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This is a survey on Diophantine equations, with the purpose being to give the
flavour of some known results on the subject and to describe a few open problems.
We will come across Fermat’s last theorem and its proof by Andrew Wiles using
the modularity of elliptic curves, and we will exhibit other Diophantine equations
which were solved à la Wiles. We will exhibit many families of Thue equations, for
which Baker’s linear forms in logarithms and the knowledge of the unit groups of
certain families of number fields prove useful for finding all the integral solutions.
One of the most difficult conjecture in number theory, namely, the ABC conjecture,
will also be described. We will conclude by explaining in elementary terms the
notion of modularity of an elliptic curve.
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1. Introduction. On June 23, 1993, at the Isaac Newton Institute of Cam-

bridge (England), Professor Andrew Wiles (Princeton University) made a strik-

ing announcement. He had found a proof of Fermat’s last theorem.

Fermat’s last theorem. Let n be an integer greater than or equal to 3.

Then there are no nonzero integers A, B, C such that

An+Bn = Cn. (1.1)

The mathematical community became very excited and the news spread all

over the world in a matter of days. For more than 350 years, many mathemati-

cians and a greater number of amateurs had tried without success to obtain a

proof of this conjecture. Already in 1918, Paul Wolfskehl poured some oil on

the fire by promising a 100 000 German marks reward to whoever provides the

first proof of this theorem. The mark devaluation almost annihilated the value

of the prize, but did not decrease the interest of specialists in this question

and similar problems.

In this survey article, we offer you an excursion over centuries into this

fantastic world of Diophantine equations. Though we will not deal with the

equations considered by Mordell and by Shorey and Tijdeman in their classical

books [31, 39], we plan to make you more familiar with other Diophantine

equations. You will encounter some equations which have integral solutions,

http://dx.doi.org/10.1155/S0161171203210668
http://dx.doi.org/10.1155/S0161171203210668
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


4474 C. LEVESQUE

sometimes a finite number, sometimes an infinite number; you will also see

some equations which have no solution at all, and you will come across some

equations about which the only thing we know is that we know nothing about

them. We will say a few words about the Fermat equation and in Section 9, you

will get the flavour of Wiles’ proof. We will exhibit other Diophantine equations

which were solved à la Wiles, namely, by using some modular elliptic curves.

You will also see that Baker’s linear forms in logarithms and the knowledge

of the unit groups of some families of number fields proved useful in solving

some families of the so-called Thue equations. By the way, the delights of the

ABC conjecture may make your mouth water: the assumption of this conjecture

provides a short proof of Fermat’s last theorem (for all n but a finite number).

In Section 10, we will dare to open a parenthesis on the modularity notion of

an elliptic curve, but we will rush to close it in order to avoid getting involved

in technicalities.

2. Diophantus and Fermat. The Greek mathematician Diophantus (born in

325) got interested in finding solutions of a given equation belonging to the

set Q of rational numbers. However, under modern terminology, solving a

Diophantine equation is looking for integral solutions, that is, for solutions

belonging to the set Z of integers.

On the one hand, you may agree with the fact that the equation

X+Y = Z (2.1)

is easy to solve, but there are still open problems concerning this equation (as

will be seen in Section 6). On the other hand, the situation often gets compli-

cated if powers Xn, where n is an integer greater than or equal to 2, come into

play. Some solutions may be easily exhibited; for instance, a solution of the

Diophantine equation

X3+Y 2 = Z2 (2.2)

is X = 2, Y = 1, and Z = 3, while another is X = 3, Y = 3, and Z = 6. Some

Diophantine equations may happen to have no integral solution at all, like the

equation X2−2Y 2 = 0.

The so-called Fermat-Pell equation

X2−DY 2 = 1 (2.3)

has been around for many centuries, and the continued fraction expansion of√
D leads to its solution. This equation goes back to Archimedes (with the cattle

problem) and was studied by the Indian mathematician Brahmagupta around

1630 and by the English mathematician William Brouncker around 1650.
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Figure 3.1

Pierre de Fermat (1601–1665) had a copy of the Latin translation (made by

Bachet) of Diophantus book Arithmetica. Quite often, Fermat used to write

personal notes in the margin of this book, and a Latin annotation of him (once

translated) reads

“It is impossible to write a cube as a sum of two cubes, a fourth power

as a sum of two fourth powers, and in general, a power (except a

square) as a sum of two powers with the same exponent. I possess a

truly wonderful proof of this result, that this margin is too narrow to

contain.”

This is equivalent to stating that the equations X3+Y 3 = Z3, X4+Y 4 = Z4,

X5+Y 5 = Z5, and so on, have no solutions in positive integral integers.

3. Pythagoras. Stating his theorem, Fermat assumed n ≥ 3, precisely be-

cause for n= 2, the Diophantine equation X2+Y 2 = Z2 has integral solutions.

As a matter of fact (see Figure 3.1), all the solutions of the equation

X2+Y 2 = Z2 (3.1)

are given by X = kU2 − kV 2, Y = 2kUV , and Z = kU2 + kV 2, in which one

substitutes any integer for k, U , and V . Indeed, we come across a very old

result.

