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OPTIMALLY ROTATED VECTORS
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We study vectors which undergo maximum or minimum rotation by a matrix on
the field of real numbers. The cosine of the angle between a maximally rotated
vector and its image under the matrix is called the cosine or antieigenvalue of
the matrix and has important applications in numerical methods. Using Lagrange
multiplier technique, we obtain systems of nonlinear equations which represent
these optimization problems. Furthermore, we solve these systems symbolically
and numerically.
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1. Introduction. The concept of cosine of an operator or a matrix was first

introduced by Gustafson (see [2]). Given an operator on a Hilbert space, cosine

of T is defined by

cosT = inf
Tf≠0

Re(Tf ,f )
‖Tf‖‖f‖ , (1.1)

where cosT is also denoted by µ(T). This parameter has important applica-

tions in numerical analysis as well as pure matrix and operator theory. See

[2] for more information on the applications of µ(T) to numerical techniques

such as conjugate gradient and steepest descent methods. In recent years,

many attempts have been made to compute or approximate cosT for opera-

tors on complex Hilbert spaces. In particular, computation and approximation

of cosT for normal operators have been somewhat successful (see [2, 3, 4, 5]).

A vector f for which the inf in (1.1) is attained is called a maximally rotated

vector for T (a maximally rotated vector is called an antieigenvector in our

earlier papers). On the other hand, vectors for which the sup in

υ(T)= sup
Tf≠0

Re(Tf ,f )
‖Tf‖‖f‖ (1.2)

is attained are called minimally rotated vectors for T . A maximally or mini-

mally rotated vector is called an optimally rotated vector. In the past the focus

has been on the computation of maximally rotated vectors and µ(T). In the

present paper we are also concerned with minimally rotated vectors and υ(T).
Note that for a matrix on the real field, if the set of all negative eigenvalues of

T is nonempty, then µ(T) = −1. In this case the set of all maximally rotated
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vectors of T is simply the union of all eigenspaces corresponding to negative

eigenvalues of T . However, if the set of negative eigenvalues of T is empty,

then we have µ(T) ≥ −1. Likewise if the set of all positive eigenvalues of T is

nonempty, then υ(T)= 1. In this case the set of all minimally rotated vectors of

T is simply the union of all eigenspaces corresponding to positive eigenvalues

of T . However, if the set of positive eigenvalues of T is empty, then we have

υ(T) ≤ 1. Unfortunately, a variational approach analogous to Rayleigh-Ritz

variational theory of eigenvectors is not successful for computing optimally

rotated vectors. Nevertheless, Gustafson has found an Euler equation that sat-

isfies these vectors (see [2]). His approach is based on the direct computation

of the left-hand side of

lim
h→0

Re
(
T(f +hg),f +hg)/∥∥T(f +hg)∥∥‖f +hg‖−Re(Tf ,f )/‖Tf‖‖f‖

h
= 0,

(1.3)

which yields the following equation:

2‖Tf‖2‖f‖2(ReT)f −‖f‖2Re(Tf)T∗Tf −‖Tf‖2Re(Tf ,f )f = 0. (1.4)

In this paper we use Lagrange multipliers to compute the set of optimally

rotated vectors for matrices on the real field. For a matrix T defined on the

real field, we have

µ(T)= inf
Tf≠0

(Tf ,f )
‖Tf‖‖f‖ , ν(T)= sup

Tf≠0

(Tf ,f )
‖Tf‖‖f‖ . (1.5)

Note that µ(T) and ν(T) can equivalently be defined by

µ(T)= inf
Tf≠0
‖f‖=1

(Tf ,f )
‖Tf‖ , υ(T)= sup

Tf≠0
‖f‖=1

(Tf ,f )
‖Tf‖ . (1.6)

The following are three simple properties that result directly from defini-

tions.

Property 1. For any real matrix T , we have µ(T)= µ(T t) and ν(T)= ν(T t),
where Tt is the transpose of T .

Property 2. For any invertible matrix T , we have µ(T)= µ(T−1) and ν(T)=
ν(T−1).

