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We study point and higher symmetries of systems of the hydrodynamic type with and with-
out an explicit dependence on t,x. We consider such systems which satisfy the existence
conditions for an infinite-dimensional group of hydrodynamic symmetries which implies lin-
earizing transformations for these systems. Under additional restrictions on the systems, we
obtain recursion operators for symmetries and use them to construct infinite discrete sets
of exact solutions of the studied equations. We find the interrelation between higher sym-
metries and recursion operators. Two-component systems are studied in more detail than
n-component systems. As a special case, we consider Hamiltonian and semi-Hamiltonian
systems of Tsarév.

2000 Mathematics Subject Classification: 35Q35, 35L40, 76M60.

1. Introduction. This paper summarizes published and unpublished results of the
author on the systems of the hydrodynamic type admitting infinite-dimensional sym-
metry Lie groups. We study point and higher symmetries, recursion operators, and
Hamiltonian structures and use these results for obtaining exact analytical solutions
of these equations. Originally Dubrovin and Novikov meant by hydrodynamic-type sys-
tems any quasilinear systems of first-order partial differential equations (PDEs) possess-
ing the Hamiltonian structure [4, 5]. Here we consider a more general class of equations
of the hydrodynamic type which includes in particular semi-Hamiltonian equations of
Tsarév [39, 40] and equations explicitly dependent on t (or x). Being rich in symme-
tries, they can be linearized, and infinite sets of exact solutions can be obtained if, in
addition, existence conditions for recursion operators are satisfied. Thus, they have as
good integrability properties as the Hamiltonian equations.

Systems of the hydrodynamic type describe various physical phenomena such as gas
dynamics and hydrodynamics, magnetic hydrodynamics [27], models of nonlinear elas-
ticity and phase transitions [24], chromatography, and electrophoresis equations from
physical chemistry and biology [10, 26]. Applications of a different kind are obtained
by a representation of the physically interesting higher-order equations as integrability
conditions of the hydrodynamic-type systems such as the Euler and Poisson equations
of nonlinear acoustics [14] and the Born-Infeld equation of nonlinear electrodynamics
[2]. Other applications of hydrodynamic-type systems arise in the theory of averaging
nonlinear soliton equations: dispersionless limits of integrable systems [4, 5]. More re-
cent applications use the reductions of nonlinear PDEs to systems of the hydrodynamic
type by imposing the dependence of the unknowns on solutions of the hydrodynamic-
type systems [8, 9, 12].
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Symmetry group analysis of systems of the hydrodynamic type leads in a natural and
algorithmic way to the associated differential geometric structures: metric, connection,
curvature, curvilinear orthogonal coordinate systems and their transformations. If, in
addition, the Hamiltonian structure exists, then it turns out to be merely an aspect of
this geometrical theory [4, 39, 40]. However, the differential geometric theory cannot
solve the problem of integration for equations of the hydrodynamic type. We present
here another approach to this problem based on a systematic study of higher symme-
tries and recursion operators [33, 34, 35, 36]. We find the class of such hydrodynamic-
type systems which admits a infinite set of hydrodynamic symmetries depending on
arbitrary solutions of a linear system of PDEs. Formulas for the corresponding invariant
solutions determine a linearizing transformation which reduces the problem of obtain-
ing solutions of a nonlinear system of the hydrodynamic type to the problem of solving
a linear system. If, in addition, there exist recursion operators mapping symmetries
again into symmetries, then they give rise to recursions of hydrodynamic symmetries
and, as a consequence, lead to recursions for solutions of the corresponding linear
system. Thus, we obtain the recursion formulas which allow us to generate new solu-
tions out of the known “seed” solutions of the original nonlinear system. The action
of recursion operators on the hydrodynamic symmetries explicitly dependent on x,t
gives rise to infinite discrete sets of higher symmetries which make it possible to find
explicitly the corresponding invariant solutions. Thus we obtain infinite discrete sets of
exact solutions of the hydrodynamic-type system. They are analogous to the similarity
solutions which are well known in the gas and fluid dynamics, and therefore they are
expected to describe a physically interesting behavior of the system.

Symmetries, recursions, Hamiltonian structures, and exact solutions of two-compo-
nent systems of the hydrodynamic type with one space-dimension were studied by
the author mainly before Tsarév’s publications [29, 30, 31, 34]. Symmetries, linearizing
transformations, and geometric theory of the multicomponent hydrodynamic-type sys-
tems explicitly dependent on x,t have been constructed by the author in 1989 [28, 32].
Higher symmetries, higher conservation laws, their interrelations, and the theory of
recursion operators for multicomponent hydrodynamic-type systems have been con-
structed by the author in 1993, 1994, and 1995 [33, 35, 36, 37]. Finally in [13], we
further developed the theory of integrability of diagonal hydrodynamic-type systems
with an explicit dependence on t or x and presented a nontrivial example of such an
integrable system. There we also clarified and formulated precisely the concept of the
hydrodynamic symmetries which are first-order symmetries though, generically, they
are neither point nor contact symmetries. Therefore, there is no symmetry reduction for
solutions invariant with respect to these nonclassical symmetries so that they depend
again on two variables.

In Section 2, we study two-component diagonal systems of the hydrodynamic type
with an explicit dependence on t or x. We find an infinite-dimensional group of their
hydrodynamic symmetries and its existence conditions. By considering corresponding
invariant solutions, we derive linearizing transformations for these systems. We obtain
second-order symmetries and first- and second-order recursion operators with their
existence conditions which give rise to infinite discrete sets of exact solutions.
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In Section 3, we study the generalized gas dynamics equations which include, in
particular, the equations of the one-dimensional isentropic gas dynamics. We obtain
all their hydrodynamic and higher symmetries up to the third order inclusively. We
construct first-order recursion operators leading naturally to the Lax representation
of these equations, which is used for obtaining explicitly infinite sets of invariant
solutions.

In Section 4, we study a particular class of two-component systems which may ex-
plicitly depend on t which possesses the Hamiltonian structure, the so-called separable
Hamiltonian systems. We obtain their hydrodynamic and higher symmetries, lineariz-
ing transformation, second-order recursion operator, Lax representation, and infinite
sets of exact solutions.

In Section 5, we consider n-component diagonal systems of the hydrodynamic type
with no explicit dependence on t and x which admit an infinite-dimensional group of
the hydrodynamic symmetries, the so-called semi-Hamiltonian systems. We obtain their
hydrodynamic symmetries together with their existence conditions and the associated
differential geometric structure. A linearizing transformation, first- and second-order
recursion operators, higher symmetries, and infinite sets of exact solutions are con-
structed.