Pythagoras’ theorem. Suppose that in a given rectangle triangle, the

length of the base is a, the height b, and the diagonal c. Then

a2+b2 = c2. (3.2)

The proof appears as Proposition XLVII of the first book of Euclid’s Elements

[36, page 38]. A modern proof of this theorem is to let c = d in the statement

of a result called the parallelogram law (easy to prove with some use of the

scalar product).
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Parallelogram law. Let a and b be the two sides of a parallelogram, and

let c and d be the two diagonals (as in Figure 3.2). Then

2a2+2b2 = c2+d2. (3.3)

The parallelogram law immediately leads to the median formula.

Median formula. Let a, b, and c be the sides of a triangle and let m be

the median (as in Figure 3.3). Then

2a2+2b2 = 4m2+c2. (3.4)

For the proof, expand this triangle into a parallelogram (see Figures 3.3 and

3.4). One finds in Proposition XLVIII of Euclid’s Elements [36, page 39] the proof

of the following result.

Converse of Pythagoras’ theorem. If a2+b2 = c2, then the triangle of

sides a, b, and c is rectangle with c as the hypotenuse.

Thanks to the median formula, one can supply a short proof. Leta2+b2 = c2;

then 2m2+(1/2)c2 = c2, that is, c = 2m. Hence, the two diagonals of Figure 3.4

are equal, and the parallelogram is a rectangle, that is, is made of two rectangle

triangles.
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Babylonians applied the converse of Pythagoras’ theorem to build an angle

of 90 degrees. Indeed, they used ropes having knots at intervals of the same

length and used them as in Figure 3.1. They were sure to obtain a right angle

of 90 degrees between the horizontal line and the vertical line.

Nowadays, when it comes to fixing the wooden rectangle (wooden rail) on

the foundations of a building to be built (see Figure 3.5), where the length

between A and D is equal to the length between B and C , and where the length

between A and B is equal to the length between C and D, home builders make

sure that the length between A and C is equal to the length between B and

D. Though they may not be aware of it, they “use” the parallelogram law (see

Figure 3.2) and make sure that c2 (= a2+b2)= d2, and then use the converse

of Pythagoras’ theorem to conclude that the two glued triangles are rectangle

triangles.

Thanks to Pythagoras (and to the converse of his theorem), we can solve

a problem which became famous in San Francisco on July 28, 1993, during a

public conference on Fermat.

Pizza problem. The owner of a restaurant advertizes a small pizza at $6,

a medium size pizza at $9, and a large pizza at $15. Spending $15, do you get

a better deal by buying a large pizza, or by buying a small pizza and a medium

size one? You may use only a pizza knife to make your decision.
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Just cut the three pizzas in two equal parts and place the three half pizzas

of different sizes as to form a triangle. Three cases can occur.

Case 3.1. If you get a rectangle triangle (Figures 3.6 and 3.7), your choice is

as good as mine since

π
8
r 2+ π

8
s2 = π

8
t2, that is, r 2+s2 = t2. (3.5)

Case 3.2. If the triangle is obtuse (Figure 3.8), your best deal is to take the

large pizza since

π
8
r 2+ π

8
s2 <

π
8
t2, that is, r 2+s2 < t2. (3.6)

With Figures 3.9 and 3.10, one sees that

r 2+s2 = r 2+u2+v2 < (r +u)2+v2 = t2. (3.7)
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Case 3.3. Finally, if the triangle is acute (Figure 3.11), it is better to order a

small pizza and a medium size one since

π
8
r 2+ π

8
s2 >

π
8
t2, that is, r 2+s2 > t2. (3.8)

Figures 3.12 and 3.13 show that

r 2+s2 = r 2+u2+v2 > (r −u)2+v2 = t2. (3.9)

4. Some Diophantine equations. Diophantine equations are often myste-

rious. Two very similar equations may have very different solution sets, and

it may happen that one is difficult to deal with, and the other one is easy to

study. We just saw that for n≥ 3, the equation Xn+Yn = Zn has no nontrivial

solution. Nevertheless, for all n≥ 1, the equation

Xn+Yn = 2Zn (4.1)

possesses the positive solution X = Y = Z = 1. Are there more for n ≥ 3? We

will see later that the answer is no, though the proof is deep.

We explain why, for n≥ 2, the Diophantine equation

X2+Y 2 = Zn (4.2)

has an infinite number of (nontrivial) solutions, and that it is easy to find all

of them. For all n≥ 0, let An and Bn be defined by

An+Bni= (a+bi)n, (4.3)

where i=√−1 and where a and b are variables running through Z. On the one

hand, we have

(
An+Bni

)·(An+Bni)= (An+Bni)·(An−Bni)=A2
n+B2

n, (4.4)



ON A FEW DIOPHANTINE EQUATIONS 4481

t2

s2

r2

Figure 3.12

t2

ν2

(r −u)2

r

r

u2

Figure 3.13

where z is the complex conjugate of z. On the other hand,

(
An+Bni

)·(An+Bni)= (a+bi)n ·(a+bi)n
= (a+bi)n ·(a−bi)n

= (a2+b2)n.
(4.5)

Hence A2
n+B2

n = (a2+b2)n. Thus the equation X2+Y 2 = Zn has an infinite

number of solutions given by X = An, Y = Bn, and Z = a2 + b2, where the
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Table 4.1

n An Bn
0 1 0

1 a b
2 a2−b2 2ab
3 a3−3ab2 3a2b−b3

4 a4−6a2b2+b4 4a3b−4ab3

5 a5−10a3b2+5ab4 5a4b−10a2b3+b5

6 a6−15a4b2+15a2b4−b6 6a5b−20a3b3+6ab5

7 a7−21a5b2+35a3b4−7ab6 7a6b−35a4b3+21a2b5−b7

8 a8−28a6b2+70a4b4−28a2b6+b8 8a7b−56a5b3+56a3b5−8ab7

binomial expansion of (a+bi)n gives

An =
[n/2]∑
s=0

(−1)s
(
n
2s

)
an−2sb2s , Bn =

[(n−1)/2]∑
s=0

(−1)s
(

n
2s+1

)
an−1−2sb2s+1.

