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We consider filtered holomorphic vector bundles on a compact Riemann surface
X equipped with a holomorphic connection satisfying a certain transversality con-
dition with respect to the filtration. IfQ is a stable vector bundle of rank r and de-
gree (1−genus(X))nr , then any holomorphic connection on the jet bundle Jn(Q)
satisfies this transversality condition for the natural filtration of Jn(Q) defined
by projections to lower-order jets. The vector bundle Jn(Q) admits holomorphic
connection. The main result is the construction of a bijective correspondence be-
tween the space of all equivalence classes of holomorphic vector bundles on X
with a filtration of length n together with a holomorphic connection satisfying the
transversality condition and the space of all isomorphism classes of holomorphic
differential operators of order n whose symbol is the identity map.

2000 Mathematics Subject Classification: 32C38, 31A35, 14F10.

1. Introduction. Let E be a holomorphic vector bundle of rank (n+1)r over

a compact connected Riemann surface X equipped with a flat connection ∇.

Let F be a holomorphic subbundle of E of rank r . The second fundamental

form of ∇ gives a filtration of V

F0 := 0⊂ F1 := F ⊂ F2 ⊂ F3 ⊂ ··· ⊂ Fm (1.1)

by subbundles. More precisely, Fi+1/Fi is the subbundle of the vector bundle

E/Fi generated by the image of the second fundamental form

S
(
Fi
)

: TX⊗Fi �→ E/Fi (1.2)

of the subbundle Fi for the connection ∇. This condition defines the filtration

inductively. Let

Si : Fi/Fi−1 �→KX⊗
(
Fi+1/Fi

)
(1.3)

be the homomorphism induced by S(Fi). We call the pair (∇,F) a coupled

connection if m = n+1 with Fn+1 = E, and Si is an isomorphism for all i ∈
[1,n].
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Let Q := E/Fn be the final quotient in the above filtration for the coupled

connection (∇,F). We show that there is a natural isomorphism of E with the

jet bundle Jn(Q) (Lemma 3.2). Using Lemma 3.2, we construct a differential

operator

D ∈H0(X,Diffn+1
X

(
Q,Kn+1

X ⊗Q)) (1.4)

of order n+1, where KX is the holomorphic cotangent bundle of X such that

the symbol of D is the identity automorphism of Q.

Conversely, given such a differential operator whose symbol is the identity

automorphism ofQ, we construct a coupled connection on Jn(Q) (Lemma 4.1).

Two coupled connections (∇,F) on E and (∇′,F ′) on E′ are called equiva-

lent if there is an isomorphism of E with E′ that takes F to F ′ and ∇ to ∇′.
Similarly, two differential operators D and D′, on Q and Q′, respectively, of

the above type with identity maps as symbol will be called equivalent if there

is an isomorphism of Q with Q′ that transports D to D′.
We prove that the space of all equivalence classes of coupled connections is

in bijective correspondence with the space of all equivalence classes of differ-

ential operators. More precisely, both of the above-mentioned constructions,

namely, from operators to coupled connections and from coupled connections

to operators, give a bijective correspondence and they are inverses of each

other (Theorem 4.5).

LetQ be a stable vector bundle over X of rank r and degree (1−g)nr , where

g is the genus of X. We prove that Jn(Q) admits a flat connection (Lemma 3.6).

It is also shown that any flat connection on Jn(Q), together with the subbundle

K⊗nX ⊗Q, defines a coupled connection (Lemma 3.5).

The special case of n = 1 was investigated in [2]. More on coupled connec-

tions can be found in [3].

2. Preliminaries. We recall the definition of jet bundles and its basic prop-

erties.

Let E be a holomorphic vector bundle over a Riemann surface X and let k
be a nonnegative integer. The kth-order jet bundle of E, denoted by Jk(E), is

defined to be the following direct image on X:

Jk(E) := p1∗

(
p∗2 E

p∗2 E⊗�X×X
(−(k+1)∆

)
)
, (2.1)

where pi :X×X →X, i= 1,2, is the projection onto the ith factor and ∆ is the

diagonal divisor on X×X consisting of all points of the form (x,x).
Let KX denote the holomorphic cotangent bundle of X. There is a natural

exact sequence

0 �→K⊗kX ⊗E �→ Jk(E) �→ Jk−1(E) �→ 0 (2.2)
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which is constructed using the obvious inclusion of �X×X(−(k + 1)∆) in

�X×X(−k∆). The inclusion map K⊗kX ⊗E → Jk(E) is constructed by using the

homomorphism

K⊗kX �→ Jk(�X) (2.3)

which is defined at any x ∈X by sending (df)⊗k, where f is any holomorphic

function with f(x) = 0, to the jet of the function fk/k! at x. Any homomor-

phism E→ F induces a homomorphism

Jk(E) �→ Jk(F) (2.4)

for any k≥ 0.