Finally, in Section 6, we study n-component diagonal hydrodynamic-type systems
with an explicit dependence on t or x. We obtain their hydrodynamic symmetries and
the corresponding linearizing transformations.

2. Symmetries, recursions, and invariant solutions for two-component systems
of the hydrodynamic type. Here we study two-component diagonal systems of the
hydrodynamic type, which may depend explicitly on the time variable t. They are linear
homogeneous in the derivatives of unknowns s(x,t), r(x,t):

Se=p(s,7,0)sx, 1 =y(s, v, D7y, (2.1)
where ¢ and  are real-valued functions satisfying nondegeneracy conditions
b=y, by (5,7, )P (s,7,t) #0, (2.2)

and the subscripts denote partial derivatives with respect to corresponding variables.
Generalized one-parameter symmetry Lie groups of order N of system (2.1) are gen-
erated in an evolutionary (canonical) representation by the Lie equations [1, 15, 23]

St = F(,8,8,7, 85, xy oy SV 7N,

(N)’ )((N)),

(2.3)
e =g(xX,t,8,7,Sx, Ty neny Sy

compatible with (2.1). Here s = s(x,t,T) and v = v (x,t,T), where T is the parameter of
a symmetry group whereas s = 9Vs/0xN and V) = 9Nr/oxN.

Compatibility conditions for (2.1) and (2.3), s+t = St and 7+ = ¢, take the form of
the determining equations for the symmetry characteristics (f,g):

Di[f1-dDx[f1-5x(Ppsf +brg) =0,

2.4
Dilg]— wDx[g] 15 (Wsf +wrg) = 0, (2:4)
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where D; and D, are the operators of total derivatives with respect to t and x:

0 0 ad 0
o 9 9 (k1) _9 | (k+1)
Dy = 3x TSx s +YX s §: (s * T (k)

o (2.5)
0 0 0 0 0
Dt:*+¢5x*+wrx7+z (D)li[d)sx]a (k)+Dk[qJ7’x] T(k)>,

and Dy is calculated with the use of system (2.1).

2.1. Hydrodynamic symmetries of diagonal systems with explicit time depen-
dence. For hydrodynamic symmetries, N = 1 in (2.3) and (2.4). Solving (2.4), we ob-
tain the following results. Introduce four functions of one variable b(s), d(r), ®¢(s),
and Oy (r) and define the functions ®(s,7,t), O(s,7,t), ®(s,7,t), O(s,7,1), (ﬁ(s,r,t),
and ¢ (s,7,t) by the formulas

&, (s,7,t) = LY(S'T'U,

(p—y) 2.6)

_ Yy(s,7,t) |

O: M =70, ")
O(s,7,t) = b(s)D(s,7, 1) +d(r)D,(s,7,t) + Do (s), .
Os,7,t) =b(5)0, (5,7, 1) +d(r)O, (s,7,t) + O (1), .7)
h(s,¥,t)=b (s, ) +d (5,7, 1),
b (s,7,8) =b(s)ps(s,7,1) +d(¥) ey (s,7,1) 2.8

P(s,7,t) =b($)Ps(s,7,t) +d(r) @y (s,7,1).

DEFINITION 2.1. We call (2.1) a generic system (with respect to the hydrodynamic
symmetries) if its coefficients ¢, ¢ do not satisfy the following constraints:

b =Bt)P*+e(t)p+A(L), Wi =BO)Y +e(O)Y+A(L), (2.9)
with arbitrary smooth functions S(t), £(t), and A(t).

Results of the symmetry analysis are summarized in the following theorem [34].

THEOREM 2.2. A diagonal two-component generic system (2.1) of the hydrodynamic
type, which may explicitly depend on t admits an infinite set of hydrodynamic symmetries
with a functional arbitrariness if and only if the following two conditions are satisfied:

(1) coefficients ¢, @ of system (2.1) satisfy the equations

D,y :qur; Oyt :BWS, (2.10)

where 3 is an arbitrary real constant, ®(s,v,t) and ©(s,v,t) are determined by
(2.6), and partial derivatives with respect to t are taken at constant values of s
andr;

(2) there exist four functions of one variable b(s), d(r), ®¢(s), and Oy (v) satisfying
the equations

b, =d,(d-0), 6;=0,(0-9), (2.11)

with & (s,r,t) and ©(s,r,t) defined by (2.7).
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The symmetries in this theorem are generated by the Lie equations

St=f= (f)(x,t,s,r)sx +b(s), Ye=9=Px, s, 7)ry+d(r), (2.12)
- t 1.
d(x,t,s,7) = a(s,r)exp{B[x+I P (s,r,t)dt }+E¢(S'T't)
; for B0, (2.13)
P(x,t,s,7) = c(s,r)exp{B[x+JO tp(s,r,t)dt]}+ %@(s,r,t)

t t
P(x,t,s,7)=a(s,r)+ L b (s, v, H)dt —d(s,7) [x+ L d)(s,r,t)dt]
for =0. (2.14)

t t
g(x,t,s,v)=c(s,r) +Jo (i/(s,r,t)altf(:)(s,r)[x+JO Y (s,r,t)dt

Here the integrals with respect to t are taken at constant values of s and 7 and the
functions ¢,  are defined by formulas (2.8). The functions a(s,r) and c¢(s,r) form an
arbitrary smooth solution of the linear system

a,(s,v) =d,(s,7,0)(a—c), cs(8,7) =04(s,7,0)(c—a). (2.15)

REMARK 2.3. We can use the freedom in definition (2.6) of the functions ®, ® to
transform (2.10) to a more simple form

®;(s,7,t) = Bop(s,r,t), O¢(s,7,t) = By (s,r,t). (2.16)

REMARK 2.4. Solution manifold of the linear system (2.15) is locally parameterized
by two arbitrary functions of one variable c; (s) and ¢, (7). They determine a functional
arbitrariness in the hydrodynamic symmetries (2.12), (2.13), and (2.14) of system (2.1).

System (2.15) has the trivial solution a(s,r) = c(s,*) = ¢y = const.