(4.6)

It turns out that all the solutions are of that form, and this is justified by the

fact that the class number of the imaginary quadratic field Q(i) is 1. We write

a few values of An and Bn in Table 4.1.

It is now easy to deduce that an infinite family of solutions of

X2−Y 2 = Zn (4.7)

is given by X = Rn, Y = Sn, and Z = a2−b2, where

Rn =
[n/2]∑
s=0

(
n
2s

)
an−2sb2s , Sn =

[(n−1)/2]∑
s=0

(
n

2s+1

)
an−1−2sb2s+1. (4.8)

According to Euler, the equation

W 3+X3+Y 3 = Z3 (4.9)

has an infinity of solutions; it suffices to consider

W =−a3+3a2b−3ab2+9b3+1,

X = a3+3a2b+3ab2+9b3−1,

Y = a4+6a2b2−a+9b4−3b,

Z = a4+6a2b2−a+9b4+3b,

(4.10)
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or

W = 3a2+5ab−5b2,

X = 4a2−4ab+6b2,

Y = 5a2−5ab−3b2,

Z = 6a2−4ab+4b2.

(4.11)

Thanks to Elkies [12], we know that the Diophantine equation

W 4+X4+Y 4 = Z4 (4.12)

also possesses an infinite number of solutions (with W , X, Y , and Z different

from 0), with the smallest, according to R. Frye, beingW = 95800, X = 217519,

Y = 414560, and Z = 422481. We first deal with

W 4+X4+ Ỹ 2 = Z4. (4.13)

Elkies [12] exhibited an infinite family of solutions of the latter Diophantine

equation:

W = 2a2+6a+20,

X = a2+31,

Ỹ = 4
(
2a4+28a2−75a+80

)
,

Z = 3
(
a2+11

)
.

(4.14)

Using a judiciously chosen elliptic curve, he next showed that there exist an

infinite number of integers a (effectively computable) for which Ỹ is a perfect

square, thus giving rise to an infinity of solutions of the equation W 4+X4+
Y 4 = Z4.

The equation

V 5+W 5+X5+Y 5 = Z5 (4.15)

possesses, for instance, the solution V = 27, W = 84, X = 110, Y = 133, and

Z = 144, though we still do not know whether it possesses an infinite number

of solutions.

Along the same lines, so far nobody could exhibit an integer n (with n≥ 6)

and n−1 nonzero integers such that the sum of the nth powers of these n−1

integers is an nth power. The case where n= 6 reads

U6+V 6+W 6+X6+Y 6 = Z6 (4.16)

and no solution with UVWXYZ ≠ 0 is known.

We conclude this section with three other open problems.
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Problem 4.1. Does there exist a perfect rectangular box (Figure 4.1), that

is, a rectangular box such that the lengths of the three sides and of the four

diagonals are integers? In other words, we do not know whether or not there

are positive integers a, b, c, d, e, f , and g such that

a2+b2 = d2, a2+c2 = f 2, b2+c2 = e2, b2+f 2 = g2. (4.17)

If we do not require the interior diagonal to be integral, such a box exists:

simply take a= 117, b = 44, c = 240, d= 125, e= 244, and f = 267.

d

a

g

c

f

b

e

Figure 4.1

Problem 4.2. Does there exist a perfect square (Figure 4.2), that is, a square

with sides of length A, having an interior point respectively at distances B, C ,

D, and E from the four corners such that A, B, C , D, and E are all positive

integers?

A

A

A

A

C

DE

B

Figure 4.2
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Problem 4.3. Does there exist a perfect triangle (Figure 4.3), that is, a tri-

angle such that the sides A, B, and C , the medians D, E, and F , and the area

are all positive integers?

A

B

C

D
E

F

Figure 4.3

5. First attempts on Xn+Yn = Zn. Between 1640 and 1850, a few math-

ematicians, Fermat, Euler, Lejeune Dirichlet, Legendre, Lamé, and Lebesgue,

successfully studied the equation

Xn+Yn = Zn (5.1)

for n = 3,4,5,6,7. In 1857, Kummer settled Fermat’s conjecture for all the

exponents n≤ 100.

In 1983, a major breakthrough was made by Faltings [13] when he proved

that for a fixed n ≥ 4, the equation Xn+Yn = Zn has only a finite number of

solutions (with no common divisors). As a matter of fact, Faltings obtained in

1986 the Fields Medal for having proved the Mordell conjecture: every smooth

algebraic curve of genus g ≥ 2 over any given algebraic number field K has

a finite number of K-rational solutions. If one views an algebraic curve � as a

Riemann surface, the genus of � is the number of holes. Since for n ≥ 4, the

Fermat algebraic curve Xn+Yn = Zn is of genus (n−1)(n−2)/2, the curve

has only a finite number of positive integral solutions coprime to one another.