Property 3. If H is a reducing subspace of T , then µ(T) ≤ µ(T |H) and

υ(T)≥ υ(T |H), where T |H is the restriction of T on H.

2. Main results. If T = [tij], 1 ≤ i ≤ n, 1 ≤ j ≤ n, is an n×n matrix on the

real field and f = (x1,x2,x3, . . . ,xn) is any vector in Rn, direct computations
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show that the functional (Tf ,f )/‖Tf‖ takes the form

J(f)=
∑n
i=1

(∑n
j=1 tijxj

)
xi√∑n

i=1

(∑n
j=1 tijxj

)2
. (2.1)

Therefore, in order to compute µ(T) and υ(T) we must find the optimum

values of the expression

∑n
i=1

(∑n
j=1 tijxj

)
xi√∑n

i=1

(∑n
j=1 tijxj

)2
(2.2)

on the unit sphere
∑n
i=1x

2
i = 1. Making use of Lagrange multiplier technique

seems like a natural approach in computing optimally rotated unit vectors.

However, as the next theorem illustrates, for a general matrix, the resulting

equations are nonlinear and hard to solve even in the case of 2×2 matrices.

Theorem 2.1. Let

T =
[
a b
c d

]
(2.3)

be a 2×2 matrix on the field of real numbers; then any optimally rotated unit

vector f = (x,y) satisfies the following system of equations:

[
(ax+by)2+(cx+dy)2][cy2+by2+2axy−cx2−bx2−2dxy

]
= [ax2+bxy+cxy+dy2][cdy2+c2xy+aby2+a2xy

−d2xy−cdx2−b2xy−abx2],
x2+y2 = 1.

(2.4)

Proof. Finding

µ(T)= inf
Tf≠0
‖f‖=1

(Tf ,f )
‖Tf‖‖f‖ (2.5)

or

υ(T)= sup
Tf≠0
‖f‖=1

(Tf ,f )
‖Tf‖ (2.6)

is the same as finding the optimum values of the function

J(x,y)= ax2+(b+c)xy+dy2√
(ax+by)2+(cx+dy)2

(2.7)

on the sphere x2+y2 = 1. A necessary condition for f = (x,y) to be an op-

timizing vector for J(x,y) on the sphere is that the gradients of J(x,y) and
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x2+y2 = 1 be parallel. This means that we must have

∂J
∂x

= 2ax+(b+c)y√
(ax+by)2+(cx+dy)2

− ax2+(b+c)xy+dy2(√
(ax+by)2+(cx+dy)2

)3

×(a2x+aby+c2x+cdy)= 2λx,

∂J
∂y

= (b+c)x+2dy√
(ax+by)2+(cx+dy)2

− ax2+(b+c)xy+dy2(√
(ax+by)2+(cx+dy)2

)3

×(abx+b2y+cxd+d2y
)= 2λy,

x2+y2 = 1,

(2.8)

for some nonzero constant λ. Eliminating λ from (2.8) yields system (2.4).

As we will see later, system (2.4) can be solved algebraically for some special

matrices. Nevertheless, we can solve that system numerically in all cases, as

the following example shows.

Example 2.2. Find µ(T) and υ(T) for the matrix T = [2 −5
1 3

]
.

For this matrix, the function J(x,y) defined by (2.7) is

J(x,y)= 2x2−4xy+3y2√
5x2−14xy+34y2

. (2.9)

Now if we solve the system

∂J(x,y)
∂x

= 2λx,
∂J(x,y)
∂y

= 2λy, x2+y2 = 1, (2.10)

numerically, we obtain the following sets of solutions: (x = 0.7437, y =
0.66851), (x = −0.7437, y = 0.66851), (x = −0.96038, y = 0.27871), and

