6.4 [9]. Consider problem (1.1) with

a(x)= 1, b(x)= 1
ε
,

f (x)= 1
ε

(
x−1−xexp

(
− 1√

ε

))
,

y(0)= 0, y(1)= 0.

(6.6)

Its exact solution is given by

y(x)= x−1−xexp
(
− 1√

ε

)
+exp

(
− x√

ε

)
. (6.7)
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Table 6.1. Numerical results for Example 6.1 (maximum error)
without using fitting factor.

ε n= 16 n= 32 n= 64 n= 128 n= 256 n= 512

1/8 0.15E-02 0.36E-03 0.91E-04 0.23E-04 0.57E-05 0.14E-05

1/16 0.20E-02 0.49E-03 0.12E-03 0.31E-04 0.77E-05 0.19E-05

1/32 0.29E-02 0.73E-03 0.18E-03 0.45E-04 0.11E-04 0.28E-05

1/64 0.51E-02 0.13E-02 0.31E-03 0.78E-04 0.20E-04 0.49E-05

1/128 0.95E-02 0.23E-02 0.58E-03 0.15E-03 0.36E-04 0.91E-05

1/256 0.19E-01 0.45E-02 0.11E-02 0.28E-03 0.69E-04 0.17E-04

1/512 0.38E-01 0.85E-02 0.21E-02 0.53E-03 0.13E-03 0.33E-04

1/1024 0.67E-01 0.18E-01 0.42E-02 0.10E-02 0.26E-03 0.64E-04

1/2048 0.11E+00 0.36E-01 0.81E-02 0.20E-02 0.50E-03 0.13E-03

Table 6.2. Numerical results for Example 6.1 (maximum error)
using fitting factor.

ε n= 16 n= 32 n= 64 n= 128 n= 256 n= 512

1/8 0.32E-03 0.80E-04 0.20E-04 0.50E-05 0.12E-05 0.31E-06

1/16 0.35E-03 0.86E-04 0.21E-04 0.53E-05 0.13E-05 0.33E-06

1/32 0.40E-03 0.99E-04 0.25E-04 0.62E-05 0.15E-05 0.39E-06

1/64 0.53E-03 0.13E-03 0.33E-04 0.82E-05 0.21E-05 0.51E-06

1/128 0.83E-03 0.19E-03 0.46E-04 0.12E-04 0.29E-05 0.72E-06

1/256 0.13E-02 0.26E-03 0.66E-04 0.16E-04 0.41E-05 0.10E-05

1/512 0.18E-02 0.42E-03 0.95E-04 0.23E-04 0.58E-05 0.14E-05

1/1024 0.25E-02 0.62E-03 0.13E-03 0.33E-04 0.81E-05 0.20E-05

1/2048 0.33E-02 0.88E-03 0.21E-03 0.47E-04 0.12E-04 0.29E-05

Table 6.3. Numerical results for Example 6.1 (rate of convergence)
using fitting factor n= 16,32,64,128,256.

ε r(0) r(1) r(2) r(3) r(4) Avg

1/8 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/16 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/32 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/64 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/128 0.22E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/256 0.23E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.21E+01

1/512 0.22E+01 0.22E+01 0.20E+01 0.20E+01 0.20E+01 0.21E+01

1/1024 0.21E+01 0.23E+01 0.20E+01 0.20E+01 0.20E+01 0.21E+01

1/2048 0.21E+01 0.22E+01 0.22E+01 0.20E+01 0.20E+01 0.21E+01

Tables 6.1, 6.2, 6.5, and 6.8 contain the maximum errors at all the mesh

points:

max
j

∣∣y(xj)− ν̃(xj)∣∣ (6.8)
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Table 6.4. Numerical results of O’Riordan and Stynes for Example
6.2 (maximum error).

n ε = 1 ε = (1/n)0.25 ε = (1/n)0.5 ε = (1/n)0.75 ε = (1/n)
8 0.42E+00 0.38E+00 0.33E+00 0.28E+00 0.25E+00