Condition (2) of Theorem 2.2 always has the trivial solution

b(s)=d(r)=0, do(s)=0y(r)=co=const, P=0=cy, p=p=0. (2.17)

COROLLARY 2.5. Condition (1) of Theorem 2.2 is necessary and sufficient for system
(2.1) to admit an infinite set of hydrodynamic symmetries generated by the Lie equations

St =d(x,t,5,7)sx,  Tr =YX, LS8,y (2.18)

which are linear homogeneous in the derivatives with the coefficients ¢,  defined as

b (x,t,5,7) =a(s,r)exp {B[X+Jt d)(s,r,t)dt] } +Co
0 for B+ 0, (2.19)
P(x,t,s,v) =c(s,r)exp {B [x+ JO Lp(s,r,t)dt]} +Cp
b(x,t,5,7) =a(s,r)+co [X+Jt¢(3,7,t)dt]
) for B = 0. (2.20)
P(x,t,s,7v)=c(s,7)+co [x+ JO (p(s,r,t)dt]
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REMARK 2.6. Condition (1) of Theorem 2.2 with 8 = 0 is satisfied in particular for
system (2.1) with the coefficients ¢ (s,7) and y (s,*) with no explicit dependence on t.
Such a system always has an infinite set of hydrodynamic symmetries with a functional
arbitrariness. In this case, the coefficients (2.20) of the Lie equations become

b(x,t,5,7) =a(s,r)+co[x+tp(s,r)], -
P(x,t,8,7) =c(s,¥)+co[x+tw(s,7)]. (2.21)

REMARK 2.7. Condition (2) of Theorem 2.2 is an additional constraint which pro-

vides the existence of symmetries, with the Lie equations (2.12) linear inhomogeneous
in derivatives. Every nontrivial solution of (2.11) generates such symmetries.

2.2. Infinite-dimensional Lie algebra of hydrodynamic symmetries and recursions
of symmetries. Let system (2.1) possess two one-parameter symmetry groups gener-
ated by the Lie equations (2.12) and by the Lie equations of the same form with another
parameter T:

se=f =P, 1,8,7)Sx+b(s), re=G=g0,t,s,)re+dr). (2.22)
Here the coefficients ¢,  are determined by formulas (2.13) or (2.14) for 8 = 0 or for
B = 0, respectively, with the following change of notation:
(a(s,r),c(s,7)) — (a(s,r),e(s,r)),

(&(s5,7,0),005,7,1)) — (b(s,7,1),0(s,7,1)), (2.23)

((s,7,0),@(s,7,0) — (P(s,7,0),d(s,7,1)),
where the functions <f>, 6 are defined by formulas (2.7) and the functions (f), (f/ are
defined by formulas (2.8) with the change of b(s), A(r), @o(s), and B¢ (r) to b(s),d(r),
& (s), and Oy (r), respectively. Here the functions ®, ® must satisfy (2.11) in condition
(2) of Theorem 2.2 and the functions a(s,r), ¢(s,v) form an arbitrary smooth solution
of the linear system (2.15).

Let o = (f,g) and 7 = (f,g) be characteristics of the symmetries (2.12) and (2.22).
A higher symmetry generator with the characteristic o is defined as follows [23]:

. 0 0 0
Xo :fa_ +ga7‘ (Dt[f])—

5 (2.24)
(D, Z{DNf] 2 (Dﬁ?[g])ar(m},

where the operator D; of the total derivative with respect to t is calculated with the
use of (2.1). The formula for X, is obtained by the substitution of (f,g) for (f,g) in
formula (2.24).

The usual Lie commutator [Xs,Xs] = X[[s.67] = X5 generates the commutator of
symmetry characteristics

d=[lo,0ll=0'[d]-d"[0] (2.25)
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with o’ denoting the operator of the Frechét derivative [11]:

[

Zaa‘;?j)Df;, =12, (2.26)
j=0 OUx

(0',)0(6 =

where o7 = f, 0o = g, u' =5, and u? = r. The commutator (2.25) of symmetry charac-
teristics for system (2.1) is again a characteristic & = (f,J) of some symmetry for this
system generated by the Lie equations with the parameter 7: s3 = f, r+ = g, where

s of 0 0
Fetiwon =7 s¥ el oY ipapn2 pan?,

) 9 P 3 a_x (2.27)
g:[[()',é']]z:fg_f g, ag—ga—g+Dx[ ]ai —Dylg ]%_

THEOREM 2.8 (see [34]). The commutator of the hydrodynamic symmetries (2.22) and
(2.12) with the characteristics & and o is again a hydrodynamic symmetry of system
(2.21) with the characteristic 6 = [[o,0]1] = (f,g) generated by the Lie equations

st=F=pOo,t,s,P)se+b(s),  ¥i=3F=g0x, b5, +d(r), (2.28)
with the coefficients ¢:>, q:/ determined by (2.13) or (2.14) for B + 0 or for B = 0, respec-
tively, and the change of notation for any value of B:

(a(s,r),c(s,r)) —

(B (s,7,t),0(s,7,t)) —

(aes,7r),é(s,71)),

(&(s,r,t),(ﬁ)(s,r,t)),

(b(s,7,0),w(s,7, 1) — (5,7, 0),d(s,7,1)), (2.29)
- b(s) b(s) z dr) dr)
PSI=1p bl = ‘d'm d'r |
In Theorem 2.8 the following notation is used:
q:S(s,V,t) = 5(S)¢S(S,r,t)+5(T)¢r(s,r,t),
G (s,7,t) = b)Y (5,7, 8) +d(r) @y (5,7, 1),
$(s,7,t) = h(s)ds+d(r)dy —b(s)Ds — d(r)dy,
A(s,7,t) = b(s)O; + d(r)O, —b(s)0s —d(r)6,, 2.30)
aes,r) =b(s)[as(s,r)—®sa(s,r)]—b(s)[as(s,r) —dsa(s,r)]
+ @, [d(r)E(s,v) —d(¥)c(s,7)] +Po(s)da(s,r) —do(s)als,r),
s, ) =d)[cy (5,7) =0,c(s5,7) ] —d(¥)[Er(5,7) =0, E(s,7) ]

+0[b(s)al(s,r)—b(s)a(s,¥)] +Og(r)i(s,7) =B (¥)c(s,r),

with ® = ®(s,7,0) and © = O(s,7,0) if B # 0, whereas ® = ®(s,7) and © = O(s,r) if
B=0.
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COROLLARY 2.9. Formulas (2.30) determine recursions of solutions for the linear sys-
tems (2.11) and (2.15), respectively. They map any pair of solutions of the corresponding
system again into its solution.

Consider a special case b(s) =d(r) =0, b =0 =cy =0, (b(s),d(r)) = (0,0).

COROLLARY 2.10. Let condition (1) of Theorem 2.2 be satisfied for system (2.1) and let
the hydrodynamic symmetry inhomogeneous in derivatives of the form (2.22) exist. Then
the Lie commutator of symmetry (2.22) and the hydrodynamic symmetry homogeneous
in derivatives of the form (2.18), (2.19), and (2.20) with cy = 0 is again a homogeneous
symmetry of the same form:

se=f= <I:>(x,t,5,r)sx, r: =3 =P, 15,77, (2.31)

where for any real value of B,

P(x,t,s,7) = &(s,r)exp{B[X+Jj¢($,1f,t)dt]},

(2.32)
= = t
Y (x,t,s,v) =c(s,r)exp SLB[X+ Jo w(s,r,t)dt] },
a(s,r) =b(s)as(s,r) —[b(s)®s(s,7,0) +Po(s)]a(s,r)
—d@)d,(s,7,0)c(s,7),
(2.33)

C(s,v) =dr)cy (s5,7) = [d(r)0, (5,7,0) + O (¥)]c(s,7)
—b(s)0(s,7,0)a(s,r).