(−0.96038,0.27871). One can verify that

µ(T)= J(0.7437,0.66851)= J(−0.7437,−0.66851)= 0.13816, (2.11)

and hence vectors (0.7437,0.66851) and (−0.7437,0.66851) are maximally

rotated unit vectors. Similarly one can verify that

υ(T)= J(−0.96038,0.27871)= J(96038,0.27871)= 0.94926 (2.12)

with (−0.96038,0.27871) and (0.96038,0.27871) being minimally rotated vec-

tors. We can obtain the same results graphically. If we substitute y =√1−x2

in (2.9), we obtain

f(x)= J
(
x,
√

1−x2
)
= −x2−4x

√
1−x2+3√

−29x2−14x
√

1−x2+34
(2.13)
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whose graph is shown in Figure 2.1. The y-axis represents the cosine of the

angle between a vector (x,f (x)) and its image under T .

On the other hand, substituting −√1−x2 in (2.9) gives us

g(x)= J
(
x,−

√
1−x2

)
= −x2+4x

√
1−x2+3√

−29x2+14x
√

1−x2+34
(2.14)

whose graph is shown in Figure 2.2. The y-axis represents the cosine of the

angle between a vector (x,f (x)) and its image under T .

Notice that the graphs of f and g are symmetric with respect to the vertical

axis.

System (2.4) can be converted to a polynomial system. We omit the proof of

the next corollary.
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Corollary 2.3. Let T = [a bc d] be a 2×2 matrix on the field of real numbers;

then an optimally rotated vector f = (x,y) with ‖f‖ = 1 satisfies the following

system of equations:

px4+qx3y+rx2y2+sxy3+ty4 = 0,

x2+y2 = 1,
(2.15)

where the coefficients p, q, r , s, and t are functions of a, b, c, and d as follows:

p = a(cd+ab)−(b+c)(a2+c2),
q = a3+ac2−2a2d−3c2d+ad2−bcd−abc,
r = 3(a−d)(ab+cd),
s =−d3+3ab2+2ad2−b2d−a2d+bcd+abc,
t = (b+c)(b2+d2)−d(cd+ab).

(2.16)

System (2.15) can be easily solved for some special cases. For example, if a

matrix is such that q = 0 and s = 0, then the optimally rotated unit vectors

f = (x,y) satisfy

x2 =
(2p−r)±

√
r 2−4pt

2(p−r +t) , y2 =
(2t−r)±

√
r 2−4pt

2(p−r +t) . (2.17)

Corollary 2.4. For the matrix T = [ a b
−b a

]
,

µ(T)= ν(T)= a
2
√
a2+b2

. (2.18)

Proof. In this case all of the coefficients in the first equation of system

(2.15) are zero. Also direct substitutions show that for any vector f = (x,y),
the value of J(x,y) defined by (2.7) is a/2

√
a2+b2.

Corollary 2.5. For the matrix T = [a b
b −a

]
, the unit vectors f = (x,y)whose

components satisfy x2 = 1/2+a/√a2+b2 and y2 = 1/2−a/√a2+b2 are min-

imally rotated vectors giving ν(T)= 1. Also the unit vectors whose components

satisfy x2 = 1/2−a/√a2+b2 andy2 = 1/2+a/√a2+b2 are maximally rotated

vectors giving µ(T)= (b2−a2)/(b2+a2).

Proof. If we substitute entries of this matrix in system (2.15) and eliminate

y in it, we obtain the equation

4
(
a2+b2)x4−4

(
a2+b2)x2+b2 = 0. (2.19)

This will give us two sets of the solutions. One set satisfies x2 = 1/2 +
a/
√
a2+b2 and y2 = 1/2− a/√a2+b2. The other set satisfies x2 = 1/2−

a/
√
a2+b2 and y2 = 1/2+a/√a2+b2. If we substitute any vector from the

first set in (2.7), we obtain 1. If we substitute any vector from the second set

in (2.7), we obtain (b2−a2)/(b2+a2).
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In many applications one needs only to find upper bounds for µ(T) and

lower bounds for υ(T). If K is a reducing subspace for T , then µ(T |K) is an

upper bound for µ(T) and ν(T |K) is a lower bound for ν(T). In particular, if

J is any elementary Jordan matrix in the elementary Jordan form of T , then

µ(T)≤ µ(J). It is in general easier to compute µ and υ for an elementary Jordan

matrix than for a general matrix.

