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We investigate when a Nagata ring R(X) can be written as a directed union of
Artinian subrings. For a family of zero-dimensional rings {Rα}α∈A, we show that∏
α∈ARα(Xα) is not a directed sum of Artinian subrings.
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1. Introduction. All rings considered in this paper are assumed to be com-

mutative with a unit element. If R is a subring of a ring S, we assume that

the unity element of S belongs to R, and hence is the unit element of R. Let

Spec(R), Z(R), Inv(R), and AnnR(I) denote, respectively, the spectrum of R
(the set of prime ideals of R), the set of zero-divisors of R, the set of invertible

elements of R, and the annihilator of a subset I of R. By the dimension of R,

denoted as dimR, we mean the Krull dimension: dimR is the maximal length

of a chain of proper prime ideal P0 ⊂ P1 ⊂ ··· ⊂ Pn of R. If there is no upper

bound on the length of such chains, then we write dimR =∞.

In this paper, we study zero-dimensional rings, in which each proper prime

ideal is maximal, and Nagata rings. Our attention will be focused on proving

that an infinite direct product of Rα(Xα), where {Rα}α∈A is a family of zero-

dimensional rings and {Xα}α∈A is a family of indeterminates, is not a directed

union of Artinian subrings. Rings of Krull dimension zero have been studied

intensively in the literature since the sixties. Directed unions of Artinian sub-

rings have been investigated more recently, see [5, 7].

In [1, Problem 42], Gilmer and Heinzer raised the following question.

(Q) Under which conditions is a von Neumann regular ring a directed union

of Artinian subrings?

It would be interesting to consider this question for Nagata rings.

In 1992, Gilmer and Heinzer showed that a product of zero-dimensional

rings has dimension zero or infinity, see [6, Theorem 11].

Let R be a commutative ring and f ∈ R[X]. The content of f is the ideal

σ(f) of R generated by the coefficients of f . Then

S = {f ∈ R[X] | σ(f)= R}= R[X]\⋃{
MR[X] |M is a maximal ideal of R

}
(1.1)
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is a multiplicatively closed subset of R[X], and the localization R(X) =
S−1R[X] is called the Nagata ring in one variable over R. The Nagata ring in n
variables with coefficients in R is the ring

R(n)= R(X1, . . . ,Xn
)= S−1

n R
[
X1, . . . ,Xn

]
, (1.2)

where

Sn =
{
f ∈ R[X1, . . . ,Xn

] | σ(f)= R}. (1.3)

If R is zero dimensional, then by [2, Proposition 1.21], dimR(X)= dimR[X]−
1 = 0 since dim(R[X]) = 1 (cf. [13, Theorem 2]). Hence R(X) is also zero di-

mensional.

2. Nagata rings. We first fix notation. Data will consist of a directed system

(Rj,fjk) of rings indexed by a directed set (I,≤) and its directed union R =⋃
j∈I Rj , together with the canonical maps fj : Rj → R. The ring R is a directed

union of Rj ’s corresponding to the fjk’s being inclusion maps. Thus directed

unions can be treated by assuming all fjk to be monomorphisms. Notice that

if Rj is a ring for each j ∈ I, then R is also a ring. However, R is not necessarily

Noetherian even if each Rj is Noetherian. If R =⋃j∈I Rj is a directed union of

Artinian subrings, then we regard each Ri as a subring of R; in particular, Ri
and R have the same unit element.

The proof of Lemma 2.1 is straightforward and is left to the reader.

Lemma 2.1. Let {Ri}ki=1 be a finite family of rings and X a variable. Then

(
∏k
i=1Ri)[X]�

∏k
i=1Ri[X].

Let K and L be two fields. From Lemma 2.1, we know that (K × L)[X] is

isomorphic to K[X]×L[X], and we can view a polynomial in (K ×L)[X] as

a pair of polynomials. Take g/h ∈ (K ×L)(X). Then g,h ∈ (K ×L)[X] such

that σ(h) = K × L. We have g = (g1,g2), where g1 ∈ K[X] and g2 ∈ L[X];
also h = (h1,h2) such that h1 ∈ K[X]\ (0) and h2 ∈ L[X]\ (0). Hence g/h =
(g1/h1,g2/h2) ∈ K(X)×L(X). Therefore, we have K(X)×L(X) � (K×L)(X),
and hence we have the following result.

Proposition 2.2. Let
∏n
i=1Ki be a finite product of fields Ki. Then

(
∏n
i=1Ki)(X)�

∏n
i=1Ki(X) is a finite product of fields.

Proposition 2.3. If {Rα}α∈A is an infinite family of rings and X a variable

over
∏
α∈ARα, then ϕ : (

∏
α∈ARα)(X)→

∏
α∈ARα(X) is an injective homomor-

phism.