The sheaf of differential operators DiffkX(E,F) is defined to be Hom(Jk(E),F).
The homomorphism

σ : DiffkX(E,F) �→Hom
(
K⊗kX ⊗E,F) (2.5)

obtained by restricting a homomorphism from Jk(E) to F to the subsheafK⊗kX ⊗
E in (2.2), is known as the symbol map.

For all k,l≥ 0, there is a natural injective homomorphism

τ : Jk+l(E) �→ Jk(Jl(E)). (2.6)

A holomorphic section of E over an open subset U of X gives a section of

Ji(E) over U for each i ≥ 0. This defines a map from a subspace of the space

of sections Γ(U,Jk+l(E)) to a subspace of Γ(U,Jk(Jl(E))). This map extends

to the �X -linear homomorphism τ . We describe the image of τ for the special

case k= 1. This will be done using induction on l.
So, first set l = 1. Using (2.4), the homomorphism J1(E) → E in (2.2) gives

a homomorphism γ : J1(J1(E)) → J1(E). On the other hand, (2.2) gives a ho-

momorphism γ′ : J1(J1(E))→ J1(E). The image τ(J2(E)) is the kernel of the

difference γ−γ′. In other words, we have an exact sequence

0 �→ J2(E) τ
�����������������������������������������→ J1(J1(E)

) γ−γ′
����������������������������������������������������������������������������������������������������������������������→ KX⊗E �→ 0. (2.7)

Note that the image of γ−γ′ is contained in the subbundleKX⊗E ⊂ J1(E) since

the two projections of J1(J1(E)) to E, obtained from γ and γ′, respectively,

coincide.

Now, suppose that

τl−1 : J1(E) �→ J1(Jl−1(E)
)

(2.8)

is the homomorphism in (2.6). As before, the projection Jl(E)→ Jl−1(E) in (2.2)

induces, using (2.4), a homomorphism

γ : J1(Jl(E)) �→ J1(Jl−1(E)
)
. (2.9)
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On the other hand, consider the homomorphism J1(Jl(E))→ Jl(E) defined as

in (2.2) and let

γ′ : J1(Jl(E)) �→ J1(Jl−1(E)
)

(2.10)

denote its composition with the homomorphism τl−1 in (2.8). Just as before,

the image of the homomorphism

τl : J1+l(E) �→ J1(Jl(E)) (2.11)

in (2.6) is precisely the kernel of γ−γ′.
A holomorphic connection on a holomorphic vector bundle E over X is a

first-order operator

∇∈H0(X,Diff1
X
(
E,KX⊗E

))
(2.12)

with the identity automorphism of E as its symbol. It is easy to see that this

condition on E is equivalent to the Leibniz identity

∇(f s)= df ⊗s+f∇s, (2.13)

where s is a local (holomorphic) section of E and f is a local holomorphic

function. The (complex) dimension of X being one, the curvature of ∇ van-

ishes identically. Therefore, if ∂ is the Dolbeault operator defining the holo-

morphic structure of E, then∇+∂ is a flat connection on E compatible with its

holomorphic structure. Conversely, the (1,0)-part of any flat connection on E
compatible with its holomorphic structure defines a holomorphic connection

on E. By a flat connection on a holomorphic vector bundle we always mean one

which is compatible with the holomorphic structure.

For a subbundle F of E, the second fundamental form of a holomorphic

connection ∇ on E is the composition

F ↩ E ∇
������������������������������������������������→ KX⊗E Id×q

�����������������������������������������������������������������������������������������������������������������→ KX⊗(E/F), (2.14)

where the final homomorphism is defined using the natural projection q : E→
E/F . Note that the Leibniz identity ensures that the second fundamental form

is a homomorphism of �X -modules. Therefore, it defines a vector bundle ho-

momorphism

S ∈H0(X,KX⊗Hom(F,E/F)
)
. (2.15)

Now, S generates a subbundle of E containing F . Indeed, denoting by T the

torsion part of the cokernel (E/F)/S(K∗X ⊗F), for the homomorphism S, the

inverse image of T for the quotient map E/F → (E/F)/S(K∗X⊗F) is a subbundle

of E/F containing the image, under S, of K∗X ⊗F . Denoting this subbundle by
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F ′, the inverse image F2 := q−1(F ′) is a subbundle of E containing F . Clearly, F
is preserved by ∇ if and only if F = F2.