We know since 1993 that Fermat’s last theorem is true for n≤ 4000000; this

was established with the help of computers. Moreover, a result of K. Inkeri

implies that if there exist integers C ≥ B ≥ A ≥ 1 such that An + Bn = Cn,

then A> 400000011999996. This last integer is so big that if we wanted to write

it at full length, it would require more than 70 million digits, which would

make it close to 100 kilometers long (with 6 digits per centimeter). However,

Wiles wanted to prove Fermat’s last theorem definitely without the help of a

computer, and so he did!
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6. A small detour: the ABC conjecture. As odd as this may look, there

exists an open problem concerning the equality

A+B = C, (6.1)

and it is called the ABC conjecture. This is one of the deepest conjectures in

mathematics and it is far from being proved, though many experts think it is

true. The ABC conjecture, formulated in 1985 by J. Oesterlé and D. W. Masser,

provides an upper bound for |C| in terms of the product of the prime divisors

of ABC . More precisely, first choose a real number ε > 0 (e.g., ε = 0.000001).

Next suppose that A+B = C, where A and B have no divisor in common. Then

the ABC conjecture asserts the existence of a constant M (depending only on

ε) such that

|C| ≤MR1+ε. (6.2)

Assuming the ABC conjecture, one can give a short proof of the existence

of a (noneffective) constant N such that Fermat’s last theorem is true for all

n ≥ N. Here is how it goes. Choose and fix ε with, for instance, 0 < ε < 1/10.

Suppose next that there exist n≥ 4 and some integers c > b > a > 0, coprime

to one another, such that an+bn = cn. Put A = an, B = bn, and C = cn. Then

the ABC conjecture guarantees the existence of a constant M (depending only

on ε) such that

an < bn < cn <M

 ∏
p|abc

p

1+ε

. (6.3)

Hence

(abc)n <M3

 ∏
p|abc

p

3+3ε

, (6.4)

from which we conclude that n is bounded.

Notice to amateurs: LetC > 0. Denote by E what was C , that is,A+B = E;

use the letter C for what was R, and take ε = 1. Then the conjecture states

that E ≤ MC2, and the relativity of this shaky conjecture will certainly scare

physicists.

7. Some generalized Fermat equations. For a long time, it was conjectured

that 8 and 9 are the only consecutive powers. Many mathematicians contrib-

uted numerous partial results till this so-called Catalan conjecture was offi-

cially proved by Mihăilescu (see [30] or [4]), thanks to a clever use of the arith-

metic of cyclotomic fields. The result can be stated in the following terms.
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Theorem 7.1. The only positive solution of the Diophantine equation

Xm+1= Yn, (7.1)

with m,n≥ 2, is (X,Y ,m,n)= (2,3,3,2).
Using deep mathematics, namely, elliptic curves à la Wiles, Darmon and

Merel [11] solved some variants of the Fermat equation. They proved that the

Dénes conjecture is true: for n≥ 3, the only positive solution of the Diophantine

equation

Xn+Yn = 2Zn, (7.2)

with XYZ �= 0 and gcd(X,Y ,Z) = 1, is X = Y = Z = 1. They also proved the

following: for n≥ 4 and for q ∈ {2,3}, the Diophantine equation

Xn+Yn = Zq (7.3)

has no integral solution with gcd(X,Y ,Z)= 1 and XYZ �= 0.

We justify their hypothesis gcd(X,Y ,Z) = 1. Assume that n is of the form

n= 6m+5 and that an+bn = C ; then

(aC)n+(bC)n = (C3m+3)2 = (C2m+2)3. (7.4)

Darmon and Granville [9] and Beukers [3] obtained great results on the Dio-

phantine equation

AXp+BYq = CZr , (7.5)

whereA, B, andC are nonzero integers. Attach to the last equation the invariant

w = 1
p
+ 1
q
+ 1
r
. (7.6)

Using a big result of Faltings, Darmon and Granville [9] proved that whenw < 1,

there are only finitely many integral solutions with gcd(X,Y ,Z) = 1. If w =
1, that is, if {p,q,r} = {3,3,3},{2,4,4},{2,3,6}, it turns out that we are in

front of an elliptic curve, and we know from Mordell that there exists only a

finite number of integral solutions. Whenw > 1, the possible sets of exponents

{p,q,r} are {2,3,5}, {2,3,4}, {2,3,3}, and {2,2,k} with k≥ 2, and Beukers [3]

proved that either there is no integral solution or there are infinitely many

solutions in integers verifying gcd(X,Y ,Z)= 1.

If A = B = C = 1, then in the cases where {p,q,r} is {2,3,3} or {2,3,4}, D.

Zagier was more explicit. He first showed (see [3, Appendix A]) that all integral

solutions of

X3+Y 3 = Z2 (7.7)
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are given by the following parametrizations:

X = s4+6s2t2−3t4,

Y =−s4+6s2t2+3t4,

Z = 6st
(
s4+3t4);

X = s4+8st3,

Y =−4s3t+4t4,

Z = s6−20s3t3−8t6;

X = s
4+6s2t2−3t4

4
,

Y = −s
4+6s2t2+3t4

4
,

Z = 3st
(
s4+3t4

)
4

.

