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An ecological model for prey-predator planktonic species has been considered, in
which the growth of prey has been assumed to follow a Holling type II function.
The model consists of two reaction-diffusion equations and we extend it to time-
varying diffusivity for plankton population. A comparative study of local stability
in case of constant diffusivity and time varying diffusivity has been performed. It
has been found that the system would be more stable with time varying diffusivity
depending upon the values of system parameter.
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1. Introduction. In 1952, Turing [10] proposed a diffusion-reaction theory

of morphogenesis on the basis of well-known laws of physical chemistry. This

concept has been extended to develop the theory of biological pattern for-

mation. In an ecological context, Segel and Jackson [8] were the first to ap-

ply Turing’s model to predator-prey system. Since then, diffusive instability

has been playing an important role in the study of ecosystem [4, 5, 6]. In

the above-mentioned studies, the considered system parameters are all time-

independent and the ratio of diffusivities of predator and prey beyond a criti-

cal value determines the diffusive instability of the system. In case of oceanic

diffusion, the diffusivities can vary with time. Horizontal currents in the sea

depend upon the depth of the sea. Due to the mixing process of these hori-

zontal currents with the vertical currents, horizontal dispersion occurs [2]. As

a result, the horizontal diffusivities of phytoplankton (prey) and zooplankton

(predator) are not only to be different but also to vary with time [1].

In the present paper, we consider an ecological model for prey-predator,

where the population size of prey is not very large. The growth of prey pop-

ulation is assumed to follow a Holling Type-II function. In this case, the dif-

fusive instability of the system may occur and mortality resulting from in-

traspecies competition among prey is assumed to be negligible. In many real

situations, due to severe intraspecies competition, the natural mortality of the

predator may be ignored. We consider a basic prey-predator model, taking

into account all the above situations with time-varying diffusivities and ana-

lyze its stability near equilibrium. We will also describe a general approach to
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the amplitude equations for perturbations and relate this to Hill’s equation.

Section 5 presents the stability analysis of the amplitude equation for small

values of a parameter representing a level of variation in diffusivity.

2. Model system : diffusive instability with constant diffusion coefficients.

We consider a prey-predator system described by the system of equations (see

[9])

∂N1

∂t
=N1

[
εN1

1+N1
−N2

]
+D1

∂2N1

∂x2
,

∂N2

∂t
=N2

[
N1−γN2

]+D2
∂2N2

∂x2
,

(2.1)

where N1(x,t) and N2(x,t) are the concentrations of prey and predator at a

position x and at time t and D1 and D2 are their diffusion coefficients, respec-

tively.

In the absence of diffusion, the prey-predator system has spatially uniform

steady states given by

E1 = (0,0), E2 =
(
εγ−1,

εγ−1
γ

)
. (2.2)

For the existence of the second stationary point, namely, E2, we must have

εγ > 1 or γ > 1/ε.
We now consider the effect of small inhomogeneous perturbations of the

steady state E2. Let x1(x,t) and x2(x,t) be the perturbations such that

N1(x,t)=N1
∗+x1(x,t), N2(x,t)=N2

∗+x2(x,t). (2.3)

Assuming x1 and x2 to be sufficiently small and linearizing (2.1) about E2,

we get

∂x1

∂t
= a11x1+a12x2+D1

∂2x1

∂x2
,

∂x2

∂t
= a21x1+a22x2+D2

∂2x2

∂x2
,

(2.4)

where

a11 = εγ−1
εγ2

a12 = 1−εγ a21 = εγ−1
γ

a22 = 1−εγ. (2.5)

In the absence of diffusion, the conditions for the stability of the system are

(see [8])

a11+a22 < 0, a11a22 >a12a21. (2.6)

Now, the first inequality in (2.6) implies that

εγ−1
εγ2

(
1−εγ2)< 0 (2.7)
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or

γ >
1√
ε
. (2.8)

But for the existence of E2, we should have εγ > 1 or

γ >
1
ε
. (2.9)

Again for ε < 1,

1
ε
>

1√
ε
. (2.10)

Inequalities (2.9) and (2.10) together imply that for ε < 1,

γ >
1√
ε
. (2.11)

Thus,

a11a22−a12a21 = (εγ−1)3

εγ2
(2.12)

is obviously positive as εγ > 1.