We have a filtration

F0 := 0⊂ F1 := F ⊂ F2 ⊂ F3 ⊂ ··· ⊂ Fn ⊂ Fn+1 (2.16)

of E by subbundles, where Fi+1 is the subbundle obtained by substituting Fi
for F in the above construction of F2. If Fn+1, namely where the iterated con-

struction of filtration stabilizes, is a proper subbundle of E, then we will define

Fn+2 to be E itself. Note that Fn+1 is preserved by ∇.

Since the operator ∇ sends Fi to KX ⊗Fi+1, the second fundamental forms

for the subbundles in the filtration (2.16) of E give a homomorphism

Si : Fi/Fi−1 �→KX⊗
(
Fi+1/Fi

)
(2.17)

of vector bundles for each i∈ [1,n+1]. So, S1 coincides with S in (2.15). Also,

if Fn+1 	= E, then Sn+1 = 0 (so, Sn+1 always vanishes) and Si 	= 0 for all i≤n.

3. Coupled connection. Let X be a compact connected Riemann surface of

genus at least two. Let E be a holomorphic vector bundle, of rank (n+1)r over

X, equipped with a holomorphic connection ∇. Suppose F is a holomorphic

subbundle of E of rank r .

Definition 3.1. The pair (∇,F) will be called a coupled connection if Fn+1,

namely where the filtration (2.16) stabilizes, coincides with E and the vector

bundle homomorphism Si in (2.17) is an isomorphism for each i∈ [1,n]. The

rank of the subbundle F , namely r , will be called the rank of the coupled

connection.

Take a coupled connection (∇,F) on a vector bundle E over X.

The final quotient E/Fn for the filtration (2.16) of E will be denoted by Q.

Since each Si in (2.17) is an isomorphism, we have

Sn ◦Sn−1◦···◦S1 : F �→KnX⊗Q (3.1)

as an isomorphism. Here, Si denotes the homomorphism

Ki−1
X ⊗(Fi/Fi−1

)
�→Ki−1

X ⊗KX⊗
(
Fi+1/Fi

)=KiX⊗(Fi/Fi−1
)

(3.2)

obtained by taking the tensor product of the identity map of Ki−1
X with the

homomorphism in (2.17). Furthermore, Fi+1/Fi =K⊗iX ⊗F .

Let q : E → Q denote the natural quotient homomorphism. For any x ∈ X
and any vector v ∈ Ex in the fiber of E over x, let sv denote the (unique) local

flat section of E, defined around x, with sv(x) = v . Let v denote the vector

in Jj(Q) representing the (local) section q(sv) of Q. Consequently, we have a
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vector bundle homomorphism

φj : E �→ Jj(Q) (3.3)

that sends any v to v constructed above.

Lemma 3.2. The homomorphism φn is an isomorphism. Furthermore, there

is a commutative diagram

E
φn

q

Jn(Q)

h

E/Fi Jn−i(Q)

(3.4)

for every i∈ [1,n], where q is the natural quotient map and h is obtained from

(2.2).

Proof. The lemma follows immediately by unraveling the definitions. To-

wards this, we first describe the second fundamental form and the filtration

in (2.16).

As in (2.15), let F be a subbundle of a flat vector bundle E. We give an inter-

pretation of the homomorphism S in (2.15). Take a point x ∈ X and a vector

v ∈ Fx over x. Let v1 denote the (unique) flat section of E over the first-order

infinitesimal neighborhood of x, with v1(x) = v . Let v be a section of F over

the first-order infinitesimal neighborhood of x, with v(x)= v . The difference

v−v1 is clearly an element of (KX⊗E)x . Its projection to (KX⊗(E/F))x coin-

cides with S(x)(v).
More generally, for i≥ 1, let vi denote the (unique) flat section of E over the

ith-order infinitesimal neighborhood of x, with vi(x)= v . Let v be a section of

Fi over the ith-order infinitesimal neighborhood of x, with v(x)= v . Consider

the difference vi := v−vi. Using induction, it is easy to see that vi is a section

of Fi+1. Consequently, by projecting vi, we get an element in (K⊗iX ⊗(Fi+1/Fi))x .