(7.8)

D. Zagier also showed that all integral solutions of

X4+Y 2 = Z3 (7.9)

are given by the following parametrizations:

X = 6st
(
3s4−4t4),

Y = (3s4+4t4)(9s8−408s4t4+16t8),
Z = 9s8+168s4t4+16t8;

X = 6st
(
s4−12t4),

Y = (s4+12t4)(s8−408s4t4+144t8),
Z = s8+168s4t4+144t8;

X = 3st
(
s4−3t4

)
2

,

Y =
(
s4+3t4

)(
s8−102s4t4+9t8

)
8

,

Z = s
8+42s4t4+9t8

4
;

X = (s2+3t2)(s4−18s2t2+9t4),
Y = 4st

(
s2−3t2)(s4+6s2t2+81t4)(3s4+2s2t2+3t4),

Z = (s4−2s2t2+9t4)(s4+30s2t2+9t4).

(7.10)
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Finally, D. Zagier showed that all the integral solutions of

X4+Y 3 = Z2 (7.11)

are given by the following parametrizations:

X = 6st
(
s4+12t4),

Y = s8−168s4t4+144t8,

Z = (s4−12t4)(s8+408s4t4+144t8);
X = (s2−3t2)(s4+18s2t2+9t4),
Y =−(s4+2s2t2+9t4)(s4−30s2t2+9t4),
Z = 4st

(
s2+3t2)(s4−6s2t2+81t4)(3s4−2s2t2+3t4);

X = 6st
(
3s4+4t4),

Y = 9s8−168s4t4+16t8,

Z = (3s4−4t4)(9s8+408s4t4+16t8);
X = s6+40s3t3−32t6,

Y =−8st
(
s3−16t3)(s3+2t3),

Z = s12−176s9t3−5632s3t9−1024t12;

X = s6+6s5t−15s4t2+20s3t3+15s2t4+30st5−17t6,

Y = 2s8−8ts7−56t3s5−28t4s4+168t5s3−112t6s2+88t7s+42t8,

Z =−3s12+12s11t−66s10t2−44s9t3+99s8t4+792s7t5−924s6t6

+2376s5t7−1485s4t8−1188s3t9+2046s2t10−156st11+397t12;

X =−5s6+6s5t+15s4t2−60s3t3+45s2t4−18st5+9t6,

Y = 6s8−56s7t+112s6t2−168s5t3+252s4t4−168s3t5+72st7−18t8,

Z =−29s12−15s11t−726s10t2+2420s9t3−4059s8t4+3960s7t5−2772s6t6

+2376s5t7−3267s4t8+3564s3t9−1782s2t10+324st11+27t12.
(7.12)

R. Tijdeman conjectured that for p,q,r ≥ 3, the Diophantine equation

Xp+Yq = Zr (7.13)

has no integral solution in integers coprime to one another with XYZ ≠ 0. This

has become Beal’s conjecture (http://www.bealconjecture.com/) when Beal of-

fered $100 000 to the first author who provides a proof of the conjecture or

a mere counterexample. If exactly one of the exponents p, q, and r takes the

http://www.bealconjecture.com/
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Table 7.1

Xp+Yp = Zr
1p+23 = 32

25+72 = 34

73+132 = 29

27+173 = 712

35+114 = 1222

177+762713 = 210639282

14143+22134592 = 657

92623+153122832 = 1137

438+962223 = 300429072

338+15490342 = 156133

value 2, then there are 10 known solutions (see [9]). Moreover, H. Darmon con-

jectured that there are no other solutions than those found by B. Kelly III, R.

Scott, B. De Weger, F. Beukers, and D. Zagier (see Table 7.1).

Bennett [1] proved a breathtaking theorem concerning the Diophantine equa-

tion

∣∣AXn−BYn∣∣= 1, (7.14)

with n≥ 3, when A and B are nonzero fixed integers: it has at most one integral

solution in positive integers X and Y . This is quite a powerful result, as can be

seen in the following two examples.

(i) For a given m, fix an integer B = sm + 1. Then an integral solution of

|Xm−BYm| = 1 is (X,Y) = (s,1) and (in positive integers) there is no other

one.

(ii) Fix an integer A ≥ 1. For n ≥ 3, the only positive integral solution of

(A+1)Xn−AYn = 1 is (X,Y)= (1,1).
Bennett also contributed major results on simultaneous Diophantine equa-

tions. In particular, he proved the following [2]: if a,b ∈N\{0} with a �= b, then

the simultaneous Diophantine equations

X2−aZ2 = 1, Y 2−bZ2 = 1 (7.15)

have at most three integral positive solutions with XYZ �= 0. As a matter of fact,

Bennett, supported by some of his results, conjectured that there are at most

two solutions.

8. On certain families of Thue equations. Consider an algebraic number

field K =Q(ω), where ω is a solution of an irreducible polynomial

f(X)=Xm+a1Xm−1+a2Xm−2+···+am−1X+am (8.1)
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of degree m with r real roots and 2s complex roots: m = r +2s. Inside the

ring �K of algebraic integers of K lives the unit group EK , which, by Dirichlet

theorem [37], is isomorphic to a finite group of roots of unity times r + s−1

copies of Z:

EK �W ×
〈
ε1
〉×〈ε2

〉×···×〈εr+s−1
〉
. (8.2)

It is classical to call {ε1,ε2, . . . ,εr+s−1} a fundamental system of units of Q(ω).
For small values of m, some mathematicians exhibited a fundamental sys-

tem of units {ε1,ε2, . . . ,εr+s−1} of K (resp., a maximal independent system of

units of K) and when the coefficient am of f(X) is in {1,−1}, a natural problem

is the following one: solve families of Thue equations naturally associated to

f(X); namely, exhibit the integral solutions of the Thue equation

F(X,Y)=Xm+a1Xm−1Y +···+am−1XYm−1+amYm = c (8.3)

with c ∈ {1,−1}. Most of the time, Baker’s linear forms in logarithms are used

and the knowledge of the unit group of K =Q(ω) proves useful.

