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GEOFFREY C. BERRESFORD and ANDREW M. ROCKETT

Received 3 January 2003

Since coming to the attention of the general news media several years ago, the
paradoxical combination of two losing games into a winning game by J. M. R. Par-
rondo has been the subject of numerous numerical investigations and simulations.
This note provides a clear statement of the nature of the paradox together with a
straightforward analysis and resolution that is accessible to a wide audience.
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1. Introduction. A recently discovered paradox by J. M. R. Parrondo involves

combining two losing games into a winning game [1, 3, 4, 5, 6, 7]. In this note, we

set Parrondo’s games in a continuum of such games, find an explicit expression

for the difference between the losing and winning games, and maximize this

difference, thereby eliminating the probabilistic components and explaining

the paradox simply in deterministic terms.

2. Parrondo’s paradox. Parrondo’s paradox involves two games, A and B,

each based on tossing biased coins, with the player winning $1 on heads and

losing $1 on tails. In game A, the coin (which we call coin 1) has probability

1/2−c of heads, and so probability 1/2+c of tails, where c is a small positive

number such as 0.005. For c = 0, gameA is fair, so c represents the bias against

the player. Game B uses two coins: one (coin 2) has probability 1/10−c of heads

and the other (coin 3) has probability 3/4−c of heads. The choice of which coin

to use is determined by the following rule: use coin 2 if the current winnings

are a multiple of 3, and otherwise use coin 3. For c = 0, game B is also fair.

To see this, we represent the game as a Markov chain (see Figure 2.1), with

the states representing the winnings being 0,1, or 2(mod3) and the transition

probabilities on the arrows giving the probabilities of winning or losing $1 with

the appropriate coin, so that the transition matrix is

T =
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Figure 2.1. Game B as a Markov chain.

Standard methods (see, e.g., [8, pages 479–480]) allow one to calculate the

“stationary distribution” d with dT = d, giving the long-run probabilities of

the various states, obtaining d = (5/13, 2/13, 6/13). Multiplying these prob-

abilities by the expected winnings for those states, (−4/5, 1/2, 1/2), gives 0,

showing that for c = 0, the game is fair. For c > 0, the game is unfavorable to

the player since the probabilities for heads are reduced.

Parrondo’s paradox is the observation that if games A and B (with c > 0 to

make them unfavorable) are played in certain combinations, the result is favor-

able in that the long-run expected winnings for each play, or the “value” of the

game, are positive. The games can be played in strict alternation (ABABAB .. .),
by repeating blocks likeAAABB, or by randomly choosing gameAwith a proba-

bility p and B with probability 1−p. For example, if games A and B are played

with c = 0.005, their long-run expected winnings per play are, respectively,

−1 cent and about −0.87 cent, while if they are combined by choosing each

randomly with probability 1/2, the value is about 1.57 cents (found by repre-

senting the combined game as another Markov chain and multiplying the new

long-run probabilities by the expected gains). Taking instead c = 0 raises the

long-run value of the combined game to about 2.54 cents. Other combinations

are discussed (along with simulations) in [2] and elsewhere on the world wide

web.

3. Analyzing the paradox by coin selection. Since two unfavorable games

combining into a favorable game is no more paradoxical than two fair games

combining into an “even more” favorable game, we take c = 0, both for simplic-

ity and because it increases the difference between the value of the favorable

game and the larger of the two values of games A and B. A paradox is a seem-

ingly contradictory occurrence, and Parrondo’s paradox may be analyzed as

follows. There are three coins: coin 1 is fair (probability of heads is 1/2), coin

2 is unfavorable (probability of heads is 1/10), and coin 3 is favorable to the

player (probability of heads is 3/4). Game B uses the unfavorable and favorable

coins in proportions that make the game fair, using the coins 0, 5/13 ≈ 38%,
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and 8/13≈ 62% of the time, respectively. In the combined game, however, they

are used 1/2= 50%, 245/1418≈ 17%, and 232/709≈ 33% of the time, and the

favorable outcome should not be unexpected since the unfavorable coin is

used only about half as often.