This element in (K⊗iX ⊗ (Fi+1/Fi))x coincides with (Si ◦Si−1 ◦ ···◦S1)(v) with

Sj as in (3.1). From this observation the lemma follows immediately.

From Lemma 3.2 it follows that we have the homomorphism

φn+1 ◦φ−1
n : Jn(Q) �→ Jn+1(Q) (3.5)

which is a splitting of the surjective homomorphism Jn+1(Q)→ Jn(Q) given

by (2.2). In other words, the homomorphism in (3.5) gives a splitting of the

exact sequence in (2.2). The resulting homomorphism

ψ : Jn+1(Q) �→Kn+1
X ⊗Q (3.6)
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for this splitting is a differential operator

D ∈H0(X,Diffn+1
X

(
Q,Kn+1

X ⊗Q)) (3.7)

of order n+1 on X. Since D is defined by a splitting of the jet sequence, its

symbol, which is a holomorphic section of K−n−1
X ⊗Q∗ ⊗Kn+1

X ⊗Q = End(Q),
coincides with the identity automorphism of Q.

In Section 4, we see that the above construction of differential operator from

a coupled connection can be reversed.

Transport the connection ∇ on E to a connection on Jn(Q) using the iso-

morphismφn in (3.3). Consider the filtration (2.16) of Jn(Q) for the subbundle

KnX⊗Q⊂ Jn(Q) in (2.2) corresponding to this connection. Lemma 3.2 says that

this filtration of Jn(Q) coincides with the filtration obtained from (2.2). There-

fore, we have the following equivalent definition of a coupled connection.

Definition 3.3. A coupled connection is a flat connection on Jn(Q), where

Q is a holomorphic vector bundle on X, such that the filtration of Jn(Q) ob-

tained from (2.2) coincides with the filtration (2.16) for the subbundle KnX⊗Q⊂
Jn(Q).

Note that for the filtration of the vector bundle Jn(Q) obtained from (2.2),

the graded object is ⊕ni=0K
⊗i
X ⊗Q. Therefore, if this filtration coincides with

the filtration obtained from (2.16), then each homomorphism Si in (2.17) must

be an isomorphism. Indeed, this is a consequence of the general fact that any

homomorphism between holomorphic vector bundles of the same degree over

X, which is an isomorphism outside finitely many points, must be an isomor-

phism.

A holomorphic vector bundle V over X is called stable if for every proper

holomorphic subbundle W ⊂ V the inequality

degree(W)/rank(W) < degree(V)/rank(V) (3.8)

is valid [4, 5].

Definition 3.4. A coupled connection (∇,F) will be called stable if the

vector bundle F is stable.

Note that since K⊗nX ⊗Q= F , the vector bundle Q is stable if and only if F is

stable.

Lemma 3.5. LetQ be a stable vector bundle and∇ a flat connection on Jn(Q).
Then ∇ is a coupled connection.

Proof. Consider the filtration

0 := V0 ⊂ V1 :=K⊗nX ⊗Q⊂ V2 ⊂ V3 ⊂ ··· ⊂ Vn ⊂ Vn+1 = Jn(Q) (3.9)
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obtained from the jet sequence (2.2). In other words, Vi is the kernel of the

projection Jn(Q)→ Jn−i(Q) in (2.2). The quotient Vi+1/Vi is Kn−iX ⊗Q, which

is a stable vector bundle of degree (g−1)(n−2i)r , where g = genus(X) and

r = rank(Q). The degree is computed from the fact that degree(Jn(Q)) = 0

since it admits a flat connection. From this, it follows that there is no nonzero

homomorphism from Vi/Vi−1 to KX ⊗ (V/Vi+1). Indeed, it is easy to see that

H0(X,Hom(W1,W2)) = 0, where W1 and W2 are stable vector bundles with

degree(W1)/rank(W1)>degree(W2)/rank(W2). Consequently, if i≤n−1, then

H0(X,Hom
(
Vi/Vi−1,KX⊗

(
Vn+1/Vn

)))= 0 (3.10)

as degree(KX) > 0. Using the same argument, it also follows that if

H0(X,Hom
(
Vi/Vi−1,KX⊗

(
Vn+1/Vj+1

)))= 0, (3.11)

for some j ≥ i+1, then H0(X,Hom(Vi/Vi−1,KX ⊗ (Vn+1/Vj))) = 0. Therefore,

using induction, it follows that

H0(X,Hom
(
Vi/Vi−1,KX⊗

(
Jn(Q)/Vi+1

)))= 0. (3.12)

