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ON THE STEENROD OPERATIONS IN CYCLIC COHOMOLOGY
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For a commutative Hopf algebra A over Z/p, where p is a prime integer, we define
the Steenrod operations Pi in cyclic cohomology of A using a tensor product of
a free resolution of the symmetric group Sn and the standard resolution of the
algebra A over the cyclic category according to Loday (1992). We also compute
some of these operations.
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1. Introduction. For any prime p, the modp Steenrod algebra �(p) is the

graded associative algebra generated by the modp stable operations Pi of de-

gree 2i(p−1) in the ordinary cohomology theory. When p = 2, it is generated

by the Steenrod squares Sqi (i ≥ 1) subject to the Adem relations. The oper-

ations Pi and Sqi increase degree, respectively, by 2i(p−1) and i; in other

words,

Pi :Hq(−,Z/p) �→Hq+2i(p−1)(−,Z/p),
Sqi :Hq(−,Z/p) �→Hq+i(−,Z/p). (1.1)

In [4], Epstein introduced the Steenrod operations into derived functors and

obtained as a special case the Steenrod operations in the cohomology of groups

and in the cohomology of a space with coefficients in sheaves (see also [15]).

Other operations like Adams’ were studied in [5, 11]. The S- and λ-operations

in cyclic homology have been defined and studied in [2]. Some special oper-

ations (dot product, bracket ) on Hochschild complex that induce a structure

of graded algebra on the cohomology have been considered in [16]. Steenrod

operations on the Hochschild homology have been studied in [13]. There are

also operations in K-theory, for instance [8], and λ-operations in orthogonal K-

theory [3]. Many applications of the Steenrod algebra have been made: in 1958,

Adams [1] used them to compute the stable homotopy groups of spheres and

in the same year Milnor [12] proved that the Steenrod algebra and its dual have

structures of Hopf algebras.

In this paper, we define the Steenrod operations in cyclic cohomology of a

commutative Hopf algebra and obtain some calculations.
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2. Steenrod operations on cyclic cohomology. Let k be a commutative ring

with unit, A a commutative k-Hopf algebra, and � a cyclic category (see [10,

page 202]). We will denote the k-algebra over � by k[�] and the cyclic category

over A by A� (see [10]). We define an A�-structure of cocommutative coalgebra

by the formula

A� ∇
����������������������������������������→A⊗A f

����������������������������������→A�⊗A�, (2.1)

where ∇ is k[�]-homomorphism and f is given by

f
((
a0⊗b0

)⊗(a1⊗b1
)⊗···⊗(an⊗bn))

= (a0⊗a1⊗···⊗an
)⊗(b0⊗b1⊗···⊗bn

)
.

(2.2)

Suppose that∇� = f ◦∇ gives the cocommutative comultiplication inA�⊗kA�,

that is, T ◦∇� =∇�, where T is the twisting map T(a⊗b)= b⊗a. We have, for

x in k[�],

f
(
x
[(
a0⊗b0

)⊗···⊗(an⊗bn)])= x(a0⊗···⊗an
)⊗x(b0⊗···⊗bn

)
= x[(a0⊗b0

)⊗···⊗(an⊗bn)]
= xf ((a0⊗b0

)⊗···⊗(an⊗bn)).
(2.3)

The comultiplication ∇� becomes a k[�]-module homomorphism.

2.1. The normalized bar construction. Let Jk[�] be the cokernel of the k-

map k→ k[�]. The normalized bar construction of the triple L= (A�,k[�],k�)
is defined to be the graded k-module B(L) with

Bm(L)=A�⊗k[�] Tm
(
Jk[�]

)⊗k[�] k�, (2.4)

where Tm(Jk[�]) is the tensor algebra in degree m. As k-module Bm(L) is

spanned by elements written as a[g1|···|gm]u, where a is in A�, gi belongs

to k[�], and u is an element of k�. The differential dm : Bm(L)→ Bm−1(L) is

given by

dm
(
a
[
g1|···|gm

]
u
)= ag1

[
g2|···|gm

]
u

+
m−1∑
i=1

(−1)ia
[
g1|···|gi−1

∣∣gigi+1

∣∣gi+2|···|gm
]
u

+(−1)ma
[
g1|···|gm−1

]
gmu.

(2.5)

The elements are normalized in the sense that f([g1|···|gm]u) = 0 and

f(a[·]u)= 0, where a[·]u are elements of B0.

We define also, for the triple T = (k[�],k[∆�],k�), the maps d and f in

the same manner. Note that for T , the differential d is a left k[�]-module

homomorphism and ds + sd = 1−σf , where the morphisms σ : k� → B(T)
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and s : Bm(T) → Bm−1(T) are given by the formulas σ(u) = [·]u⊗k [·] and

s(g[g1|···|gm]u) = g[g1|···|gm]u. It is clear that the differential d in the

complex B(L) is equal to 1⊗k[�] d. We have the equality

Homk[∆�]
(
B(T),

(
A�
)∗)= (B(L))∗ =Homk[∆�]

(
B
(
A�
)
,k[�],k[�]�,(k)∗

)
.