Before proving Proposition 2.3, we need the following lemma.
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Lemma 2.4. If f = (fα)α∈A ∈
∏
α∈ARα[X], then σ(f)=∏α∈Aσ(fα).

Proof. Let f = hnXn + ··· +h1X +h0, with hi ∈
∏
α∈ARα for each i =

0,1, . . . ,n. Then σ(f) = (hn, . . . ,h1,h0)
∏
α∈ARα, which implies that σ(fα) =

(hn(α), . . . ,h1(α),h0(α))Rα, where hi(α) is the αth component of hi. We can

conclude that σ(f)⊆∏α∈Aσ(fα). The proof of the converse is similar.

Proof of Proposition 2.3. The mapϕ :(
∏
α∈ARα)[X]→

∏
α∈ARα[X] de-

fined byϕ(F)= (F(α))α∈A, where F(α) is the polynomial projection of F over

Rα[X], is an injective homomorphism. Now, we consider

ψ : s
( ∏
α∈A

Rα
)
(X) �→

∏
α∈A

Rα(X), (2.1)

defined by ψ(F/H) = (F(α)/H(α))α∈A, where F,H ∈ (∏α∈ARα)[X] such that

σ(H) = ∏
α∈ARα. It is clear that ψ is a homomorphism. Now, let F/H ∈

(
∏
α∈ARα)(X) such thatψ(F/H)=0. We have σ(H)=∏α∈ARα, and, by Lemma

2.4, σ(H(α)) = Rα. Then ψ(F/H) = (F(α)/H(α))α∈A = 0 implies that

F(α)/H(α) = 0 in Rα(X) for each α ∈ A. For each α ∈ A, there exists hα ∈
Rα[X] such that σ(hα)=Rα and F(α)hα=0. We set G=(hα)α∈A. Then FG = 0,

G ∈ (∏α∈ARα)[X], and, by Lemma 2.4, σ(G)=∏α∈Aσ(hα)=
∏
α∈ARα. It fol-

lows that F/H = 0.

The converse of Proposition 2.3 is not true in general, as shown in the next

example.

Example 2.5. For each i ∈ Z+, let Ri = Fpi be the Galois field with pi el-

ements, where p is a positive prime integer. From [10, Theorem 5.5, page

247], Fpi = GF(p)(ξi), where ξi is a pith primitive root of unity, for each

i ∈ Z+, and GF(p) is the Galois field with p elements. Let ξ = {ξi}∞i=1 be an

element of
∏∞
i=1Ri such that [GF(p)(ξi) : GF(p)] = i, for each i ∈ Z+, and

fi = Irr(ξi,GF(p)) the minimal polynomial of ξi over GF(p). Clearly, fi is

of degree i. It follows that there exists no monic polynomial F ∈∏∞
i=1Ri[X]

such that F = {fi}∞i=1, otherwise ξ is an integral element over
∏∞
i=1 GF(p) since

F(ξ)= 0.

Our next result will be useful later.

Lemma 2.6. Let R be a zero-dimensional ring with finite spectrum. Then R
can be expressed as a finite product of zero-dimensional quasilocal subrings.

Proof. Let Spec(R) = {Mi}ni=1 be the spectrum of R. Let SMi(0) = Kerϕi,
for each i = 1, . . . ,n, where ϕi : R → RMi and ϕi(r) = r/1 is the canonical

homomorphism. Since Rad(SMi(0)) = Mi ∈ Max(R), then SMi(0) is a primary

ideal. Note that ∩ni=1SMi(0) = (0) and SMi(0)+ SMj (0) = R for each i ≠ j in

{1, . . . ,n}. Therefore, R � R/∩ni=1 SMi(0). By the Chinese remainder theorem,
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R � ∏n
i=1R/SMi(0), where R/SMi(0) is quasilocal and zero-dimensional, for

i= 1, . . . ,n.

We note that if R is a von Neumann regular ring (i.e., R is reduced and zero

dimensional), then R is an Artinian if and only if R is a finite product of fields if

and only if R is Noetherian. Indeed, if R is von Neumann regular and Artinian,

then, by [3, Corollary 8.2], Spec(R) is finite, and hence, R = R1⊕···⊕Rn, where

each Ri is a quasilocal and zero-dimensional ring, for i = 1, . . . ,n. Since R is a

von Neumann regular ring, each Ri is a von Neumann regular ring, by [4, Result

3.2]. As Ri is a quasilocal ring, by [4, Theorem 3.1], Ri is a field for i= 1, . . . ,n,

and it follows that R is a finite product of fields.