4. Improving Parrondo. How can we modify game B to maximize the value

of the combined game? The probabilities 1/10 and 3/4 of heads for coins 2

and 3 that make game B fair are not unique—they can be replaced by any other

probabilities x and (1−x−√x−x2)/(1−2x), such as 1/5 and 2/3, and game

B will remain fair. We could also vary the proportions with which games A and

B are played, from 50:50 to any probability p for game A and 1−p for game B.

The graph in Figure 4.1 shows the values V(x,p) of the combined games for

different values of x and p:

V(x,p)= 3p
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Figure 4.1. Values of combined games with probability x of win-
ning with coin 2 and probability p of playing gameA (a darker shade
means a smaller value). The maximum value occurs at x = 0, p =
1−

√
13−4

√
10.

The value of the combined game is maximized at x = 0, meaning that in

game B coins 2 and 3 have probabilities 0 and 1, respectively, for heads. This

makes game B deterministic: if your winnings are a multiple of 3 you lose $1,

and otherwise you win $1. Game B is still fair since ultimately it oscillates

between states of winning or losing $1, as shown in Figure 4.2.
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Figure 4.2. Extreme game B.

Combining this extreme version of game B with game A leads to a positive

expected value because game A, with equal chances of winning and losing $1,

will occasionally lead to the middle state above, resulting in the gain of $1

before resuming the oscillation.

5. Extreme Parrondo. It should now be clear that we may push matters

still further by replacing oscillations with absorbing states and then switching

between games so as to always win. Such deterministic games can be disguised

behind a screen of probabilistic rules for choosing which game is played next

to achieve Parrondo-like effects.

The “ultimate” Parrondo paradox would be two fair games that when played

in some combination result in winning $1 on each play. We describe such a

situation below, beginning with one where the combined game wins $0.50 on

each play, and then a deterministic version with winnings of $1 on each play.

Game A: If your winnings are even, you win $1; if not, you win nothing.

Game B: If your winnings are odd, you win $1; if not, you win nothing.

1
Winnings
are odd

1

Winnings
are even

Figure 5.1. Extreme game A.

The diagram for game B is similar to Figure 5.1 but “odd” leads to “even” with

probability 1 and “even” is the absorbing state. Clearly, both games are fair in

that after at most one step you are in the absorbing state with winnings of 0.

If we now combine games A and B by playing each randomly, with probability

1/2 each, we have the situation shown in Figure 5.2.
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Figure 5.2. A random choice between extreme games.
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Figure 5.3. The ultimate, nonprobabilistic Parrondo game.

By symmetry, the long-term invariant distribution for this chain is (1/2, 1/2),
and multiplying by the expected payoff vector (1/2, 1/2) gives expected win-

nings of 1/2.

Even more favorable, simply alternate ABABAB .. . , with no probabilities in

the game at all. Ultimately, the chain is as shown in Figure 5.3, in which you

win $1 each play.

This can be made into a more Parrondo-like game by introducing probabil-

ities, but at a cost of decreasing the value of the game. For example, consider

two games, C andD, with each play of each based on a toss of a coin that comes

up heads with probability 9/10. In Game C , if your current winnings are even,

you win $1 on heads and lose $1 on tails; while if your current winnings are

odd, you win nothing on heads and lose $1 on tails. Modeling this as a Markov

chain with states even and odd, the invariant vector is (1/11, 10/11), and mul-

tiplying by the payoffs (4/5, −1/10) gives a negative value of −1/55. Game D
is the same as game C but reversing even and odd, and therefore has the same

negative value. However, playing these in strict alternation CDCDCD.. . and

beginning with 0 winnings, each play wins $1 with probability 9/10 and loses

$1 with probability 1/10, so the combined game has a value of +4/5.
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