(2.6)

We then have (see [10, page 214]),

HCn(A)= Extnk[�]
(
A�,

(
k�
)∗)=Hn((B(L))∗). (2.7)

Given a triple L and considering the product ⊥: B(L⊗ L) → B(L)⊗ B(L), we

define on B(L) a structure of coassociative coalgebra by means of comulti-

plication ∇̃ =⊥ B(∇�,∇k[�],∇k�) : B(L⊗ L) → B(L)⊗ B(L) and on B(L)∗ the

following multiplication as a composite map:

B(L)∗⊗B(L)∗ �→ (
B(L)⊗B(L))∗ (∇̃)∗

�����������������������������������������������������������������������������������������������������������→ B(L)∗. (2.8)

We have the following lemma which can be easily proved by ordinary tech-

niques of homological algebra (see [15]).

Lemma 2.1. Let µ be an arbitrary subgroup of the symmetric group Sn and

W the free resolution of k as k[µ]-module with a generator e0. Then there is a

graded k[µ]-complex with the following properties:

(a) ∆(w⊗b)= 0 for b ∈ B0(L) and w ∈Wi, i > 0;

(b) ∆(e0⊗b)= ∇̃⊗r (b) for b ∈ B(L) and ∇̃⊗r : B(L)→ B(L)⊗r ;

(c) the map ∆ : B(L)→ B(L)⊗r is a left k[�]-module, homomorphism, where

k[�] acts on W ⊗B(L) by u(w⊗b)=w⊗ub;

(d) ∆(Wi⊗Bm(L))= 0 when i > (r −1)m.

Furthermore, there exists a k[µ]-homotopy between any two homomorphisms

∆ with the same properties.

Now define a k[µ]-homomorphismθ :W⊗((B(L))∗)⊗r → (B(L))∗ withθ(w⊗
x)(m)= B(x)∆(w⊗x),w ∈W ,x ∈ ((B(L))∗)⊗r ,m∈B(L), and B : ((B(L))∗)⊗r

→ ((B(L))⊗r )∗ a trivial homomorphism.

2.2. Operations. In the above lemma, let µ = Z/p and k= Z/p, where p is a

prime integer. Consider the k[Z/p]-free resolutionW withWi, i≥ 0, generated

by ei. For i < 0, consider Wi :=W−i as a free k[Z/p]-module with a generator

e−i. Now we define, for i≥ 0, the homomorphism

Ri :Hq(B(L)∗) �→Hpq−i(B(L)∗),
x 	 �→ Ri(x)= θ∗

(
e−i⊗xp

)
.

(2.9)

We extend the definition of this homomorphism to the negative i by Ri = 0.

The Steenrod operations Pi are defined in terms of the Rj in the following

manner.
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(a) For p = 2, Pi := Rq−i :Hq(B(L)∗)→Hq+i(B(L)∗).
(b) For p a prime integer greater than 2, Pi : HCn(A)→ HCn+2i(p−1)(A) is

given by Pi(x) = (−1)i+j((p−1)/2!)εR(n−2i)(p−1)(x), where n = 2j−ε,
ε = 0 or 1, and x ∈ HCn(A), and βPi : HCn(A) → HCn+2i(p−1)(A) is

given by βPi(x)= (−1)i+j((p−1)/2!)εR(n−2i)(p−1)−1(x).

Definition 2.2. LetA be a commutative k-Hopf algebra where k= Z/p. The

Steenrod maps are the homomorphisms Pi :HCn(A)→HCn+i(A), when p = 2,

and Pi : HCn(A)→ HCn+2i(p−1)(A), when p > 2. In this case, βPi : HCn(A)→
HCn+2i(p−1)(A).

We then have the following properties of these operators.

Theorem 2.3. (a) When p = 2 and n < i or n < 2i < 2n, Pi : HCn(A) →
HCn+i(A) is equal to zero. Also, βPi :HCn(A)→HCn+2i(p−1)(A) is zero when

n< 2i.
(b) When i=n and p = 2, Pi(x)= x2.

(c) The Steenrod maps satisfy Pn = ∑n
i=0Pi ⊗ Pn−i and βPn = ∑n

i=0βPi ⊗
Pn−i+Pi⊗βPn−i.

(d) The operations Pn and βPn satisfy the following Adem relations:

(i) for p ≥ 2 and m<pn,

βγPmPn =
∑
i
(−1)m+i

(
m−pi+(p−1)(n−m+i−1)

m−pi

)
βγPm+n−iP i, (2.10)

where (·) is the binomial coefficient, γ = 0 or 1, when p = 2, and γ = 1,

when p > 2,

(ii) for p > 2, pn≥m, and γ = 0 or 1,

βγPmPn = (1−γ)
∑
i
(−1)m+i

(
m−pi+(p−1)(n−m+i−1)

m−pi

)
(βP)m+n−iP i

−
∑
i
(−1)m+i

(
m−pi+(p−1)(n−m+i−1)

m−pi

)
βγPm+n−i(βP)i.