Proposition 2.7. Let R be a ring and X a variable over R. Then

(1) if R is a directed union of Artinian subrings, then so is R(X);
(2) if R is a reduced ring and R(X) is a directed union of Artinian subrings,

then R has the same property;

(3) R is a directed union of zero-dimensional subrings with finite spectra if

and only if R(X) has the same property.

Proof. (1) If R = ⋃
i∈I Ri is a directed union of Artinian subrings, then

R(X) = ⋃i∈I Ri(X). Since each Ri is Noetherian, by [12, (6.17)], Ri(X) is also

Noetherian and each Ri(X) is zero dimensional since each Ri is Noetherian,

(cf. [2, Proposition 1.21]). By [3, Theorem 8.5], Ri(X) is an Artinian ring for

each i ∈ I. The family {Ri(X)}i∈I is directed because the family {Ri}i∈I is di-

rected. Then R(X) is a directed union of Artinian subrings.

(2) If R(X) is a directed union of Artinian subrings, then, by [8, Theorem

2.4(a)], each Rj = Sj∩R is zero dimensional. Since Rj ⊆ Sj and Spec(Sj) is finite

(cf. [3, Theorem 8.3]), this yields that each Spec(Rj) is finite. As R is reduced,

and by [4, Theorem 3.1], each Rj is a von Neumann regular ring with finite

spectrum. It follows that Rj is Artinian, and hence, R = ⋃j∈I Rj is a directed

union of Artinian subrings.

(3) The proof of this result follows from the fact that Spec(R)= {m(X) |m ∈
Spec(R)}, and hence, |Spec(R)| = |Spec(R(X))|.

Remark 2.8. (1) Let R be a hereditary zero-dimensional ring, that is, a ring

for which all subrings are zero dimensional. Then R is a directed union of

Artinian subrings, and therefore, R(X) is a directed union of Artinian subrings

that is not hereditarily zero dimensional, since R[X] ⊂ R(X) and dim(R[X])
= 1 (cf. [13, Theorem 2]).

(2) Let R be a von Neumann regular ring and X1, . . . ,Xn variables over R. We

denote R(X1, . . . ,Xn)= R(n) for each n∈ Z+. Then, by Proposition 2.7 and [9,

Lemma 15.3], R is a directed union of Artinian subrings if and only if R(n) is

a directed union of Artinian subrings, for each n∈ Z+.

(3) If, in Proposition 2.7(3), we take X = {Yi}i∈I an infinite family of indeter-

minates over R, then R is a directed union of zero-dimensional subrings with

finite spectra if and only if so is R(X).
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Let η(x) be the index of nilpotency of x ∈ R. We define

η(R)= sup
{
η(x) | x ∈N(R)}, (2.2)

where N(R) is the set of nilpotent elements of R. From [7, Theorem 3.4], we

know that dim(
∏
α∈ATα) = 0 if and only if {α ∈ A | η(Tα) > k} is finite for

some k∈ Z+, where {Tα}α∈A is a family of zero-dimensional rings.

Let R be a ring such that η(R) < k for some k ∈ Z+ and let X be a variable

over R. Then η(R[X]) need not be bounded. Also, we note that if dim(R)= 0,

then dim(R(X))= 0.

Let {Rα}α∈A be a family of zero-dimensional rings and X a variable, and

suppose that dim(
∏
α∈ARα)= 0. We added that, if each Rα is a directed union

of Artinian subrings, then Rα(X) is also a directed union of Artinian subrings

for each α ∈ A, see Proposition 2.7. Assume that there exists k ∈ Z+ such

that {α ∈ A | η(Rα) > k or there exists M ∈ Spec(Rα) : |Rα/M| > k} is finite.

Then, by [7, Theorem 6.7],
∏
α∈ARα is a directed union of Artinian subrings.

However, for each k∈ Z+, {α∈A | η(Rα(X)) > k} is an infinite set. This means

that
∏
α∈ARα(X) is not zero dimensional. Now, we suppose that each Rα is a

von Neumann regular ring, and we show that Rα(X) is also a von Neumann

regular ring, and hence,
∏
α∈ARα(Xα) is a von Neumann regular ring, where

each Xα is a variable over Rα.

Theorem 2.9. Let {Rα}α∈A be a family of von Neumann regular rings and

Xα an indeterminate over Rα, for each α ∈ A. Then
∏
α∈ARα(Xα) is not a di-

rected union of Artinian subrings.

The proof of Theorem 2.9 requires the following two lemmas.

Lemma 2.10. Let R be a ring and U a multiplicatively closed subset of R. If

R is reduced, then U−1R is also reduced.

Proof. Let r/s ∈N(U−1R), where N(U−1R) is the nilradical of U−1R. Then

there exists n0 ∈N∗ such that (r/s)n0 = 0; this means that there exists u∈U
such that (ru)n0 = 0. Since R is reduced, we have ru= 0, and hence, r/s = 0.