Therefore, it follows that for ε < 1, the system will become stable. The sys-

tem may be unstable for ε > 1.

We now consider the system with diffusion. We take the solution of the

system in this case as

xi(x,t)=φi(t)exp(ikx) i= 1,2, (2.13)

where k is the wave number. Let

φi(t)=αi expλt, (2.14)

where λ is the growth rate of perturbation in time t and αi is the amplitude at

time t.
The characteristic equation of the system is

λ2+{(D1+D2
)
k2−(a11+a22

)}
λ+(a11−k2D1

)(
a22−k2D2

)−a12a21 = 0.
(2.15)

The system will not be stable if at least one of the roots of the above equation

is positive, that is, the condition for diffusive instability is (see [3])

H = (a11−k2D1
)(
a22−k2D2

)−a12a21 < 0. (2.16)
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Now,H is a quadratic in k2 and we suppose thatD1 andD2 are constants. Then

H(k2) has a minimum for the value km2 = k2, where

km2 = 1
2

[
εγ−1
εγ2

(
1
D1
− εγ

2

D2

)]
. (2.17)

Then the inequality H(km2) < 0 gives

(
D2+D1εγ2)2 > 4D1D2ε2γ3. (2.18)

Thus H(km2) will be negative when (2.18) is satisfied, and for the wave num-

bers close to km2, the growth rate of perturbations λ can be positive. This

criterion is equivalent to the dimensionless form

β1/2+pβ−1/2 > 2(p+ξ)1/2 > 0, (2.19)

where

β= D2

D1
, p = a22

a11
=−εγ2, ξ = ε2γ3. (2.20)

The second inequality in (2.19) is automatically satisfied as εγ2(εγ−1) > 0

is true from the condition of existence of the second stationary point E2.

The first inequality in (2.19) gives the criterion of diffusive instability and

from the first equation in (2.20), we get D2 = βD1. Therefore, (2.18) gives (β+
εγ2)2 > 4βε2γ3 or

β2+2βεγ2(1−2εγ)+ε2γ4 > 0. (2.21)

Therefore, the critical values of β are given by

βcr = εγ2
(

2εγ−1±
√

4ε2γ2−4εγ
)
. (2.22)

So the diffusive system given by (2.1) will be stable if

εγ2
(

2εγ−1−
√

4ε2γ2−4εγ
)
<
D2

D1
< εγ2

(
2εγ−1+

√
4ε2γ2−4εγ

)
. (2.23)

The condition for diffusive instability can also be written as

ε2(4βγ3−γ4)−2βεγ2−β2 < 0, (2.24)

that is,

β
(
1−2γ3/2)
γ2(4β−γ) < ε <

β
(
1+2γ3/2)
γ2(4β−γ) . (2.25)
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3. Variable diffusivities and amplitude equations. To examine the stabil-

ity of the uniform steady state to spatial and temporal perturbations in the

presence of diffusion, we consider the system of (2.4) and define dimension-

less time ωt = τ , where ω > 0 is the frequency of variation in D2. Here we

consider D1 as a constant and D2 as a function of time. We now express the

solutions of (2.4) in the form

x1(t)=φ1(t)exp(ikx), x2(t)=φ2(t)exp(ikx). (3.1)

Then we obtain the system of equations for φi as

dφ1

dτ
= (a11−k2D1

)
ω−1φ1+a12ω−1φ2,

dφ2

dτ
= a21ω−1φ1+

{
a22−k2D2(τ)

}
ω−1φ2.