Thus, according to Corollary 2.10, the Lie commutator with the inhomogeneous-in-
derivatives symmetry (2.22) is a linear operator acting on the space of homogeneous
hydrodynamic symmetries with ¢y = 0. It generates recursion (2.33) of solutions for the
linear system (2.15).

REMARK 2.11. The hydrodynamic symmetry inhomogeneous in derivatives gener-
ates by the Lie commutator a recursion operator for homogeneous hydrodynamic sym-
metries.

COROLLARY 2.12. If system (2.1) satisfies condition (1) of Theorem 2.2, then it ad-
mits an infinite set of mutually commuting hydrodynamic symmetries homogeneous in
derivatives of the form (2.31) and (2.32) with co = 0 depending on arbitrary functions.

In particular, if for § = 0, the coefficients ¢ (s,7) and @ (s,r) of (2.1) do not depend
explicitly upon t, then we reproduce Tsarév’s result [39] about the commutativity of
flows of the hydrodynamic type with no explicit dependence on t, x.

2.3. Hydrodynamic symmetries of diagonal systems with an explicit space depen-
dence. Consider a diagonal system of the hydrodynamic type with an explicit depen-
dence on x:

St =P (5,7, X)sx, V=@ (8,7, xX)7x. (2.34)
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Define the functions ®(s,7,x) and O(s,r,x) by the following equations:

[p* L (s,7,%)],

[p* (5,7, %) — @ (s,7,x)]
[y* ' (s,7,x) 15

[y* (s, 7,x) = (s,7,x)]

P, (s,7r,x) =
(2.35)

Os(s,7,x) =

THEOREM 2.13. A diagonal generic system of the hydrodynamic type (2.34) which
may explicitly depend on a space variable x admits an infinite set of hydrodynamic
symmetries with a functional arbitrariness locally parameterized by the two arbitrary
functions of one variable c,(s) and c,(v) if and only if the following two conditions are
satisfied:

(1) coefficients ¢p*, Yy* of system (2.34) satisfy the equations

®,r(s5,7,x) = B(d)**l(s,r,x))r, Osx (5,7,Xx) = B(w*’l(s,r,x))s, (2.36)

with an arbitrary real constant fB;
(2) there exist four functions of one variable b(s), d(r), ®¢(s), and Oy (v) satisfying
(2.11), where the functions ®(s,r,x) and @(s,v,x) are defined by (2.7) with t
changed to x. These symmetries are generated by the Lie equations

S =¢*F(x,t,5,7)Sx +b(s), Yo=Y, t,s, 7)1 +d(r). (2.37)

The functions ¢*, §* are defined for 8 + 0 and B = 0, respectively, as

*(x,t,8,7)

= ¢*(S,r,x){a(s,r)exp [ﬁ (t+ J:(l)*_l(s,r,x)dx)] + %@(S,r,x)},
g*(x,t,s,r)

X _ 1 ~

=yw*(s,r,x){c(s,r)exp|Blt+| y* Y, rx)dx) | +=60(s,7,x) ¢,
| oo+ . ool
d*(x,t,s,7)

kL o & x x—1

=¢ {a(s,r) +JO b (s,r,x)dx cI)(s,r)[tJrJO ¢ (s,r,x)dx]},
g*(x,t,s,7r)

=y*- {c(s,r) +J:Lij(s,r,x)dx—é(s,r)[t+J:q/*_l(s,r,x)dx]}.

Here the functions <i>, ¢ are defined as follows:

d(s,7,x) = b(s)[p* (5,7, ) | +d () [p* (5,7, %)],,

(2.39)
Y(s,r,x) =b(s) [(l/*_l (s,r,x)]ﬁd(r)[w*_l(s,r,x)],.

The functions a(s,r) and c(s,7) form an arbitrary solution of the linear system (2.15)
with the coefficients ®, (s,7,0) and O,(s,7,0) obtained from (2.35) at x = 0.
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2.4. Invariant solutions and linearizing transformations for the systems with an
explicit dependence on t or x. Let system (2.1) which may explicitly depend on t
satisfy condition (1) of Theorem 2.2 and hence admit an infinite set of hydrodynamic
symmetries homogeneous in derivatives (2.18). For the corresponding invariant solu-
tions, we have s; = r = 0 which implies that <i>(x,t,s,r) =0and ¢(x,t,s,7) =0 due
to the condition s,7y # 0. Using here formulas (2.19) and (2.20) for qS, ¢ with ¢g = 1,
we obtain the following conditions determining the invariant solutions for 8 + 0 and
B = 0, respectively:

a(s,r)+eXp{-B[X+JOt¢(S’T’t)dt]} -0 (2.40)

c(s,r) +exp{—B[x+J0t L[/(S,T,t)dt]} =0,

t t
a(s,r)+x+I ¢(s,r,t)dt =0, c(s,r)+x+J Y(s,r,t)dt =0. (2.41)
0 0

THEOREM 2.14 (see [34]). Let the coefficients ¢, @ of diagonal system (2.1) satisfy
condition (1) of Theorem 2.2. Then any solution of system (2.40) for B + 0 or of system
(2.41) for B = 0 is also a solution of system (2.1) if the following conditions are satisfied
for B+ 0 and B = 0, respectively:

{[ln la(s,r)] +BJ;¢(S’T’t)dt]s

. [ln|c(s,1f)| +BL:LII(S,T,t)dt]V} ‘ 10, =0, (2.42)

{[a(s,r)JrL:ci)(s,r,t)dt]s- [c(s,r) +J;W(S,T,t)dt]y} ‘ 04l 0.

Vice versa, any smooth solution s(x,t), v (x,t) of system (2.1) can be obtained from
systems (2.40) or (2.41) if condition (2.42) is satisfied in the vicinity of any point (xo,to),
where sy (Xo,to) - ¥~ (X0,t0) + 0.

REMARK 2.15 (see [34]). Equations (2.40) for 8 + 0 and (2.41) for 8 = 0 determine an
implicit form of the linearizing point transformation for the nonlinear system (2.1) with
an explicit t-dependence satisfying condition (1) of Theorem 2.2. Indeed, the search for
solutions s(x,t), ¥(x,t) of the nonlinear system (2.1) is now reduced to the search
for solutions a(s,r), c(s,r) of the linear system (2.15) with variable coefficients. In
particular, if the coefficients ¢ (s,r) and @(s,7) of system (2.1) have no explicit de-
pendence on t, then condition (1) of Theorem 2.2 is satisfied with f = 0 and (2.41)
coincide with the classical hodograph transformation [27]: a(s,r) + x + t¢(s,7) = 0
and c(s,v) +x+ty(s,r) =0.