Theorem 2.6. If J = [k 0
1 k
]

is a 2×2 elementary Jordan matrix, then

(1) if k > 0, the unit vector (0,1) is a minimally rotated vector and v(J)= 1.

The two vectors

(
2k√

4k2+1
,

−1√
4k2+1

)
,

(
−2k√
4k2+1

,
1√

4k2+1

)
(2.20)

are maximally rotated unit vectors and µ(J)= (4k2−1)/(4k2+1);
(2) if k < 0, the unit vector (0,1) is a maximally rotated vector and µ(J)=−1.

The two vectors

(
2k√

4k2+1
,

−1√
4k2+1

)
,

(
−2k√
4k2+1

,
1√

4k2+1

)
(2.21)

are minimally rotated unit vectors and υ(J)= (4k2−1)/(4k2+1).

Proof. First note that k is an eigenvalue for J. One can also verify that in

this case system (2.15) is reduced to

x+2ky = 0, x2+y2 = 1, (2.22)

which has two sets of solutions

(
x = 2k√

4k2+1
,y = −1√

4k2+1

)
,

(
x = −2k√

4k2+1
,y = 1√

4k2+1

)
. (2.23)

Substituting the values of x and y in either set of solutions in (2.7) yields

(4k2−1)/(4k2+1).

Although it becomes impossible to algebraically solve the system of equa-

tions resulting from the Lagrange multipliers for general matrices of dimen-

sion greater than two, numerical solutions of these systems are always acces-

sible.

Example 2.7. Find µ(T) and υ(T) for the matrix

T =




1 2 −1

3 1 1

2 2 3


 . (2.24)



4022 MORTEZA SEDDIGHIN

Substituting the entries of this matrix in functional (2.1), we obtain

g(x,y,z)= x2+5xy+xz+y2+3yz+3z2√
14x2+18xy+16xz+9y2+10yz+11z2

, (2.25)

where f = (x,y,z) is a vector. To optimize (2.25) on the unit sphere x2+y2+
z2 = 1, we need to solve the system

∂g(x,y,z)
∂x

= 2λx,
∂g(x,y,z)

∂y
= 2λy,

∂g(x,y,z)
∂z

= 2λz, x2+y2+z2 = 1.
(2.26)

Solving this system numerically, we find two minimally rotated vectors

(−0.12416,0.28283,0.9511), (0.12416,−0.28283,−0.9511), (2.27)

yielding

υ(T)= g(−0.12416,0.28283,0.9511)

= g(0.12416,−0.28283,−0.9511)

= 0.99929.
(2.28)

We also find two maximally rotated vectors

(
0.63262,−0.77202,6.1442×10−2),(−0.63262,0.77202,−6.1442×10−2), (2.29)

yielding

µ(T)= g(0.63262,−0.77202,6.1442×10−2)
= g(−0.63262,0.77202,−6.1442×10−2)
=−1.

(2.30)

Notice that this matrix has only one real eigenvalue which is negative, and the

last two vectors are actually eigenvectors of T corresponding to this negative

eigenvalue.

This example underlines the very important fact that our techniques can be

used to find eigenvectors that correspond to real eigenvalues and hence the

real eigenvalues themselves. To find the negative eigenvalue of the matrix T
above, note that

Tf = (−0.97286,1.1873,−9.4474×10−2)
=−1.5379

(−0.63262,0.77202,−6.1442×10−2). (2.31)

Therefore, the negative eigenvalue of T is −1.5379.
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Remark 2.8. In [1] Gustafson has developed an extended operator trigo-

nometry by redefining µ(T) for invertible operators based on their polar de-

composition T =U|T |. He has replaced the definition of µ(T) given by expres-

sion (1.1) with

µ(T)= inf
Tf≠0

(|T |f ,f )∥∥|T |f∥∥‖f‖ . (2.32)
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