For a subbundle W of Jn(Q), let S(W) : W → KX ⊗ (Jn(Q)/W) denote the

second fundamental form of W for the connection ∇. For a subbundle W1 of

W , clearly, there is commutative diagram

W1

S(W1)

W

S(W)

KX⊗
(
Jn(Q)/W1

) f
KX⊗

(
Jn(Q)/W

) (3.13)

of vector bundles, where f is the tensor product of the identity automorphism

of KX with the obvious quotient map Jn(Q)/W1 → Jn(Q)/W . Using this and

(3.12) it follows that

S
(
Vi
)⊂KX⊗(Vi+1/Vi

)⊂KX⊗(Jn(Q)/Vi). (3.14)

Indeed, (3.14) is immediate for i = 1. It is straightforward to deduce (3.14)

using induction on i.
Let

S
(
Vi
)

: Vi/Vi−1 �→KX⊗
(
Vi+1/Vi

)
(3.15)

be the homomorphism induced by S(Vi) in (3.14). Since Vi/Vi−1 and KX ⊗
(Vi+1/Vi) are both stable vector bundles of the same degree/rank quotient,

the homomorphism S(Vi) must be either an isomorphism or the zero homo-

morphism. In view of (3.14), it is obvious that if S(Vi) = 0, then Vi must be

a flat subbundle of Jn(Q). But degree(Vi) 	= 0 if i ∈ [1,n], and hence such a
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Vi does not admit a flat connection. Therefore, S(Vi) is an isomorphism. This

completes the proof of the lemma.

The following lemma complements Lemma 3.5.

Lemma 3.6. LetQ be a stable vector bundle over X of rank r and degree(1−
g)nr . Then Jn(Q) admits a flat connection.

Proof. A theorem of Weil [6] and Atiyah [1] says that a holomorphic vector

bundle V over a compact Riemann surface admits a flat connection if and only

if every direct summand of it is of degree zero. A holomorphic subbundle W
of V is called a direct summand if there is another subbundle W ′ of V such

thatW⊕W ′ is isomorphic to V . Therefore, every irreducible, that is nondecom-

posable, holomorphic vector bundle of degree zero admits a flat connection.

Consequently, it suffices to show that Jn(Q) is irreducible.

Consider the filtration of Jn(Q) in (3.9) obtained from jet sequence. We

noted that the quotient Vi+1/Vi is a stable vector bundle of degree (g−1)(n−
2i)r . Therefore, the filtration (3.9) is the Harder-Narasimhan filtration of Jn(Q).
This implies that any automorphism of Jn(Q) preserves the filtration (3.9). See

[4] for properties of Harder-Narasimhan filtration.

Assume that Jn(Q) = W ⊕W ′. Take two nonzero numbers c,c′ ∈ C∗ with

c 	= c′. Let T denote the automorphism c IdW ⊕c′ IdW ′ of Jn(Q) that acts on W
as multiplication by c and acts on W ′ as multiplication by c′.

Since T preserves the filtration (3.9) and V1 is simple, we conclude that

V1 is contained in either W or W ′. Say that W contains V1. So Jn(Q)/V1 =
(W/V1)⊕W ′, and T gives an automorphism of Jn(Q)/V1. This automorphism

of Jn(Q)/V1 will be denoted by T1.