Consider now system (2.34) with an explicit x-dependence. Let it satisfy condition
(2.36) of Theorem 2.13 in order to admit an infinite set of the hydrodynamic symmetries
(2.37) with b(s) = d(v) = 0. Then for invariant solutions determined by the equations
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st =11 = 0 with the condition s, 7, # 0, we obtain qS*(x,t,s,r) =0and ¢*(x,t,s,7) =
0. Here the functions ¢*, (/* are defined by (2.38) for B + 0 and B = 0 with & = d¢(s),
® = 0y(r), and <f) = (y = 0. These equations determine a linearizing transformation
for system (2.34) with an explicit dependence on x if the existence conditions for the
implicit vector function similar to (2.42) are satisfied.

2.5. Higher symmetries of diagonal two-component systems. Higher symmetries
of the second order are generated by the Lie equations (2.3) with N = 2:

St = F(x,6,8,7,5¢,Vx, S, Txx ), Vo =G(X,6,85,7,5¢,x, Sxcx, Vxx) (2.43)

which are compatible with system (2.1).

DEFINITION 2.16. System (2.1) is called generic with respect to the second-order
symmetries if its coefficients ¢, ¢ do not satisfy the constraints

| = r
rert=hlegne ool O TG Dy HED P 04
O (s,7,t) = A(s, )+ B(s, 1), O(s,7, 1) =E(r, )y + F (7, 1),

with arbitrary functions A, B, C, D, E, F, G, H and ®, © defined by (2.6).
For the symmetries (2.43) of the generic system (2.1), the following results hold.

THEOREM 2.17. The necessary existence condition for the second-order symmetries of
the generic system (2.1) coincides with condition (1) of Theorem 2.2, necessary and suffi-
cient for system (2.1) to admit an infinite set of hydrodynamic symmetries homogeneous
in derivatives.

Define the functions A, &, and @ by the following equations:

Asy (5,7) = =@y (5,7,1)0O4(s,7,1),
B(s,7,t) = A($) (B2 — D5+ 2A5) + A (S)Ag + C (1) (28,0, + D)) — D2)

+C' (r)®, +b(s)Ps+d(r)P, +DP(s), (2.45)
O(s,7,t) = A (5)05 + A(5) (20,5 + Oy —02) + C(r) (02 — Opy +2A,y)

+C' (M)A (5,7) +b(5)Os +d ()0, +Og (1),

where A(s), C(v), b(s), d(v), ®o(s), and Oy () are arbitrary smooth functions of one
variable and the function A(s,7) has no explicit dependence on t as a consequence of
the first equation of (2.45) and (2.6), (2.10). If B = 0 in (2.10), then in virtue of condi-
tion (2.16) the functions ®(s,7), ©(s,7) do not depend explicitly on t. Then define the
functions ¢,

(i)(S,T,t) = A(5) (2055 — pss) + C(1) [20, Py + by =28, (Pr — i) ]
+C'(r)py +b(s)ps +d(r) by,

P(s,7,1) = A(S)[205s + Wss =204 (s — ps) | + A" () s
+C(r) (20, Yy = Wrr) + ()5 +d (1) Y.

(2.46)
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THEOREM 2.18 (see [36]). The diagonal two-component generic hydrodynamic-type
system (2.1) which may explicitly depend on t admits an infinite set of second-order sym-
metries with a functional arbitrariness which is locally parameterized by two arbitrary
functions of one variable c,(s) and c, (v) if and only if the following two conditions are
satisfied:

(1) the coefficients ¢, @ of system (2.1) satisfy (2.10) with an arbitrary real constant
B, where the functions ®, © are defined by (2.6);

(2) there exist six functions A(s), C(v), b(s), d(r), ®o(s), and O¢y(r) of one variable
satisfying (2.11) with &(s,7,t) and O(s,r,t) defined by (2.45).

The symmetries in Theorem 2.18 are generated by the Lie equations

se=f =A(s)SSX—2" +<I>T[A(5)Z—X+C(1f)i—x] +3AS(S) 45V +2A(5)Ds + b(s),
X x x x (2.47)
Ye=g= C(r)?—xzx +0, [A(S)Z—j: +C(T)j—i] +BCT(:) e p+2C(r)0, +d (1),

where the coefficients v(x,t,s,7) and p(x,t,s,r) are defined by formulas (2.13) and
(2.14) for B = 0 and B = 0, respectively, with the change of ¢ to v and ¢/ to p, where
ci), ¢ are defined by formulas (2.46). The functions a(s,r) and ¢ (s,r) form an arbitrary
smooth solution of the linear system (2.15).

REMARK 2.19. For A(s) = C(r) = 0, the higher symmetries (2.47) reduce to the hy-
drodynamic symmetries (2.12), and the coefficients v, p coincide with ¢, .

2.6. First-order recursion operators. An effective description of an infinite set of
symmetries of any order is obtained by means of recursion operators which, by their
definition, map any symmetry again into a symmetry. Here we consider recursion op-
erators from the class of matrix differential operators:

R=ANDY + Ay 1DY 71+ + A1 Dy + Ao. (2.48)
For n-component systems, A; are n X n matrices. We set n = 2 until Section 5. A; may
depend on s, » and their derivatives of finite orders with respect to x.

DEFINITION 2.20. If Ay # 0, then N is called the order of the recursion operator
(2.48). Consider the case N = 1. Define the functions
S(s,7) =d(s,7,0) = A($)Ds(s,7,0) + C(r) Dy (5,7,0) + o (),

“ (2.49)
T(s,v)=0(s,r,0) = A(5)O(s,7,0) + C()O, (5,7,0) + Og (),

where A(s), C(r), ®o(s), and O () are arbitrary smooth functions of one variable.

THEOREM 2.21 (see [36]). Let system (2.1) satisfy condition (1) of Theorem 2.2. Then
a first-order recursion operator for system (2.1) exists if and only if there exist such
functions A(s) and C(v) which satisfy the conditions

Sy(s,7r) =®,(5,7,0)(S-T), Ts(s,v) =0O4(s,r,0)(T-S5), (2.50)
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with S(s,v) and T (s,v) defined by (2.49), where ®((s) = Og(v) = 0 (this is equivalent to
a redefinition of ®;(s,7v,0) and 0, (s,r,0)). This recursion operator has the form

(5 &) o

B (( A(s)Dy[®(s,7,1)] —<I>y(s,1f,t)[A(s)Tx—C(T)Sx]))}
O (5,7, D) [A(S)¥x — C(7) 5x] C(r)Dx[0(s,7,1)] (2.51)
Si 0
X X
0 L
Tx

The first example of first-order recursion operators for a class of two-component
systems of the hydrodynamic type was given in [30]. Later, Teshukov [38] generalized
it for n x n systems with no explicit dependence on t.