In other words, N(U−1R)= (0). Thus, U−1R is reduced.

Lemma 2.11. Let R be a ring and X a variable over R. Then R is reduced if

and only if R(X) is reduced.

Proof. Assume that R is reduced and take f = anXn+···+a1X +a0 ∈
N(R[X]). Then there exists l ∈ Z+ such that f l = 0. Therefore, aln = aln−1 =
··· = al0 = 0. Since R is reduced, we have an = an−1 = ··· = a0 = 0, and hence,

f = 0. It follows that N(R[X]) = (0). By Lemma 2.10, R(X) is a also reduced

because R(X)= S−1R[X] is a localization of R[X].
The converse implication follows from the fact that every subring of a re-

duced ring is reduced.
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Note that the two equivalent conditions of Lemma 2.11 are also equivalent to

R(n) being reduced since R(n)= R(n−1)(X), for each n∈ Z+, see [9, Lemma

15.3].

Proof of theorem 2.9. By [7, Theorem 6.7],
∏
α∈ARα(Xα) is a directed

union of Artinian subrings if and only if there exists k∈ Z+ such that {α∈A |
there exists M ∈ Spec(Rα(Xα)) with |Rα/M|> k} is finite. It was shown in [12,

(6.17)], that Spec(Rα(Xα)) = {M(Xα) | M ∈ Spec(Rα)} for each α ∈ A. More-

over, Rα(Xα)/Mα(Xα) � (Rα/Mα)(X) and (Rα/Mα)(Xα) is an at least count-

ably denumerable field. Therefore, for each α ∈ A, for each Mα ∈ Spec(Rα),
for each k ∈ Z+ we have |(Rα/Mα)(Xα)| > k. Then, for each k ∈ Z+, the set

{α∈A | there existsMα ∈ Spec(Rα) with |(Rα/Mα)(Xα)|> k} is infinite. Thus,∏
α∈ARα(Xα) is not a directed union of Artinian subrings.

Corollary 2.12. Let {Rα}α∈A be a family of von Neumann regular rings

and X a variable. Then
∏
α∈ARα(X) is not a directed union of Artinian subrings.

Let R be a ring and {Rα}α∈A an infinite family of nonzero rings such that R
is, up to isomorphism, a subring of each Rα. We use R∗ to denote the image of

R under the diagonal imbedding, that is, R∗ =ϕ(R), where ϕ : R ↩
∏
α∈ARα

is the monomorphism defined by ϕ(x) = {xα}α∈A such that xα = x for each

α∈A.

Proposition 2.13. Let F be an absolutely algebraic field and R =∏ω0 F a

countable direct product of copies of F . Define

�=
{{
xi
}∞
i=1 ∈ R |

{
xi
}∞
i=1 has only finitely many distinct coordinates

}
.
(2.3)

Then � is the maximal subring of R which can be expressed as a directed union

of Artinian subrings.

Proof. First, we claim that � is a directed union of Artinian subrings. For

each j ∈ Z+, we define Sj as the subring of � consisting of all sequences

{xi}∞i=0 ∈ � such that xj = xj+1 = ··· . If we denote by π the prime subring

of R, then each Sj contains π , S0 is the diagonal imbedding of F in R, and

Sj � Fj+1 is an Artinian von Neumann regular ring. Clearly, Sj ⊆ Sj+1 for each

j ∈ Z+. Therefore, � =⋃∞j=1Sj and � is a directed union of Artinian subrings.

Now, let T be a subring of
∏ω0 F with T =⋃j∈J Tj a directed union of Artinian

subrings and t = {ti}∞i=1 ∈ T . There exists j0 ∈ J such that t ∈ Tj0 and Tj0 is a

finite product of fields; hence t ∈�.

Example 2.14. Let p be a prime integer and X a variable over GF(p), where

GF(p) is the Galois field with p elements. Let R = (GF(p)(X))ω0 be a countable

direct product of copies of GF(p)(X). We note that R is a von Neumann regular

ring as a direct product of fields. By Theorem 2.9, the ring R is not a directed

union of Artinian subrings. Let � = {{xi}∞i=1 ∈ R : {xi}∞i=1 has only finitely

many distinct components} and V = (GF(p)(X))∗ + I, where I =⊕∞
i=1 GF(p)
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is the direct sum ideal of R and (GF(p)(X))∗ is the diagonal imbedding of

GF(p)(X) in R. The ring � is the biggest subring of R which is a directed union

of Artinian subrings. We remark that, if V ⊂ �, then, by [11, Corollary 4], V
is also a directed union of Artinian subrings. Since GF(p) is a finite field, we

have
∏ω0 GF(p) ⊂ � and, by [11, Corollary 4], is a directed union of Artinian

subrings.
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