16 0.11E+00 0.95E-01 0.78E-01 0.66E-01 0.64E-01

32 0.27E-01 0.23E-01 0.18E-01 0.16E-01 0.17E-01

64 0.69E-02 0.56E-02 0.42E-02 0.40E-02 0.42E-02

128 0.17E-02 0.13E-02 0.10E-02 0.10E-02 0.13E-02

256 0.43E-03 0.31E-03 0.25E-03 0.26E-03 0.37E-03

512 0.11E-03 0.74E-04 0.63E-04 0.73E-04 0.10E-03

Table 6.5. Numerical results for Example 6.2 (maximum error).

n ε = 1 ε = (1/n)0.25 ε = (1/n)0.5 ε = (1/n)0.75 ε = (1/n)
8 0.20E+00 0.18E+00 0.14E+00 0.10E+00 0.10E+00

16 0.54E-01 0.47E-01 0.38E-01 0.26E-01 0.22E-01

32 0.14E-01 0.12E-01 0.95E-02 0.64E-02 0.92E-02

64 0.35E-02 0.30E-02 0.24E-02 0.16E-02 0.27E-02

128 0.86E-03 0.76E-03 0.60E-03 0.40E-03 0.66E-03

256 0.22E-03 0.19E-03 0.15E-03 0.10E-03 0.16E-03

512 0.54E-04 0.47E-04 0.37E-04 0.25E-04 0.41E-04

for differentn and ε, where ν̃(xj) is the approximate solution of (1.1) obtained

via (2.7) and (2.3).

Table 6.6 contains maximum errors based on the double-mesh principle

(Doolan et al. [4]) (as for Example 6.3, the exact solution is not available):

max
0≤j≤n

∣∣ν̃nj − ν̃2n
2j
∣∣, n= 8,16,32,64,128,256. (6.9)

Tables 6.3 and 6.7 contain the numerical rate of uniform convergence for Ex-

amples 6.1 and 6.3, respectively, which is determined as in [4]:

rk,ε = log2

( zk,ε
zk+1,ε

)
, k= 0,1,2, . . . , (6.10)

where

zk,ε =max
j

∣∣∣ν̃h/2kj − ν̃h/2k+1

2j

∣∣∣, k= 0,1,2, . . . , (6.11)

and ν̃h/2
k

j denotes the value of ν̃j for the mesh length h/2k.
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Table 6.6. Numerical results for Example 6.3 (maximum error).

ε n= 8 n= 16 n= 32 n= 64 n= 128 n= 256 n= 512

1/2 0.10E-01 0.25E-02 0.63E-03 0.16E-03 0.39E-04 0.98E-05 0.24E-05

1/4 0.20E-01 0.49E-02 0.12E-02 0.31E-03 0.77E-04 0.19E-04 0.48E-05

1/8 0.39E-01 0.96E-02 0.24E-02 0.60E-03 0.15E-03 0.38E-04 0.94E-05

1/16 0.75E-01 0.19E-01 0.47E-02 0.12E-02 0.29E-03 0.73E-04 0.18E-04

1/32 0.14E+00 0.35E-01 0.88E-02 0.22E-02 0.55E-03 0.14E-03 0.34E-04

1/64 0.25E+00 0.63E-01 0.16E-01 0.40E-02 0.99E-03 0.25E-03 0.62E-04

1/128 0.42E+00 0.11E+00 0.26E-01 0.66E-02 0.16E-02 0.41E-03 0.10E-03

1/256 0.64E+00 0.16E+00 0.40E-01 0.99E-02 0.25E-02 0.62E-03 0.15E-03

Table 6.7. Numerical results for Example 6.3 (rate of convergence),
n= 8,16,32,64,128.

ε r(0) r(1) r(2) r(3) r(4) Avg

1/2 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/4 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/8 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/16 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/32 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/64 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/128 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

1/256 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

Table 6.8. Numerical results for Example 6.4 (maximum error).

ε
Schatz’s: PL∗ [9] Schatz’s: HC∗∗ [9] Our results

n= 20 n= 40 n= 20 n= 40 n= 20 n= 40

5−1 0.96E-03 0.24E-03 0.34E-05 0.26E-06 0.18E-14 0.60E-14

5−2 0.27E-01 0.60E-02 0.83E-03 0.90E-04 0.33E-15 0.56E-15

5−3 0.21E+00 0.12E+00 0.33E-01 0.94E-02 0.22E-15 0.22E-15

5−4 0.26E+00 0.26E+00 0.78E-01 0.68E-01 0.22E-15 0.22E-15

5−5 0.27E+00 0.27E+00 0.82E-01 0.82E-01 0.11E-15 0.11E-15

5−6 0.27E+00 0.27E+00 0.82E-01 0.82E-01 0.11E-15 0.11E-15

∗PL: piecewise linears
∗∗HC: Hermite cubics.