(2.11)

Proof. Consider the triple C = (E,A,F), where A is a cocommutative Hopf

algebra over Z/p, E and F are, respectively, the right and left cocommuta-

tive coalgebras over A. From the above discussion and considering the triple

L= (A�,k[�],k�), then k[�], A�, and k� become, respectively, cocommutative

Hopf algebra over Z/p, and right and left cocommutative k[�]-coalgebras, and

then Hn(B(L)∗)=HCn(A).
Remark 2.4. Note that if we replace the category k[�] by a reflexive cat-

egory k[R] (see [7, 9]), then the Steenrod operations can be defined on the

reflexive homology.



ON THE STEENROD OPERATIONS IN CYCLIC COHOMOLOGY 4543

3. Some computations of Steenrod operations. We use operads and alge-

bra of operads to obtain some computations of the Steenrod operations on

the cohomology of a Hopf algebra over Z/p. Let H∗ be the cohomology of the

Hopf algebra A and consider the Steenrod operations

Pi :HCn
(
S,H∗) �→HCn+i(S,H∗), (3.1)

where the algebra S over operad is the Sw -algebra structure over H∗ and Sw =
{Sw(j)}j is the cyclic operad generated by elementsui ∈ Sw(2) andπi ∈ Sw(i+
2) (see [6]).

Proposition 3.1. There is an Sw -algebra over H∗ generated by an element

h0 of dimension one such that πi(h0,h1, . . . ,hi+1) = 0, where hi are given in-

ductively by hi+1 = hiP1hi.

Lemma 3.2 [14]. Let X be a simplicial complex, CX the free commutative

coalgebra generated by X, A a Steenrod algebra where P0 = 1, A[H∗(X)] a

free unstableA-module generated byH∗(X), and S{A[H∗(X)]} a commutative

algebra generated byA[H∗(X)]with multiplication given by x·x = x∪x. Then

H∗(CX)� S{A[H∗(X)]}.
Lemma 3.3. There exists a chain equivalence B(SA,H∗)� B(A,B(S,H∗)).

Proof (sketch). Let Y∗ denote the cohomology of (SA,H∗). We then have

the complex

B
(
A,Y∗

)
: ··· �→A2Y∗ �→AY∗ �→ Y∗ (3.2)

with the cohomology given by

Hn(B(A,Y∗))=

0 n> 1,

Hi n= 0.
(3.3)

The nontrivial cohomology group Hi is generated by elements ξi, and Y∗ is

clearly a free unstable A-module with generator ξi and AY∗ = Hn(B(S,H∗))
with generator ξi+1.

Proof of Proposition 3.1. Consider the diagram

··· A⊗A⊗A A⊗A A

··· C(A⊗A⊗A) C(A⊗A) C(A)

··· C2(A⊗A⊗A) C2(A⊗A) C2(A)

··· ...
...

...

(3.4)
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where A is the Hopf algebra over Z/p and C(A) is a free cocommutative

coalgebra generated by A. The cohomology of the first row is by definition

H∗. Consider the B construction B(S,H∗), where the differential is defined

as Sw -algebra structure on H∗. The zero-dimensional cohomology of this B-

construction contains the indecomposable elements in H∗ and also the ele-

ments

h1 = h0P1h0, h2 = h1P1h1, . . . ,hi = hi−1P1hi−1,

h2
i = hiP0hi, h22

i = h2
i P

0h2
i , . . . ,h

2k
i = h2k−1

i P0h2k−1

i , where h2k
i ∈A2k .

(3.5)

Note that these elements are also indecomposable. The one-dimensional co-

homology of B(S,H∗) is a free unstable A-module with one generator ξ2 =
h0h1 ∈ S1H∗, which means that h0h1 is acyclic (πi(h0,h1)= 0). Consequently,

the i-dimensional cohomology has one generator ξi+1 ∈ SiH∗, where ξi+1 =
(h0 ···hi+1). Hence πi(h0 ···hi+1)= 0.

Consequences. From the above discussion, we conclude that the indecom-

posable elements inH∗ areh2 ∈A2 and multiplication between these elements

is given by the Cartan formula

(XY)Pn(XY)=
i=n∑
i=0

(
XPiX

)(
YPn−iY

)
. (3.6)

(a) Using the operation P2 with h0h1 = 0, we obtain hihi+1 = 0.

(b) Taking the operation P1 and hihi+1 = 0, we obtain hihi+k+2 = 0 for any

nonnegative integer k.

(c) If we use the operation P3, we get the relations hihi+k+2 = 0 for any

nonnegative integer k.
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