THEOREM 2.22. System (2.1) satisfying condition (1) of Theorem 2.2 admits first-
order recursion operator R if and only if there exists a recursion operator R which acts
on a subspace of hydrodynamic symmetries homogeneous in derivatives, of the form
(2.18), (2.19), and (2.20) with Cy = 0.

The action of R is defined by the appropriate restriction of R

t t
a(s,r)exp {B [x + Jo ¢ (s,r, t)dt} }SX a(s,r)exp {B [x + Jo b(s,7, t)dt} }sx
R =

t t
c(s,r)exp {B [x + JO Y(s,r, t)dt] }TX C(s,v)exp {B |:X + IO Y(s,r, t)dt} }Tx

(2.52)
with the functions d(s,r) and ¢(s,7) defined by the formulas
as,r) = A(s)[as(s,v) —os(s,7,0)a(s,r)] - Do (s)a(s,r)
—C(r)dy(s,7,0)c(s,7),
(2.53)

E(s,7)=C(r)[cy(s,7) =0, (5,7,0)c(s,7)] —Op(¥)c(s,T)
—A($5)O4(s,7,0)a(s,r).

COROLLARY 2.23. For any smooth solution a(s,r), c(s,v) of the linear system (2.15),
the functions a(s,rv) and ¢ (s,r) defined by (2.53) also form a solution of this system if and
only if condition (2.50) is satisfied. Therefore, the formulas (2.53) determine a recursion
of solutions of system (2.15).

REMARK 2.24. In virtue of the linearizing transformations (2.40) or (2.41), a search
for any “nonsingular” solutions of the nonlinear system (2.1) reduces to a search for
solutions a(s,r), c(s,r) of the linear system (2.15) with variable coefficients. However,
the integration of (2.15) may also be a problem. The existence of a recursion operator
and hence of the recursion (2.53) which generates new solutions of the linear equations
(2.15) out of known “seed” solutions is the important property of system (2.1). It allows
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us to pass from a linearization of system (2.1) to its integration if the coefficients ¢, @
satisfy condition (1) of Theorem 2.2 and conditions (2.50).

REMARK 2.25. Linear system (2.15) has two trivial solutions (a,c) = (-1,—1) and
(a(s,r),c(s,r)) = (p(s,7,0),p(s,7,0)) (see (2.6)). Recursion formulas (2.53) map them
to nontrivial solutions a(s,r), ¢(s,r) of (2.15).

In particular, the first solution is mapped to the solution (2.49): @ = S(s,v) and ¢ =
T (s,r). Substituting these new solutions for a, ¢ to (2.53), we obtain new nontrivial
solutions of system (2.15). Thus, we construct two infinite series of its solutions. Then
the linearizing transformations (2.40) and (2.41) generate two infinite series of exact
solutions of (2.1) in an explicit form.

COROLLARY 2.26. Transformation (2.53) maps any smooth solution (a,c) of system
(2.15) again into a solution (a,¢) of this system if and only if it maps the trivial solution
a =1, ¢ =1 into some solution of (2.15).

COROLLARY 2.27. Recursion (2.33) for solutions of the linear system (2.15) generated
by the Lie commutator with the hydrodynamic symmetry inhomogeneous in derivatives
coincides with recursion (2.53) generated by the first-order recursion operator (2.51).
The existence conditions for the recursion operator and for the hydrodynamic symmetry
inhomogeneous in derivatives of system (2.1) coincide. If there exist several such symme-
tries of the form (2.22), then there exist several corresponding recursion operators of the
form (2.51) with A(s) = b(s) and C(r) = d(r).

Recursion operator R of the form (2.51) generates an infinite set of higher symmetries
(2.3) of any order N. Second-order symmetries are generated by a two-fold action of
the operator R on hydrodynamic symmetries homogeneous in derivatives (2.18), (2.19),
and (2.20) with ¢y # 0, where we set ¢y = 1 and a(s,r) = c(s,r) = 0. In the case § =0
according to formulas (2.18) and (2.20), this seed symmetry has the form s; = sy [x +
[ (s, 0)dt], v = r[x + [§ (s, v, )dt].

2.7. Second-order recursion operators and higher symmetries

DEFINITION 2.28. System (2.1) is called generic with respect to second-order recur-
sion operators if its coefficients do not satisfy any of the constraints ®,;/®, + O =
ci1(s)e? or Oy, /O + P, = () e® with arbitrary functions c; (s) and ¢, (¥).

Define the functions

S(5,7) = A(8) (92 =By +2A55) + A (S)Ag + C(7) (20,0, + By — D2)
+C (r)®r + b ()P +d(¥) Dy + Do ($),

T(s,7) = A (5)0s +A(5) (205D + O —02) + C(¥) (02 — Opy +2A,,)
+C'(r)Ay +b(5)Os +d ()0, + Oy (1),

(2.54)

where A(s), C(v), b(s), d(r), ®o(s), and O¢ () are arbitrary smooth functions and the
functions ®(s,7,t), O(s,r,t), and A(s,r) are defined by formulas (2.6) and (2.45).

THEOREM 2.29 (see [36]). Let the generic system (2.1) satisfy condition (1) of Theorem
2.2. Then second-order recursion operator of the form (2.48) with N = 2 exists for system
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(2.1) if and only if there exist six functions A(s), C(r), b(s), d(r), ®o(s), and Oy (v) of
one variable which satisfy conditions (2.50) with S and T defined by (2.54).