7. Discussion. We have described a numerical method for solving selfad-

joint singular perturbation problem using cubic spline with exponential fit-

ting. It is a practical method and can easily be implemented on a computer

to solve such problems. The method has been analyzed for convergence. Four
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Figure 7.1. Exact and approximate solutions of Example 6.1 for ε =
0.001 without using fitting factor.
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Figure 7.2. Exact and approximate solutions of Example 6.1 for ε =
0.001 using fitting factor.

examples have been solved to demonstrate the applicability of the proposed

method.

For Examples 6.1 and 6.3, we have computed the rate of convergence, see

Tables 6.3 and 6.7 which show the uniform second-order convergence as pre-

dicted in the theory. The same can be seen for the other examples also.

As is seen from Tables 6.1 and 6.2, the results obtained using fitting factor

are better than those without using fitting factor.

Example 6.2 has been solved earlier by O’Riordan and Stynes [7]. We obtain

better results than those in [7]. Using finite-element techniques, Schatz and
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Figure 7.3. Exact and approximate solutions of Example 6.1 for ε =
0.0005 without using fitting factor.
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Figure 7.4. Exact and approximate solutions of Example 6.1 for ε =
0.0005 using fitting factor.

Wahlbin [9] have solved Example 6.4. Table 6.8 shows (quite graphically) how

badly standard methods can perform.

To further corroborate the applicability of the proposed method, graphs

have been plotted for Examples 6.1 and 6.2 for values of x ∈ [0,1] versus

the computed (termed as approximate) solution obtained at different values

of x for a fixed ε. For each plot, we took n = 20 and 40 for Examples 6.1 and

6.2, respectively. Figures 7.1 and 7.3 are the graphs without using fitting factor

for Example 6.1 for ε = 0.001 and ε = 0.0005, respectively, whereas Figures 7.2

and 7.4 are the graphs which are plotted using fitting factor for the same value

of n and ε = 0.001 and ε = 0.0005, respectively. Similarly Figures 7.5 and 7.7



EXPONENTIALLY FITTED SPLINE APPROXIMATION METHOD . . . 3889

10.80.60.40.20
−1

−0.5

0

0.5

1

1.5

2

Exact sol.
Approx. sol. for h = 1/40

Figure 7.5. Exact and approximate solutions of Example 6.2 for ε =
0.001 without using fitting factor.
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Figure 7.6. Exact and approximate solutions of Example 6.2 for ε =
0.001 using fitting factor.

are graphs without using fitting factor for Example 6.2 for ε = 0.001 and ε =
0.0001, respectively, whereas Figures 7.6 and 7.8 are graphs which are plotted

using fitting factor for the same value of n and ε = 0.001 and ε = 0.0001,

respectively. It can be seen from Figures 7.1, 7.3, 7.5, and 7.7 that the exact

and approximate solutions without using fitting factor deviate from each other

in the boundary layer regions for smaller ε. To control these fluctuations, we

used fitting-factor technique and the resulting behaviour of these two solutions

can be seen from Figures 7.2, 7.4, 7.6, and 7.8. The similar observation can be

made for the other examples also.
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Figure 7.7. Exact and approximate solutions of Example 6.2 for ε =
0.0001 without using fitting factor.
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Figure 7.8. Exact and approximate solutions of Example 6.2 for ε =
0.0001 using fitting factor.

Finally, we would like to remark that we have replaced ε byσ(x,ε) in the nor-

malized form and not in the original selfadjoint problem (i.e., problem (1.1)),

with a(x) ≠ constant because in that case ε is a multiple of both the second

and first derivative terms which will cause implicit expressions whereas in nor-

malized form, ε is multiplied with the second derivative term only and hence,

the fitting-factor technique on the normalized form can easily be implemented.

This shows the importance of reducing the original selfadjoint problem to nor-

mal form.
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