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PARTIAL SUMS OF FUNCTIONS OF BOUNDED TURNING
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We determine conditions under which the partial sums of the Libera integral operator of
functions of bounded turning are also of bounded turning.
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1. Introduction. Let � denote the family of functions f which are analytic in the

open unit disk �= {z : |z|< 1} and are normalized by

f(z)= z+
∞∑
k=2

akzk, z ∈�. (1.1)

For 0 ≤ α < 1, let �(α) denote the class of functions f of the form (1.1) so that

�(f ′) > α in �. The functions in �(α) are called functions of bounded turning (cf. [4]).

By the Nashiro-Warschowski theorem (see, e.g., [3]), the functions in �(α) are univalent

and also close-to-convex in �.

For f of the form (1.1), the Libera integral operator F is given by

F(z)= 2
z

∫ z
0
f(ζ)dζ = z+

∞∑
k=2

2
k+1

akzk. (1.2)

The nth partial sums Fn(z) of the Libera integral operator F(z) are given by

Fn(z)= z+
n∑
k=2

2
k+1

akzk. (1.3)

In [6] it was shown that if f ∈� is starlike of order α, α= 0.294, . . . , so is the Libera

integral operator F . We also know that (see, e.g., [1]) there are functions which are

univalent or spiral-like in � so that their Libera integral operators are not univalent or

spiral-like in �. Li and Owa [5] proved that if f ∈ � is univalent in �, then Fn(z) is

starlike in |z| < 3/8. The number 3/8 is sharp. In this note we make use of a result of

Gasper [2] to provide a simple proof for the following theorem.

Main theorem. If 1/4≤α< 1 and f ∈�(α), then Fn ∈�((4α−1)/3).

2. Preliminary lemmas. To prove our Main theorem, we will need the following three

lemmas. The first lemma is due to Gasper (see [2, Theorem 1]) and the third lemma
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is a well-known and celebrated result (cf. [3]) that can be derived from the Herglotz’

representation for positive real part functions.

Lemma 2.1. Let θ be a real number and let m and k be natural numbers. Then

1
3
+

m∑
k=1

cos(kθ)
k+2

≥ 0. (2.1)

Lemma 2.2. For z ∈�,

�

 m∑
k=1

zk

k+2


>−1

3
. (2.2)

Proof. For 0 ≤ r < 1 and for 0 ≤ |θ| ≤ π , write z = reiθ = r(cos(θ)+ isin(θ)). By

DeMoivre’s law and the minimum principle for harmonic functions, we have

�

 m∑
k=1

zk

k+2


=

m∑
k=1

rk cos(kθ)
k+2

>
m∑
k=1

cos(kθ)
k+2

. (2.3)

Now by Abel’s lemma (cf. Titchmarsh [7]) and condition (2.1) of Lemma 2.1 we con-

clude that the right-hand side of (2.3) is greater than or equal to −1/3.

Lemma 2.3. Let P(z) be analytic in �, P(0) = 1 and let �(P(z)) > 1/2 in �. For

functions Q analytic in �, the convolution function P∗Q takes values in the convex hull

of the image on � under Q.

The operator “∗” stands for the Hadamard product or convolution of two power

series f(z)=∑∞
k=1akzk and g(z)=∑∞

k=1bkzk denoted by (f ∗g)(z)=∑∞
k=1akbkzk.

3. Proof of Main theorem. Let f be of the form (1.1) and belong to �(α) for 1/4 ≤
α< 1. Since �(f ′(z)) > α, we have

�

1+ 1

2(1−α)
∞∑
k=2

kakzk−1


> 1

2
. (3.1)

Applying the convolution properties of power series to F ′n(z), we may write

F ′n(z)= 1+
n∑
k=2

2k
k+1

akzk−1

=

1+ 1

2(1−α)
∞∑
k=2

kakzk−1


∗


1+(1−α)

n∑
k=2

4
k+1

zk−1




= P(z)∗Q(z).

(3.2)

From Lemma 2.2 for m=n−1, we obtain

�

 n∑
k=2

zk−1

k+1


>−1

3
. (3.3)
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Applying a simple algebra to inequality (3.3) and Q(z) in (3.2) yields

�(Q(z))=�

1+(1−α)

n∑
k=2

4
k+1

zk−1


> 4α−1

3
. (3.4)

On the other hand, the power series P(z) in (3.2) in conjunction with the condition (3.1)

yield �(P(z)) > 1/2. Therefore, by Lemma 2.3, �(F ′n(z)) > (4α−1)/3. This concludes

the Main theorem.

Remark 3.1. The Main theorem also holds for α < 1/4. We also note that �(α) for

α< 0 is no longer a bounded turning family.
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