The recursion operator in Theorem 2.29 is determined by the formula

R
R=(AD2+BDy+F) | (2.55)
* n
with 2 X 2 matrices A, B defined as follows:
As(S) 0
AZl, cn )
Tx
_ Sxx rx | B
B—(—|:A(S)§+2A(S)<<I)S+q)y§+g>+b(S):|, (256)

—0,(s,7,1) [A(s):—" 7C(r)i—x],<by(s,r,t)[A(s)Z—x fC(r)j—X]

X

_ [C(y)?_xz"JFZC(r)(@)Si—i +®T+%)+d(7’)]),

and the elements fi; of the matrix F are defined by the equations

2

] —C(V)Asys—i‘(

2
T S T 7.
f12:A(S)[_cbrs_x(ﬁ_ﬁ)"‘(q’rr_q)g)_x r

x \ Sx Tx Sx
+{A($)[2(Pys — Py Ps) —Asy | =D (5)Py } 7y

+{Cr) (28,0, +Ppp —07) +[C' (1) +d (1) @y }s5x
Yy Sx
- Bo, [A(s)g fC(r)E],

_ Sx (Sxx _ Tx oSk 6]
f21—cm[®srx(sx TX)+(®SS @S)Tx] AW
+{C(T)[2(®sr_®s®r)_Asr]_d(r)®s}5x

+{A(5) (205, + Oy — ©2) + [A'(5) + b(5)]Os}7x 2.57)
¥y Sy
+ O, [A<s>§—c<r>a],

S+ fi2 :ti)(s,r,t)sx+ﬁ{A(s)[SSX—2’“+2<I>5(s,r,t)+ B]

Sx

+ @, (5,7, t) [A(s):—j: +C(r)j—’;] +b(s)},

for+ for = O(s,7, )7y +B{C(T) [”;‘—2" +20,(s,7,t) + rﬁ]

+®S(s,1’,t)[A(s)§—z +C(r)%] +d(r)}.

Here & = ®(s,7,t) and © = O(s,7,t), and ®(s,7,t) and O(s,7,t) are defined by (2.45).
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THEOREM 2.30. For system (2.1) satisfying condition (1) of Theorem 2.2, there exists
a second-order recursion operator R of the form (2.55) if and only if there exists the
recursion operator R acting on the subspace of hydrodynamic symmetries homogeneous
in derivatives of the form (2.18), (2.19), and (2.20) with cy = 0.

In Theorem 2.30, the action of R is defined as an appropriate restriction of R by (2.52)
with d(s,7) and ¢é(s,r) defined as

a=A(s)ass—[2A(s)P;+b(s)]as— C(r)®,rc,
+[A ($)As+A(8) (B2 — Dy +2A55) + b (5)Ds + Do (s)]a

+[C' ()P +C(r) (20,0, +dpp —D2) +d (1) D, ]c,
2.58
E=Cr)cr —[2Cr)O, +d(¥)]cy — A(s)Osas ( )

+[C'(r)Ar +C(r)(0F = Opy +2A4r) +d ()0, + 0O (1) ]c
+[A(5)05 + A(s) (205D + Oy — O2) + b(5) 0] a.

COROLLARY 2.31. For any smooth solution a(s,r), c(s,v) of the linear system (2.15),
the functions d(s,r) and ¢(s,r) defined by formulas (2.58) form also a solution of this
system if and only if condition (2.50) for the functions (2.54) is satisfied. Formulas (2.58)
determine a recursion of solutions for system (2.15).

Remarks 2.24 and 2.25 and Corollary 2.26 are still valid for recursion (2.58). Thus,
we can again construct two infinite series of solutions of system (2.1) starting from a
trivial solution of system (2.15).

THEOREM 2.32. Existence conditions (2.50) with the notation (2.54) for the second-
order recursion of solutions of system (2.15) are less restrictive than the existence condi-
tions (2.50) with the notation (2.49) for the first-order recursion (2.53).

Higher symmetries of system (2.1) are generated by the action of the recursion oper-
ator (2.55) on the hydrodynamic symmetries homogeneous in derivatives (2.18), (2.19),
and (2.20) with cy + 0.

THEOREM 2.33 (see [36]). All the second-order symmetries (2.47) of system (2.1) ob-
tained as a general solution of determining equations coincide with the symmetries ob-
tained by the action of the second-order recursion operator (2.55) on the hydrodynamic
symmetries (2.18), (2.19), and (2.20) with co + 0. Existence conditions for the second-
order symmetries and for the second-order recursion operator also coincide.

COROLLARY 2.34. All the second-order symmetries are obtained by an action of the
second-order recursion operator on the hydrodynamic symmetries homogeneous in
derivatives.

REMARK 2.35. The method of calculation of higher-order recursion operators devel-
oped in [35] is much more simple than a straightforward calculation of higher symme-
tries from determining equations. Thus, with the suitable extension of Corollary 2.34,
we see that this easier way of calculation of symmetries by means of the Nth-order
recursion operators will give all higher symmetries of the same order. Multiple appli-
cation of the recursion operator of the order less than N will not give the general form
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of the Nth-order symmetry. In particular, squared first-order recursion operator does
not give a general form of the second-order symmetry.

3. Generalized gas dynamics equations

3.1. Symmetries of one-dimensional isentropic gas dynamics equations. Consider
the one-dimensional gas dynamics equations for the isentropic plane-parallel gas flow:

U+ UUx + & (P)ppx =0,  pr+pux+upx =0. (3.1)

Here u(x,t) and p(x,t) are gas velocity and density at the point x at the time t, ¢ =
px(p) is the speed of sound, and x(p) is an arbitrary smooth function. In practice,
x(p) is determined by the gas state equation p = P(p), where p is a gas pressure:

x(p) = (1/p)/P'(p).
THEOREM 3.1 (see [27]). System (3.1) can be brought to the diagonal form (2.1),

St = 7[% fp(x(p)]sx, = 7[% +p0<(p)]rx, (3.2)

by the transformation from u, p to the Riemann invariants s = u — 50 x(p)dp and
r=u+[) alp)dp, (u=(r+s)/2, [, «(p)dp = (r—5)/2), where py is an arbitrary
constant and the last equation determines p as an implicit function p = p(v —s) for any
fixed choice of the function x(p).

The determining equation for symmetries of system (3.2) has the form
(ID:+A)(f,9)" = (0,0)7, (3.3)

where [ = ((1) ‘f), T denotes a transposed matrix, the total derivative operator D; is
calculated with the use of (3.2), and the operator A is given by
T po(p) 0
- S 0 ! 1 -1
A= 2 iy Dx+<x )(I+PO<(,0)< ))

2

(3.4)

Characteristics of the Nth-order symmetries (2.3) with no explicit dependence on x,t
were obtained for N = 1,2, 3 as general solutions of (3.3) for a generic x(p) (see [29, 30]).