(A) For instance, Thomas [41] with the help of Mignotte [26] proved that, for

all n≥ 0, the three solutions of the Diophantine equation

X3−(n−1)X2Y −(n+2)XY 2−Y 3 = c, (8.4)

with c ∈ {1,−1}, are (c,0), (0,−c), and (−c,c), except for n∈ {0,1,3}, where

the extra solutions (X,Y) are given by

(x,y)=


(5c,4c), (4c,−9c), (−9c,5c), (2c,−c), (−c,−c), (−c,2c) if n=0,

(2c,c), (−3c,2c), (c,−3c) if n=1,

(−7c,−2c), (−2c,9c), (9c,−7c) if n=3.
(8.5)

(B) Mignotte and Tzanakis [27, 29] and, independently, Lee [20] proved that,

for n= 2 and for all n≥ 5, the five solutions of the Diophantine equation

X3−nX2Y −(n+1)XY 2−Y 3 = c, (8.6)

with c ∈ {1,−1}, are (c,0), (0,−c), (c,−c), (−c(n+1),−c), and (c,−cn). For

n∈ {0,1,3,4}, the solutions are (c,0), (0,−c), (c,−c), and (−c(n+1),−c) and

extra solutions are provided by

(x,y)=


(4c,3c), if n= 0

(−5c,14c), (−2c,3c), (−c,2c), (c,−3c), (9c,−13c) if n= 3,

(c,-4c), (7c,−9c) if n= 4.
(8.7)
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(C) Assuming 1 ≤ a < b and r ∈ {1,−1}, Thomas [42] proved that, for all

n≥ 2×106(a+2b)4.85(b−a), the four solutions of the Diophantine equation

X
(
X−naY )(X−nbY )+rY 3 = c, (8.8)

with c ∈ {1,−1}, are (c,0), (0,cr), (narc,rc), and (nbrc,rc).
(D) First, Ljunggren [25], and later, Tzanakis [44], with a different method,

proved that the six solutions of

X3−3XY 2−Y 3 = 1 (8.9)

are (1,0), (0−1), (−1,1), (2,1), (−3,2), and (1,−3).
(E) Pethő with the help of Mignotte and Roth [28, 34] proved that, for all

n∈ Z such that |n| ≥ 5, and for |n| = 3, the twelve solutions of the Diophantine

equation

X4−nX3Y −X2Y 2+nXY 3+Y 4 = 1 (8.10)

are given by (1,0), (−1,0), (0,1), (0,−1), (1,1), (−1,−1), (1,−1), (−1,1), (n,1),
(−n,−1), (1,−n), and (−1,n). For |n| = 4, in addition to the last twelve solu-

tions, there are four more solutions given by

(x,y)=
(8,7), (−8,−7), (7,−8), (−7,8) if n= 4,

(8,−7), (−8,7), (7,8), (−7,−8) if n=−4.
(8.11)

Moreover, the Diophantine equation X4−nX3Y −X2Y 2+nXY 3+Y 4 =−1 has

no integral solution at all.

(F) In [34], Pethő also proved that, for |n| ≥ 9.9×1027 and for 1≤ |n| ≤ 100,

the four solutions of

X4−nX3Y −3X2Y 2+nXY 3+Y 4 = c, (8.12)

with c ∈ {1,−1}, are given by

(x,y)=
(1,0), (−1,0), (0,1), (0,−1) if c = 1,

(1,1), (1,−1), (−1,1), (−1,−1) if c =−1,
(8.13)

except for n ∈ {1,−1} and c = −1, where there are four extra solutions given

by (2n,1), (−2n,−1), (1,−2n), and (−1,2n).
(G) Lettl and Pethő [21] and Chen and Voutier [7] proved that, for |n| ≥ 1,

the four solutions of

X4−nX3Y −6X2Y 2+nXY 3+Y 4 = d, (8.14)

with d∈ {−4,−1,1,4}, are given by

(x,y)=
(1,0), (−1,0), (0,1), (0,−1) if d= 1,

(1,1), (−1,−1), (1,−1), (−1,1) if d=−4,
(8.15)
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except for n∈ {−4,−1,1,4}, where there are four extra solutions given by

(x,y)=



(2,3), (−2,−3), (3,−2), (−3,2) if n= 4 and d= 1,

(3,2), (−3,−2), (2,−3), (−2,3) if n=−4 and d= 1,

(1,2), (−1,−2), (2,−1), (−2,1) if n= 1 and d=−1,

(2,1), (−2,−1), (1,−2), (−1,2) if n=−1 and d=−1,

(5,1), (−5,−1), (1,−5), (−1,5) if n= 4 and d=−4,

(1,5), (−1,−5), (5,−1), (−5,1) if n=−4 and d=−4,

(3,1), (−3,−1), (1,−3), (−1,3) if n= 1 and d= 4,

(1,3), (−1,−3), (3,−1), (−3,1) if n=−1 and d= 4.