(3.2)

For simplicity, we consider the time-varying diffusivity D2 in τ as

D2(τ)=D1
(
β1+αsinτ

)
> 0, (3.3)

where β1 > 1 and β1 > |α|.
The system of (3.2) can be rewritten as

dφ1

dτ
= â11φ1+ â12φ2,

dφ2

dτ
= â21φ1+ â22φ2, (3.4)

where

â11 = a11−k2D1

ω
, â12 = a12

ω
, â21 = a21

ω
,

â22 = â∗22−
k2D1αsinτ

ω
with â∗22 =

a22−k2D1β1

ω
.

(3.5)

As a reference state we take α = 0, that is, the case with constant diffusivi-

ties.

We have already seen that the criterion for diffusive instability with constant

diffusion coefficient is (β1+εγ2)2 > 4β1ε2γ2.

In this case, the critical values of β1 are

βcr = εγ2
(

2εγ−1±
√

4ε2γ2−4εγ
)
, (3.6)

and the corresponding critical wave number kcr for the first perturbation to

grow is found by evaluating km from (2.17), considering D2 = β1D1 at β1 =
βcr . This critical value of β1 identifies the stable and unstable regions of the

diffusive system (2.1).

We are now interested in finding the diffusive instability regions in the sys-

tem of variable diffusivities and comparing the result with the reference system

of constant diffusivities.
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Substituting the first equation in (3.4) into the second equation and consid-

ering the transformation

ψ1 = exp
[
− 1

2

∫ {
â11+ â22(τ)

}
dτ
]
φ1, (3.7)

we get

d2ψ1

dτ2
+Q(τ)ψ1 = 0, (3.8)

where

Q(τ)= 1
2
d
dτ
(
â22

)− 1
4

{
â11+ â22(τ)

}2+{â11â22(τ)− â12â21
}
. (3.9)

Equation (3.8) is the standard form of Hill’s equation [7].

Substituting the values of â11, â12, â21, and â22 into (3.8), we get

d2ψ1

dy2
+[δ+η{−2cos2y+(2ω)−1(a22−a11−k2D1

(
β1−1

))
sin2y

}

+2η2 cos4y
]
ψ1 = 0,

(3.10)

where

δ= (2ω)−2
[

2k2D1

{(
a22−a11

)(
β1−1

)− 1
2
k2D1

(
2
(
β1−1

)2+α2)}

−(a11+a22
)2+4

(
a11a22−a12a21

)]
,

η= αk
2D1

4ω
, τ = 2y.

(3.11)

The solution of (3.4) can then be written as

φ1 = exp
[
(2ω)−1{(a11−k2D1+a22−k2D1β1

)
τ+k2D1αcosτ

}]
ψ1. (3.12)

4. Linear stability for small variation in diffusion coefficient. We now

study the linear stability of the system when the amplitude α of the variability

in D2 is small. For this, we first set β1 = βcr and km = kcr for marginal stabil-

ity in the reference state and analyze the linear stability of the system when a

small variation in D2 is introduced. Equation (3.10) is then reduced to

d2ψ1

dy2
+{δ+η(−2cos2y+2msin2y

)}
ψ1 = 0, (4.1)

where

δ=−(â11+ â∗22

)2+4
(
â11â∗22− â12â21

)
,

η= kc
2D1α
ω

� 1, m= â∗22− â11.
(4.2)

The inequality in (4.2) holds since α is very small.
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We seek a straightforward expansion for the solution of (4.1) in power series

of η in the form of (see [7])

ψ1(y ;η)=ψ10(y)+ηψ11(y)+η2ψ12(y)+··· . (4.3)

Since η� 1, we have

ψ1(y ;η)=ψ10(y)+ηψ11(y). (4.4)

Substituting from (4.4) in (4.1) and equating coefficients of like powers of η,

we have

ψ̈10+δψ10 = 0, (4.5)

ψ̈11+δψ11−2ψ10 cos2y+2mψ10 sin2y = 0. (4.6)

When δ > 0, say δ= r 2, the solution of (4.5) can be written as

ψ10 =Acos(ry+B), (4.7)

where A and B are constant.

