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We investigate when a Nagata ring R(X) can be written as a directed union of
Artinian subrings. For a family of zero-dimensional rings {R«} xca, we show that
[Taea Rax(Xx) is not a directed sum of Artinian subrings.
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1. Introduction. All rings considered in this paper are assumed to be com-
mutative with a unit element. If R is a subring of a ring S, we assume that
the unity element of S belongs to R, and hence is the unit element of R. Let
Spec(R), Z(R), Inv(R), and Anng(I) denote, respectively, the spectrum of R
(the set of prime ideals of R), the set of zero-divisors of R, the set of invertible
elements of R, and the annihilator of a subset I of R. By the dimension of R,
denoted as dimR, we mean the Krull dimension: dimR is the maximal length
of a chain of proper prime ideal Py C P; C - - - C P, of R. If there is no upper
bound on the length of such chains, then we write dimR = co.

In this paper, we study zero-dimensional rings, in which each proper prime
ideal is maximal, and Nagata rings. Our attention will be focused on proving
that an infinite direct product of Ry(Xy), where {Ry}xea is a family of zero-
dimensional rings and {Xy}«ea is a family of indeterminates, is not a directed
union of Artinian subrings. Rings of Krull dimension zero have been studied
intensively in the literature since the sixties. Directed unions of Artinian sub-
rings have been investigated more recently, see [5, 7].

In [1, Problem 42], Gilmer and Heinzer raised the following question.

(Q) Under which conditions is a von Neumann regular ring a directed union

of Artinian subrings?
It would be interesting to consider this question for Nagata rings.

In 1992, Gilmer and Heinzer showed that a product of zero-dimensional
rings has dimension zero or infinity, see [6, Theorem 11].

Let R be a commutative ring and f € R[X]. The content of f is the ideal
o (f) of R generated by the coefficients of f. Then

S={f€eR[X]|o(f)=R} =R[X]\U{MR[X] | M is a maximal ideal of R}
(1.1)
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is a multiplicatively closed subset of R[X], and the localization R(X) =
S~IR[X] is called the Nagata ring in one variable over R. The Nagata ring in n
variables with coefficients in R is the ring

R(n) =R(X1,...,Xn) = S;'R[X1,..., Xu], (1.2)
where
Sn=1{f €R[X1,....Xu] | 0(f) =R} (1.3)

If R is zero dimensional, then by [2, Proposition 1.21], dimR(X) = dimR[X] -
1 = 0 since dim(R[X]) = 1 (cf. [13, Theorem 2]). Hence R(X) is also zero di-
mensional.

2. Nagata rings. We first fix notation. Data will consist of a directed system
(Rj, fjx) of rings indexed by a directed set (I,<) and its directed union R =
UjerR;, together with the canonical maps f;:R; — R. The ring R is a directed
union of R;’s corresponding to the fj’s being inclusion maps. Thus directed
unions can be treated by assuming all fjx to be monomorphisms. Notice that
if R; is aring for each j € I, then R is also a ring. However, R is not necessarily
Noetherian even if each R; is Noetherian. If R = |J;¢/R; is a directed union of
Artinian subrings, then we regard each R; as a subring of R; in particular, R;
and R have the same unit element.

The proof of Lemma 2.1 is straightforward and is left to the reader.

LEMMA 2.1. Let {Ri}f:l be a finite family of rings and X a variable. Then
(IT5 RO EXT = [T, RilX 1.

Let K and L be two fields. From Lemma 2.1, we know that (K x L)[X] is
isomorphic to K[X] X L[X], and we can view a polynomial in (K X L)[X] as
a pair of polynomials. Take g/h € (K X L)(X). Then g,h € (K x L)[X] such
that o(h) = K x L. We have g = (g1,92), where g; € K[X] and g» € L[X];
also h = (hy,h;) such that h; € K[X]\(0) and h, € L[X]\ (0). Hence g/h =
(g1/h1,g92/h2) € K(X) X L(X). Therefore, we have K(X) X L(X) ~ (K x L)(X),
and hence we have the following result.

PROPOSITION 2.2. Let [[i-;K; be a finite product of fields K;. Then
(TTH, Ki) (X)) = [1i4, K (X) is a finite product of fields.

PROPOSITION 2.3. If {Ry}wea is an infinite family of rings and X a variable
over [[xcaRu, then @ : (J1xea Ra) (X) = [laea Ra(X) is an injective homomor-
phism.