Since

V2/V1 ⊂ V3/V1 ⊂ ··· ⊂ Vn/V1 ⊂ Vn+1/V1 = Jn(Q)/V1 (3.16)

is the Harder-Narasimhan filtration of Jn(Q)/V1, and V2/V1 is simple, it follows

that V2/V1 is contained in either W/V1 or W ′. If V2/V1 is contained in W ′, then

the subbundle V2∩W ′ of V2 gives a splitting of the exact sequence

0 �→ V1 �→ V2 �→ V2/V1 �→ 0. (3.17)

But each exact sequence

0 �→ Vi/Vi−1 �→ Vi+1/Vi−1 �→ Vi+1/Vi �→ 0 (3.18)

is nonsplit, where i∈ [1,n]. Indeed, the corresponding extension class in

H1(X,Hom
(
Vi+1/Vi,Vi/Vi−1

)) (⊃H1(X,KX)) (3.19)

coincides with the element 1∈H1(X,KX). Recall that Hom(Vi+1/Vi,Vi/Vi−1)=
KX⊗End(Vi+1/Vi).
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Therefore, we have V2 ⊂ W . Now, clearly an inductive argument is valid.

More precisely, if Vi ⊂W and Vi+1 is not contained inW , then Vi+1∩W ′ gives a

splitting of the exact sequence (3.18). Using induction, we conclude that W =
Vn+1. In other words, Jn(Q) is indecomposable. This completes the proof of

the lemma.

Isomorphism classes stable vector bundles of rank r form an algebraic va-

riety of dimension r 2(g−1)+1 [5]. Consequently, Lemma 3.6 combines with

Lemma 3.5 to produce examples of coupled connections.

4. Coupled connections from differential operator. Let Q be a holomor-

phic vector bundle over X of rank r and let

D ∈H0(X,Diffn+1
X

(
Q,Kn+1

X ⊗Q)) (4.1)

be a differential operator whose symbol is the identity automorphism of Q.

The condition on the symbol ofD ensures that the homomorphism Jn+1(Q)→
Kn+1
X ⊗Q defining D gives a splitting of the jet sequence

0 �→Kn+1
X ⊗Q �→ Jn+1(Q) �→ Jn(Q) �→ 0. (4.2)

Let

γ : Jn(Q) �→ Jn+1(Q) (4.3)

be the homomorphism corresponding to this splitting.

Consider the commutative diagram of vector bundles

0 Kn+1
X ⊗Q Jn+1(Q)

τ

Jn(Q) 0

0 KX⊗Jn(Q) J1
(
Jn(Q)

)
Jn(Q) 0,

(4.4)

where τ is defined in (2.6) and the horizontal exact sequences are as in (2.2).

The homomorphism

τ ◦γ : Jn(Q) �→ J1(Jn(Q)) (4.5)

is clearly a splitting of the bottom exact sequence in (4.4), where γ is defined

in (4.3).

A splitting of the exact sequence

0 �→KX⊗V �→ J1(V) �→ V �→ 0 (4.6)



DIFFERENTIAL OPERATOR AND FLAT CONNECTION . . . 4051

in (2.2) defines a holomorphic connection on V [1]. More precisely, the space of

flat connections on V is in bijective correspondence with the space of splittings

of this exact sequence. As we noted earlier, any holomorphic connection on a

Riemann surface is automatically flat since there are no nonzero holomorphic

2-forms on it. We recall that given a flat connection on V , the corresponding

splitting homomorphism V → J1(V) of the exact sequence sends any vector

v ∈ Vx in the fiber to the image, in J1(V), of the (unique) flat section s of V ,

defined around x, with s(x)= v .

Therefore, the homomorphism τ ◦ γ in (4.5) defines a flat connection on

Jn(Q). This connection will be denoted by ∇.

Given a differential operator D1 on X whose symbol homomorphism is an

isomorphism, the sheaf of solutions of D1 defines a local system on X. More

precisely, if D1 is of orderm acting on a vector bundle of rank l, then the cor-

responding local system is of rankml. It can be checked that the local system

defined by the operator D in (4.1) coincides with the local system defined by

the above flat connection ∇.

Lemma 4.1. The connection ∇ on Jn(Q) is a coupled connection.

Proof. To prove the lemma, we first give a description of the second fun-

damental form.

Let V be a vector bundle over X and let W be its subbundle. Consider the

commutative diagram

0

W

ι

J1(V)
p

j

V

0 KX⊗(V/W) J1(V/W)
q

V/W 0

V/W V/W,

(4.7)

where ι is the inclusion map and all other maps are as in (2.2). Now let ∇ be a

holomorphic connection on V . So, ∇ defines a homomorphism

h : V �→ J1(V) (4.8)

such that p◦h is the identity automorphism of V .
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Consider the homomorphism j◦h◦ι :W → J1(V/W). The commutativity of

the diagram implies that q◦j ◦h◦ ι = 0. Consequently, j ◦h◦ ι gives a homo-

morphism

S(W) :W �→KX⊗(V/W). (4.9)

It is easy to check that this homomorphism coincides with the second funda-

mental form of W for the connection ∇.