(8.16)

(H) Pethő and Tichy [35] proved that, for 102×1028 < m+ 1 < n ≤ m(1+
(logm)−4), the integer solutions of

X(X−Y)(X−mY)(X−nY)−Y 4 = c, (8.17)

with c ∈ {−1,1}, are

(x,y)=


(1,0), (−1,0) if c = 1,(0,1), (0,−1), (1,1), (−1,−1),

(m,1), (−m,−1), (n,1), (−n,−1)
if c =−1.

(8.18)

When n =m+1, Heuberger, Pethő, and Tichy [19] previously proved that the

integer solutions are the same as the ones given above.
(I) Wakabayashi [45] proved that, for n≥ 8, the integral solutions of

X4−n2X2Y 2+Y 4 = f , (8.19)

with f ∈ {1,−(n2−2)}, are

(x,y)=


(0,1), (0,−1), (1,0), (−1,0), (n,1),(n,−1),(−n,1),
(−n,−1), (1,n), (1,−n), (−1,n), (−1,−n) if f = 1,

(1,1), (1,−1), (−1,1), (−1,−1) if f =−(n2−2
)
.

(8.20)

For 1≤ |f | ≤n2−2 with f �∈ {1,−(n2−2)}, there is no integral solution.

(J) Assuming n, n+2, and n2+4 to be square-free, Togbé [43] proved that,

for 1≤n≤ 5×106 and n≥ 1.191×1019, the four integral solutions of

X4−n2X3Y −(n3+2n2+4n+2
)
X2Y 2−n2XY 3+Y 4 = 1 (8.21)

are (1,0), (−1,0), (0,1), and (0,−1).
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(K) Heuberger [18] showed that, for |n| > 3.6×1019, the integral solutions

of

X
(
X2−Y 2)(X2−n2Y 2)−Y 5 = c, (8.22)

with c ∈ {1,−1}, are (c,0), (0,−c), (−c,−c), (c,−c), (n,−c), and (−n,−c).
(L) In [14, 15], Gaál and Lettl proved that, for all n ∈ Z, the two integral

solutions of

X5+(n−1)2X4Y −(2n3+4n+4
)
X3Y 2

+(n4+n3+2n2+4n−3
)
X2Y 3+(n3+n2+5n+3

)
XY 4+Y 5 = c, (8.23)

with c ∈ {1,−1}, are (c,0) and (0,c), except for n ∈ {0,−1}, where there are

three extra solutions given by

(x,y)=
(c,−c), (−c,−c), (2c,−c) if n= 0,

(c,−c), (c,c), (−2c,c) if n=−1.
(8.24)

(M) Levesque and Mignotte [24] proved that, for all n≥ 1012, the three solu-

tions of the Diophantine equation

X5+2X4Y +(n+3)X3Y 2+(2n+3)X2Y 3+(n+1)XY 4−Y 5 = c, (8.25)

with c ∈ {1,−1}, are (c,0), (0,−c), and (c,−c).
(N) In [22, 23], using hypergeometric methods and Baker’s linear forms in

logarithms, Lettl, Pethő, and Voutier [22] proved that, for all n ≥ 89, the six

integer solutions of

X6−2nX5Y −(5n+15)X4Y 2−20X3Y 3

+5nX2Y 4+(2n+6)XY 5+Y 6 = c, (8.26)

with c ∈ {1,−27}, are

(x,y)=
(1,0),(−1,0),(0,1),(0,−1),(1,−1),(−1,1) if c = 1,

(1,1),(−1,−1),(2,−1),(−2,1),(1,−2),(−1,2) if c =−27.
(8.27)

When 1≤ |c| ≤ 27 with c �∈ {1,−27}, there is no integer solution.

9. Andrew Wiles. We come back to Fermat’s last theorem and to the proof

of Wiles. The main ingredient of the proof is the theory of elliptic curves. An

elliptic curve E (see Figure 9.1) over the field Q of rational numbers can be

characterized as the set of rational solutions (i.e., solutions inQ) of an equation

of the form

Y 2 =X3+aX2+bX+c, (9.1)
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Figure 9.1 Elliptic curve E : Y 2 =X(X−9)(X−16).

with a,b,c ∈ Z. We mention, by the way, that according to Mordell [31], the

number of integral solutions (x,y) of E is finite.

On the one hand, G. Frey showed in 1985 that if nonzero integers a, b, c ≥ 1

happen to verify an+bn = cn, n≥ 5, then the elliptic curve

Y 2 =X(X−an)(X+bn) (9.2)

is semistable, that is, its conductor (to be defined in the next section) involves

only prime integers raised to the power 1. On the other hand, K. A. Ribet proved

a few years later that such an elliptic curve Y 2 =X(X−an)(X+bn) (built from

a hypothetical solution a,b, and c of An+Bn = Cn with a,b,c ≠ 0) cannot be

modular , that is, cannot be written in terms of certain functions dubbed as

modular functions. In a tour de force, Andrew Wiles next proved the following

remarkable result: every semistable elliptic curve is modular. If you reread this

paragraph, you will see that Fermat’s last theorem is proved by contradiction,

with the help of this striking result of Wiles.