Before proving Proposition 2.3, we need the following lemma.
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LEMMA 2.4. If f = (fa)aea € [laca RalX], then 0 (f) = [{xea 0 (fx)-

PROOF. Let f = hy X"+ ---+ 1 X + hg, with h; € [[4ea Ra for each i =
0,1,...,m. Then o (f) = (hy,...,h1,h0) [ [xeca Ra, Which implies that o (fy) =
(hp(x),...,h (x),ho(x))Ry, where hi(x) is the oth component of h;. We can
conclude that o (f) < [[xea 0 (f«). The proof of the converse is similar. 0

PROOF OF PROPOSITION 2.3. Themap @: ([ [yea Ra)[X] = [Taea Ra[X] de-
fined by @ (F) = (F())xea, Where F(«) is the polynomial projection of F over
R«[X], is an injective homomorphism. Now, we consider

wes(TTRa) 00 — [T RalX), 2.1)

xEA xEA

defined by ¢/(F/H) = (F(x)/H(&))xea, Where F,H € ([1xes Ra)[X] such that
O(H) = [[geaRa. It is clear that ¢ is a homomorphism. Now, let F/H €
(I Taea Ra) (X) such that @(F/H)=0.We have 0 (H) =[] yea R«, and, by Lemma
2.4, 0(H(x)) = Ry. Then @¢(F/H) = (F(x)/H(x))xca = 0 implies that
F(x)/H(x) = 0 in Ry(X) for each « € A. For each & € A, there exists hy €
Ry[X]suchthat o(hy) =Ry and F(x)hy=0.We set G = (Ny)xea. Then FG = 0,
G € ([IaeaRx)[X], and, by Lemma 2.4, 0 (G) = [[xca 0 (ha) = [[xea Ra- It fol-
lows that F/H = 0. 0O

The converse of Proposition 2.3 is not true in general, as shown in the next
example.

EXAMPLE 2.5. For each i € Z*, let R; = Fpi be the Galois field with p? el-
ements, where p is a positive prime integer. From [10, Theorem 5.5, page
247], F,i = GF(p)(&:), where &; is a pith primitive root of unity, for each
i€ 7", and GF(p) is the Galois field with p elements. Let § = {§;};>, be an
element of [[;-, R; such that [GF(p)(&;) : GF(p)] = i, for each i € Z*, and
fi = Irr(&;,GF(p)) the minimal polynomial of & over GF(p). Clearly, f; is
of degree i. It follows that there exists no monic polynomial F € [];>; R;[X]
such that F = {fi}{2,, otherwise & is an integral element over [];~, GF(p) since
F(&) =0.

Our next result will be useful later.

LEMMA 2.6. Let R be a zero-dimensional ring with finite spectrum. Then R
can be expressed as a finite product of zero-dimensional quasilocal subrings.

PROOF. Let Spec(R) = {M;}}", be the spectrum of R. Let Sy, (0) = Ker gy,
for each i = 1,...,n, where @; : R — Ry, and @;(r) = r/1 is the canonical
homomorphism. Since Rad(Sy;, (0)) = M; € Max(R), then Sy, (0) is a primary
ideal. Note that NSy, (0) = (0) and Sy, (0) + Sa;,(0) = R for each i # j in
{1,...,n}. Therefore, R =~ R/ N}, Sy, (0). By the Chinese remainder theorem,
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R =~ H?:lR/SMl.(O), where R/Sy,(0) is quasilocal and zero-dimensional, for
i=1,...,n. O

We note that if R is a von Neumann regular ring (i.e., R is reduced and zero
dimensional), then R is an Artinian if and only if R is a finite product of fields if
and only if R is Noetherian. Indeed, if R is von Neumann regular and Artinian,
then, by [3, Corollary 8.2], Spec(R) is finite, and hence, R = R, @ - - - ®R,,, where
each R; is a quasilocal and zero-dimensional ring, for i = 1,...,n. Since R is a
von Neumann regular ring, each R; is a von Neumann regular ring, by [4, Result
3.2]. As R; is a quasilocal ring, by [4, Theorem 3.1], R; is a field for i = 1,...,n,
and it follows that R is a finite product of fields.

PROPOSITION 2.7. Let R be a ving and X a variable over R. Then

(1) if R is a directed union of Artinian subrings, then so is R(X);

(2) if R is a reduced ring and R (X) is a directed union of Artinian subrings,
then R has the same property;

(3) R is a directed union of zero-dimensional subrings with finite spectra if
and only if R(X) has the same property.