For any i∈ [0,n−1], letWi denote the kernel of the homomorphism Jn(Q)→
Ji(Q) in (2.2). We have a commutative diagram

0

Wi

ι

Jn+1(Q)
p

j

Jn(Q)

0 Ki+1
X ⊗Q Ji+1(Q)

q
Ji(Q) 0

Ji(Q) Ji(Q),

(4.10)

where ι is the inclusion map and all other maps are as in (2.2). Let h : Jn(Q)→
Jn+1(Q) be a splitting of p, that is, p◦h is the identity automorphism of Jn(Q).
Just as before, the homomorphism j◦h◦ι gives a homomorphism

Si :Wi �→Ki+1
X ⊗Q (4.11)

since q◦j◦h◦ι= 0. On the other hand, we have a commutative diagram

0 Wi

f

Jn(Q) Ji(Q) 0

0 Ki+1
X ⊗Q Ji+1(Q) Ji(Q) 0.

(4.12)

It is straightforward to check that the above homomorphism f coincides with

Si constructed in (4.11).

Since the connection ∇ is defined by τ ◦γ, where γ is the splitting of the

homomorphism p in (4.10), from the earlier description of the second funda-

mental form it follows that the second fundamental form of the subbundle

Wi ⊂ Jn(Q), for the connection ∇, coincides with the homomorphism Si in
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(4.11) constructed by substituting h with γ. But Si coincides with f . Therefore,

the filtration (2.16) constructed from the subbundle Wn−1 = KnX ⊗Q ⊂ Jn(Q)
for the connection ∇ coincides with the filtration (3.9) constructed from (2.2).

This completes the proof of the lemma.

In Section 3, given a coupled connection, we constructed a differential oper-

ator (see (3.7)). Let

D ∈H0(X,Diffn+1
X

(
Q,Kn+1

X ⊗Q)) (4.13)

be the differential operator for the coupled connection (Jn(Q),∇) constructed

in Lemma 4.1 from the operator D in (4.1).

Proposition 4.2. The differential operator D coincides with the operator D
in (4.1).

Proof. It is straightforward to check that the homomorphism γ in (4.3) co-

incides with the homomorphismφn+1◦φ−1
n in (3.5) for the coupled connection

(Jn(Q),∇). The proposition follows immediately from this observation.

Let

D′ ∈H0(X,Diffn+1
X

(
Q′,Kn+1

X ⊗Q′)) (4.14)

be a differential operator with the identity automorphism of Q′ as its symbol

(the same condition for D in (4.1)). The two operators D and D′ will be called

equivalent if there is an isomorphism

ρ :Q �→Q′ (4.15)

which intertwines D and D′. In other words, (Id⊗ρ)◦D = D′ ◦ρ, where Id⊗ρ
is the automorphism of Kn+1

X ⊗Q defined by ρ and the identity automorphism

of Kn+1
X .

Let �(r ,n) denote the space of all equivalence classes of differential opera-

tors

D ∈H0(X,Diffn+1
X

(
Q,Kn+1

X ⊗Q)), (4.16)

where Q is some holomorphic vector bundle of rank r and the symbol of D is

the identity automorphism of Q.

If D1 ∈ H0(X,Diffn+1
X (Q,Q1)) is a differential operator whose symbol is an

isomorphism, thenQ1 is isomorphic to Kn+1
X ⊗Q. Therefore, �(r ,n) coincides

with the space of equivalence classes of differential operators of order n+1,

between two vector bundles of rank r , such that the symbol is an isomorphism.

If D and D′ are two equivalent differential operators from Q to Kn+1
X ⊗Q,

then the automorphism ρ ofQ that intertwines D and D′ induces an automor-

phism of Jn(Q). Let ρ′ denote the automorphism of Jn(Q). Let ∇ (resp., ∇′)
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be the coupled connection constructed from D (resp., D′) in Lemma 4.1. It is

easy to see that the automorphism ρ′ commutes with the connections ∇ and

∇′.
Let E and E′ be two holomorphic vector bundles over X of rank (n+1)r .