10. Modular elliptic curves. In this section, we give the flavour of the no-

tions of conductor , semistability , and modularity of an elliptic curve E over Q
which can be written in the affine plane as

E : Y 2 =X3+aX+b with a,b ∈ Z, (10.1)

and whose discriminant is, by definition, ∆=−16(4a3+27b2)≠ 0. If p �∆, we

say that E has good reduction at p. If p|∆ and if the elliptic curve E, viewed as

a curve over Z/pZ, has a double point with two different tangents (resp., with
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the same tangent), we say that E has multiplicative (resp., additive) reduction

at p. The conductor N of E, a divisor of ∆, is by definition

N =
∏
p|∆
pδp (10.2)

with δp = 1 if the reduction of E at p is multiplicative, δp = 2 if the reduction of

E at p for p ≥ 5 is additive, and δp ≥ 2 if the reduction of E at p for p ∈ {2,3}
is additive. We say that E is semistable if the conductor N of E happens to be

square-free.

Denote by �p the number of solutions of the curve E modulo p, that is, �p is

the number of pairs (x,y)∈ Z/pZ×Z/pZ which are solutions of the equation

of the curve, the equation being considered as a congruence modulo p. Since

∞ (which happens to be the identity element of the group of rational points of

the curve) is also a solution, in practice, the number #E(Z/pZ) of points of the

curve E over Z/pZ is �p+1. The pieces of information obtained for all primes

p generate the numbers

ap = p−�p = p+1−#E(Z/pZ). (10.3)

These numbers are used to build the L-function associated to the curve E,

denoted by L(E,s), defined formally as the infinite product

∏
p|∆

(
1− ap

ps

)−1 ∏
p�∆

(
1− ap

ps
+ 1
p2s−1

)−1

. (10.4)

Here L(E,s) is a function of the complex variable s and it is well known that

the Dirichlet series

L(E,s)=
∏
p|∆

(
1− ap

ps

)−1 ∏
p�∆

(
1− ap

ps
+ 1
p2s−1

)−1

=
∞∑
n=1

an
ns

(10.5)

converges for �s > 3/2 (where �s is the real part of s, with 	(s) being the

imaginary part of s).
Let � = {z ∈ C : 	(z) > 0} denote the Poincaré upper half-plane. Consider

the group of matrices

Γ0(N)=
{(

a b
Nc d

)
: a,b,c,d∈ Z, ad−Nbc = 1

}
. (10.6)

By definition, the action of Γ0(N) on � is given by(
a b
Nc d

)
(z)= az+b

Ncz+d. (10.7)

Two points z and w of � will be considered as equivalent modulo Γ0(N) (in

symbolsw ∼ z) if there existsM ∈ Γ0(N) such thatMw = z. The quotient space
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�/ ∼, classically written as �/Γ0(N), can be compactified by adding a finite

number of the so-called cusps to obtain a compact Riemann surface denoted

by

X0(N)=�/Γ0(N)∪ {cusps}. (10.8)

A modular form f(z) of level N (and of weight 2) is a function f of a com-

plex variable defined on � with values in C, holomorphic on �∪ {cusps}, and

verifying

f
(
az+b
Ncz+d

)
= (Ncz+d)2f(z), ∀

(
a b
Nc d

)
∈ Γ0(N). (10.9)

In particular, f(z+1)= f((z+1)/(0z+1))= f(z), which implies that f has a

Fourier expansion

f(z)=
∞∑
n=1

ane2πinz, an ∈ C, (10.10)

so one associates with f the Dirichlet series
∑∞
n=1(an/ns).

The study of an L-series associated with an elliptic curve E is easier if we

know that the L-series associated with E is an L-series attached as above to a

modular form f . This is exactly what the Shimura-Taniyama conjecture pre-

dicts: for every elliptic curve E over Q, there exists a modular form f whose

L-series associated to f is the same as the L-series associated to E. As a mat-

ter of fact, the conjecture predicts more, and the reader is invited to look at

[5, 8, 10, 16, 17, 32, 33, 38].

11. Epilogue. Starting from June 23, 1993, the members of the mathemat-

ical community intensively studied the proof of Wiles and realized that there

was a gap. In a public e-mail dated December 6, 1994, Andrew Wiles himself

confessed that the proof was not complete since an upper bound of the order

of a so-called Selmer group was missing. With the help of his former Ph.D.

student, Richard Taylor, Andrew Wiles overcame this difficulty by using other

machinery.

One year later, the proof was complete. On October 11, 1994, a handful

of mathematicians, including my colleague Henri Darmon (McGill University),

received the long proof of Wiles together with a joint preprint of R. Taylor and

A. Wiles. On October 25, 1994, about 20 mathematicians were officially sent

this proof. Then fax machines and e-mails got into action, and we know the end

of the story. Specialists agreed: this time, devil played no trick and Fermat may

rest in peace. The proof appeared in [46]; the proof uses results of leaders in

mathematics together with, for the final step, the results of a paper by Taylor

and Wiles [40].
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A few years later, Breuil et al. [6] proved along the lines of the programme

of Wiles that indeed every elliptic curve overQ is modular . This result allowed

mathematicians to unconditionally solve other Diophantine equations.
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[19] C. Heuberger, A. Pethő, and R. F. Tichy, Complete solution of parametrized Thue
equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), no. 1, 93–114.

[20] E. Lee, Studies on diophantine equations, Ph.D. thesis, Dept. Math., Cambridge
University, Cambridge, 1992.
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