PROOF. (1) If R = U;erR; is a directed union of Artinian subrings, then
R(X) = Ujer Ri(X). Since each R; is Noetherian, by [12, (6.17)], R;(X) is also
Noetherian and each R;(X) is zero dimensional since each R; is Noetherian,
(cf. [2, Proposition 1.21]). By [3, Theorem 8.5], R;(X) is an Artinian ring for
each i € I. The family {R;(X)};¢s is directed because the family {R;};c; is di-
rected. Then R(X) is a directed union of Artinian subrings.

(2) If R(X) is a directed union of Artinian subrings, then, by [8, Theorem
2.4(a)], each Rj = §;NR is zero dimensional. Since R; < §; and Spec(S;) is finite
(cf. [3, Theorem 8.3]), this yields that each Spec(R;) is finite. As R is reduced,
and by [4, Theorem 3.1], each R;j is a von Neumann regular ring with finite
spectrum. It follows that R; is Artinian, and hence, R = ierRj is a directed
union of Artinian subrings.

(3) The proof of this result follows from the fact that Spec(R) = {m(X) |m €
Spec(R)}, and hence, | Spec(R)| = | Spec(R(X))]. O

REMARK 2.8. (1) Let R be a hereditary zero-dimensional ring, that is, a ring
for which all subrings are zero dimensional. Then R is a directed union of
Artinian subrings, and therefore, R(X) is a directed union of Artinian subrings
that is not hereditarily zero dimensional, since R[X] C R(X) and dim(R[X])
=1 (cf. [13, Theorem 2]).

(2) Let R be a von Neumann regular ring and X3,..., X, variables over R. We
denote R(Xy,...,X;) = R(n) for each n € Z*. Then, by Proposition 2.7 and [9,
Lemma 15.3], R is a directed union of Artinian subrings if and only if R(n) is
a directed union of Artinian subrings, for each n € 7Z*.

(3) If, in Proposition 2.7(3), we take X = {Y;};c; an infinite family of indeter-
minates over R, then R is a directed union of zero-dimensional subrings with
finite spectra if and only if so is R(X).
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Let n(x) be the index of nilpotency of x € R. We define
n(R) =sup{n(x) | x € N(R)}, (2.2)

where N(R) is the set of nilpotent elements of R. From [7, Theorem 3.4], we
know that dim(][yes Tw) = O if and only if {« € A | n(Ty) > k} is finite for
some k € Z*, where {Ty}qca is a family of zero-dimensional rings.

Let R be a ring such that n(R) < k for some k € Z* and let X be a variable
over R. Then n(R[X]) need not be bounded. Also, we note that if dim(R) = 0,
then dim(R (X)) = 0.

Let {Ry}xea be a family of zero-dimensional rings and X a variable, and
suppose that dim([[4c4 Ra) = 0. We added that, if each R is a directed union
of Artinian subrings, then R, (X) is also a directed union of Artinian subrings
for each «x € A, see Proposition 2.7. Assume that there exists k € Z* such
that {&x € A | n(Ry) > k or there exists M € Spec(Ry) : |[Ra/M| > k} is finite.
Then, by [7, Theorem 6.7], [ [4ca R« is a directed union of Artinian subrings.
However, for each k € Z*, {ox € A | n(Rx(X)) > k} is an infinite set. This means
that [[yea Ra(X) is not zero dimensional. Now, we suppose that each R is a
von Neumann regular ring, and we show that Ry(X) is also a von Neumann
regular ring, and hence, [[yca Rx(X«) is @ von Neumann regular ring, where
each X, is a variable over R.

THEOREM 2.9. Let {Ry}xea be a family of von Neumann regular rings and
X« an indeterminate over Ry, for each « € A. Then []yca Ra(Xy) is not a di-
rected union of Artinian subrings.

The proof of Theorem 2.9 requires the following two lemmas.

LEMMA 2.10. Let R be a ring and U a multiplicatively closed subset of R. If
R is reduced, then U~'R is also reduced.

PROOF. Letr/s € N(U 'R), where N(U™'R) is the nilradical of U"!'R. Then
there exists ng € N* such that (/s)"0 = 0; this means that there exists u € U
such that (ru)"0 = 0. Since R is reduced, we have »u = 0, and hence, /s = 0.
In other words, N(U~'R) = (0). Thus, U 'R is reduced. 0

LEMMA 2.11. Let R be a ring and X a variable over R. Then R is reduced if
and only if R(X) is reduced.