Let (∇,F) and (∇′,F ′) be two coupled connections of rank r on E and E′,
respectively. The two coupled connections will be called equivalent if there is

an automorphism

T : E �→ E′ (4.17)

such that T(F)= F ′ and T takes ∇ to ∇′, that is, ∇′◦T = T ◦∇.

Since T takes F to F ′ and ∇ to ∇′, it follows immediately that T takes the

filtration (2.16) for F to the corresponding filtration for F ′. In particular, T
gives an isomorphism of the final quotient Q = E/Fn with the corresponding

quotient of E′.
Let �(r ,n) denote the space of all equivalence classes of coupled connections

of rank r on some holomorphic vector bundle of rank (n+1)r over X.

From the above comment on the construction in Lemma 4.1 it follows that

we have a map

Φ : �(r ,n) �→�(r ,n) (4.18)

that sends an operator D to the coupled connection ∇ constructed in Lemma

4.1 from D.

Let the two coupled connections (∇,F) on E and (∇′,F ′) on E′, as above, be

equivalent. As before, Q and Q′ denote the final quotient Fn+1/Fn for (∇,F)
and (∇′,F ′), respectively. Consider the isomorphism

T ′ :Q �→Q′ (4.19)

induced by T in (4.17). Let

Tj : Jj(Q) �→ Jj(Q′) (4.20)

denote the isomorphism induced by T ′. The diagram

E
φj

T

Jj(Q)

Tj

E′
φ′j

Jj(Q′)

(4.21)

is commutative, where φj and φ′j are constructed in (3.3).

From the commutativity of (4.21) it is immediate that the differential oper-

ators D and D′ constructed, as in (3.7), from (∇,F) and (∇′,F ′), respectively,

are equivalent. More precisely, the isomorphism T ′ takes D to D′.
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Therefore, we have a map

Ψ : �(r ,n) �→�(r ,n) (4.22)

that sends a coupled connection (∇,F) to the differential operator D con-

structed in (3.7).

We now have the following corollary of Proposition 4.2.

Corollary 4.3. The composition Ψ ◦Φ is the identity map of �(r ,n), where

Φ and Ψ are constructed in (4.18) and (4.22), respectively. In particular, Ψ is

surjective and Φ is injective.

The following lemma complements Corollary 4.3.

Lemma 4.4. The composition Φ◦Ψ is the identity map of �(r ,n).

Proof. Let α := (∇,F) be a coupled connection on E and β := (∇′,F ′) a

coupled connection on E′ such that the differential operator Ψ(α) is equivalent

to Ψ(β).
Let Q (resp., Q′) denote the final quotient Fn+1/Fn in (2.16) for α (resp., β).

Since Ψ(α) and Ψ(β) are equivalent, there is an isomorphism

A :Q �→Q′ (4.23)

that takes Ψ(α) to Ψ(β). In other words, (Id⊗A)◦Ψ(α) = Ψ(β)◦A, where Id

denotes the identity automorphism of Kn+1
X . Let

A : Jn(Q) �→ Jn(Q′) (4.24)

be the isomorphism induced by A.

Letφn (resp.,φ′n) denote the isomorphism from E (resp., E′) to Jn(Q) (resp.,

Jn(Q′)) constructed in Lemma 3.2. Finally, consider the isomorphism

T := (φ′n)−1 ◦A◦φn : E �→ E′. (4.25)

The isomorphism φn takes the filtration on E obtained from (2.16) to the fil-

tration (3.9) of Jn(Q) and the same for φ′n. Furthermore, A evidently takes

the filtration (3.9) of Jn(Q) to the corresponding filtration of Jn(Q′). There-

fore, the isomorphism T in (4.25) is compatible with the filtrations. It is easy

to check that T takes the connection ∇ to the connection ∇′. This completes

the proof of the lemma.

Corollary 4.3 and Lemma 4.4 combine together to give the following theorem.

Theorem 4.5. The two maps Φ and Ψ are bijective. Moreover, they are in-

verses of each other.
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Let �′(r ,n)⊂�(r ,n) be the subset defined by stable coupled connections

(see Definition 3.4). Similarly, let �′(r ,n)⊂�(r ,n) denote the subset consist-

ing of all operators defined on a stable vector bundle.

Theorem 4.5 has the following corollary.

Corollary 4.6. Each of the two maps Φ and Ψ defines a bijection between

�′(r ,n) and �′(r ,n). Furthermore, they are inverses of each other.
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