Substituting from (4.7) in (4.6) and disregarding the homogeneous solution,

we may write

ψ11 = A
4

[
− cos(ry+2y+B)

(r +1)
+ cos(ry−2y+B)

(r −1)

−msin(ry+2y+B)
(r +1)

+msin(ry−2y+B)
(r −1)

]
.

(4.8)

Therefore, the solution of the first equation in (3.4) is

φ1 =
[

exp
{(
â11+ â∗22

)
y+ 1

2
k2D1α
ω

cos2y
}](
ψ10+ηψ11

)
. (4.9)

Now, (â11+â∗22) < 0 for ε < 1 and consequentlyφ1 tends to zero when y , as

well as τ , tends to infinity. Therefore, for δ > 0 and ε < 1, the diffusive system

will be asymptotically stable.

When δ < 0, say δ=−θ2, the solution of (4.5) can be written as

ψ10 =A1 exp(θy)+B1 exp(−θy), (4.10)

where A1 and B1 are constants.

Consequently,

ψ1 =A1eθy
[

1+ η
2
(
θ2+1

){θ sin2y−cos2y−mθcos2y−msin2y}
]

+B1e−θy
[

1+ η
2(θ2+1)

{mθcos2y−msin2y−θ sin2y−cos2y}
]
.

(4.11)
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Therefore,

φ1 =
[

exp
{(
â11+ â∗22

)
y+ 1

2
k2D1α
ω

cos2y
}](
ψ10+ηψ11

)
. (4.12)

If

[
â11+ â∗22+

√(
â11− â∗22

)2+4â12â21

]
< 0, (4.13)

then the solution φ1 will be asymptotically stable. This condition can be re-

duced to â11â∗22 > â12â21, that is,

(εγ−1)3

εγ2
+k2D1

[
k2D1β1+(εγ−1)

(
εγ2−β1

εγ2

)]
> 0. (4.14)

Inequality (4.14) will be satisfied if εγ2 > β1 or

(εγ−1)3

εγ2
+k4D2

1β1 > k2D1

(
εγ−1
εγ2

)(
β1−εγ2). (4.15)

Therefore, for δ < 0 and ε > β1/γ2, φ1 will be asymptotically stable.

From the analysis of Section 2, we have the condition of stability for constant

diffusivity as

εγ2
(

2εγ−1−
√
(2εγ−1)2−1

)
< β< εγ2

(
2εγ−1+

√
(2εγ−1)2−1

)
.

(4.16)

Thus, the length of the interval of β for the stability of the system is

[2εγ2
√
(2εγ−1)2−1].

In this section, we see that the stability criterion for variable diffusivity is

0 < β1 < εγ2, where ε < 1. Therefore, in this case, the length of the interval

of β1 for which stability occurs is εγ2. So, if 2
√
(2εγ−1)2−1< 1 or εγ < 1.06

(approximately), then the system will become more stable under variable dif-

fusivity than under constant diffusivity.

5. Conclusion. In the present paper, we have considered a model of prey-

predator ecosystem where the growth of prey is not directly proportional to

the existing prey population and it is described by a Holling type II function.

The stability analysis of the system reveals that the system without diffusion is

stable when ε < 1, that is, the growth rate of prey is small. We have then studied

the diffusive instability of the system with constant diffusion coefficient. From

these studies, it follows that diffusive instability will certainly develop when

(
D2+D1εγ2)2 > 4D1D2ε2γ3. (5.1)
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This condition will be satisfied whenD2/D1 � 1. Hence, for diffusive instability

of the system, the mobility of predator should be much higher than that of the

prey.

When the diffusivity of the predator is driven by time-varying diffusion co-

efficients, the stability criterion of the system is changed. In this case, we see

that, for ε < 1, the system will become asymptotically stable if 0 < β1 < εγ2.

We also observe that, depending upon the values of ε and γ, that is, the growth

rate of the prey and the competition rate of the predator, the system will be-

come more stable with time-varying diffusivity than with constant diffusivity.

If εγ < 1.06 (approximately), then the system with varying diffusivity will be

more stable.
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