PROOF. Assume that R is reduced and take f = a, X"+ ---+a1 X +ag €
N(R[X]). Then there exists I € Z* such that f! = 0. Therefore, a!, = al, | =
cee = alo = 0. Since R is reduced, we have a,, = a,-1 = - - - = a¢ = 0, and hence,
f = 0. It follows that N(R[X]) = (0). By Lemma 2.10, R(X) is a also reduced
because R(X) = S~'R[X] is a localization of R[X].

The converse implication follows from the fact that every subring of a re-
duced ring is reduced. ]
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Note that the two equivalent conditions of Lemma 2.11 are also equivalent to
R(n) being reduced since R(n) = R(n—1)(X), for each n € Z*, see [9, Lemma
15.3].

PROOF OF THEOREM 2.9. By [7, Theorem 6.7], [[4ca Ra(Xy) is a directed
union of Artinian subrings if and only if there exists k € Z* such that {x € A |
there exists M € Spec(Ry(Xy)) with |Ry/M]| > k} is finite. It was shown in [12,
(6.17)], that Spec(Ry(Xy)) = {M(Xy) | M € Spec(Ry)} for each & € A. More-
over, Ro(Xun) /My (Xy) = (Ra/My)(X) and (Ry/My)(Xy) is an at least count-
ably denumerable field. Therefore, for each « € A, for each My € Spec(Ry),
for each k € Z* we have |(Ry/My)(Xx)| > k. Then, for each k € Z*, the set
{ox € A | there exists My € Spec(Ry) with |(Ry/My)(X«)| > k} is infinite. Thus,
[Taea Ra(Xy) is not a directed union of Artinian subrings. ]

COROLLARY 2.12. Let {Ry}xea be a family of von Neumann regular rings
and X avariable. Then [ [ yea R« (X) is not a directed union of Artinian subrings.

Let R be aring and {Ry}xca an infinite family of nonzero rings such that R
is, up to isomorphism, a subring of each R,. We use R* to denote the image of
R under the diagonal imbedding, that is, R* = @ (R), where @ : R = [[yea R«
is the monomorphism defined by @ (x) = {x«}«ea such that x, = x for each
x € A.

PROPOSITION 2.13. Let F be an absolutely algebraic field and R = [[“°F a
countable direct product of copies of F. Define

S = {{xi}f’:l € R | {x;};~, has only finitely many distinct Coordinates}.
(2.3)

Then & is the maximal subring of R which can be expressed as a directed union
of Artinian subrings.

PROOF. First, we claim that & is a directed union of Artinian subrings. For
each j € Z*, we define S; as the subring of ¥ consisting of all sequences
{xi}i2y € ¥ such that xj = xj;; = ---. If we denote by 1T the prime subring
of R, then each S; contains 1, So is the diagonal imbedding of F in R, and
Si = FJi*1 is an Artinian von Neumann regular ring. Clearly, S i € Sjs1 for each
j € Z". Therefore, ¥ = U;’-":l S; and ¥ is a directed union of Artinian subrings.
Now, let T be a subring of [[“°F with T = jey Tj a directed union of Artinian
subrings and t = {t;};2, € T. There exists jo € J such that t € Tj, and T}, is a
finite product of fields; hence t € ¥. |

EXAMPLE 2.14. Let p be a prime integer and X a variable over GF(p), where
GF(p) is the Galois field with p elements. Let R = (GF(p) (X))®0 be a countable
direct product of copies of GF(p) (X). We note that R is a von Neumann regular
ring as a direct product of fields. By Theorem 2.9, the ring R is not a directed
union of Artinian subrings. Let ¥ = {{x;};2;, € R : {x;};2, has only finitely
many distinct components} and V = (GF(p)(X))* + 1, where I = @;2, GF(p)
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is the direct sum ideal of R and (GF(p)(X))* is the diagonal imbedding of
GF(p)(X) in R. The ring ¥ is the biggest subring of R which is a directed union
of Artinian subrings. We remark that, if V c &, then, by [11, Corollary 4], V
is also a directed union of Artinian subrings. Since GF(p) is a finite field, we
have [[“°GF(p) ¢ & and, by [11, Corollary 4], is a directed union of Artinian
subrings.
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