CASE N = 1.
Si=a(s,7)sx, g1 =c(8,7)¥x, (3.5)

where a(s,r), c(s,r) is an arbitrary smooth solution of the linear system

XD ey sy = X

ar(s,r) = Tol Tol

(a-c). (3.6)
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CASE N = 2.
2 2
Sxex & (p) (5x —7x) x| & (p) (Sx—7x)
= 5= — = -, 7
f2 S2 4x® se¥x gz ré 402 STy (3.7
CASE N = 3.
Sxxx 382 o«'(p) (1 1
f3:7< st sgx)i 42 (§7§>SXYXX
_36(p) sux —r>_[1(1)2(L+L)_(1>’L]<sx—rx>3
42 g3 XX 2\a2) \sy 7y o2) asx | 8syry 3.8)
Toxx 315\ &) (1 1 '
g3:_( 3 rj‘?)‘ 402 (Q_Q)T"S“
’ 3
3 (p) re (L) (L 1) () Lo
402 3 (8x=7) + 2\ o2 sx+rx o?) oryl 8syre

Nth-order symmetries are defined up to the addition of lower-order symmetries, in
particular (3.5), so they have functional arbitrariness determined by the linear system
(3.6).
The following special choices of «x(p) lead to new second-order symmetries.
(1) The function x(p) satisfies the differential equation
[(cp+b)0<2(p) ] 3

A

with arbitrary constants A, b, c. The second-order symmetries have the form
«'(p)
42

' (p)
42

fo= (A5+A)SSX—)ZCX + [(A5+A)<:—i - ) +(Ar+C‘)%] +b+a(s,r)sy,

(3.10)

[(Ar+c‘) (5—" —2) +(As +A)Z—"] +h+c(s, )y,

Ay Vxex
=(Ar+C)—= —
92 rE Tx x

with arbitrary constants A, A, C, b and a(s,¥), c(s,r) satisfying (3.6).
In particular, if ¢ = 0, (3.9) is satisfied for the physically interesting state equation of
a polytropic gas with the parameters a and y:

P(p) =a’p¥, «(p)=ayp¥ 32 (3.11)

(2) The function «(p) satisfies the condition &’ (p) = 0. This is the polytropic gas
with y = 3. Then the second-order symmetries depend on arbitrary smooth functions
WY1, P!

s 7,
fz=sxwl<%x,5), gz=rxw2(%".r). (3.12)
SX VX
The gas dynamics equations (3.2) have the form s; = —ssy, 1 = —r7y. Their general

solution x — st = F(s), x —vt = G(r) depends on two arbitrary smooth functions F and
G. Hence sy = ¥+ = 0 and the solution manifold consists solely of invariant solutions.
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(3) The function x(p) satisfies the condition &' (p) = —(2/p)x(p). This is the Chap-
lygin gas [25] with the state equation

2
P(p)=Po—%, a(p)=% (P > 0) (3.13)

with the constants Py, a. Then the set of second-order symmetries again depends on
two arbitrary functions y (s,s4) and @2 (¥,74), where g is the Lagrangian coordinate
defined by the equation dq = pdx — pudt [27]. The diagonal form (3.2) of gas dynamics
equations after transforming to the Lagrangian coordinates g, t becomes s; = asg, ¥ =
—ary. Its general solution s = F(q +at),r = G(q—at) depends on two arbitrary smooth
functions F and G. Since x; =t = 0 and hence g = 0, we have s+ = 7 = 0 as well and
the solution manifold again consists solely of invariant solutions.

In the last two cases, the reason for the gas dynamics equations to be integrable in
an explicit form is that the extent of arbitrariness of the set of invariant solutions and
of the general solution set turns out to be the same: two arbitrary functions of one
variable. Hence all (nonsingular) solutions are invariant.

3.2. Recursion operators for gas dynamics equations

THEOREM 3.2. First-order recursion operator for symmetries of the gas dynamics
equations (3.2) is given by the formula

— 0
~ L@ (1 1)) [
e (w1 ) 1 "

It commutes with the operator of (3.3) on the solution set of (3.3)
[ID;+A,R] =0, (3.15)

where the operator D; is calculated with the use of the gas dynamics equations.

COROLLARY 3.3. Operator (3.14) raises the order of higher symmetries by one unit:

R(fwrgn)' = (fvingni). (N=2,3,..) (3.16)

and generates an infinite discrete set of higher symmetries of any order, for example,

(5‘2) =RG) ~ R2x (j) . (3.17)

COROLLARY 3.4. The solution of the recursion relation (3.16) has the form

(fN> = RN-! <1> :RNX(S) , N=2,3,.... (3.18)
IN 1 s x
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Formula (3.14) gives us a general form of the first-order recursion operator for a
generic function «(p). If the function x(p) satisfies the equation

(%) [Ar—s)+c—a] =242 (3.19)
x x
with arbitrary constants A, a, ¢, then a more general form of the recursion operator is
obtained. In particular, (3.19) is satisfied by the state equation (3.11) of the polytropic
gas if the constants satisfy the equations

_—(y-D(a-2)

A=—"—"05 (po=0) or  a=c¢ (po=0). (3.20)

4a./ypo

THEOREM 3.5. Equations of the polytropic gas admit first-order recursion operator
depending upon one essential arbitrary constant a/c(po + 0) ora/A(po=0) of the form

_ As+a 0 ' (p)
R{( 0 Ar+é>D" 42

_ (As+a) (ry —Sx) —[(As+a)ry — (Ar +¢) sy ]
—[(As+a)ry — (Ar +C) sy ] (Ar +¢) (rx — Sx) (3.21)
= 0
x| >x ,
0o L
Tx

where ' (p)/(40®) = (y —3)/[8a,/ypY~V/2] and A, a, ¢ satisfy (3.20).

Now consider the action of the recursion operator (3.14) on the subspace of hydro-
dynamic symmetries (3.5) subject to conditions (3.6):

R (a(s,r)sx) _ (m (S,V)Sx) _ (3.22)

c(s,r)ry c1(s,7)ry
Here the functions a, c; are generated from a, ¢ by the transformation

&' (p)
(40)

' (p)
(402)

ay(s,r) :as(S.r)+[ ](a—C), ci(s,r) :cy(s,r)+[ ](a—c). (3.23)
COROLLARY 3.6. Transformation (3.23) is a recursion for solutions of the linear sys-
tem (3.6), that is, if a(s,r), c(s,r) is its solution, then a, (s,v), c1(s,r) is also the solution.

From (3.22),

RN (ﬂ(S,T)Sx) _ (aN(s,r)sx> (N=1,2,...), (3.24)
C(8,7)¥x CN(8,7)7y

where the solution an(s,v), cn(s,7) of (3.6) is a result of the N-fold application of trans-
formation (3.23) to the solution a(s,r), c(s,7).
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3.3. Generalized gas dynamics equations, their symmetries, and recursion opera-
tors. Lie equations for hydrodynamic symmetries (3.5) of gas dynamics equations (3.2)
are

St =a(s,r)Sy, Y =C(85,7)7x, (3.25)

with a, ¢ subject to conditions (3.6). Change the notation a(s,r), c(s,r) to ¢(s,r),
Y (s,r) and the group parameter T to the new time variable t. We obtain the systems
of the form (2.1) subject to the additional constraints

«'(p)
42

s=d(s)se T= (s, )T, qby(s,r):wS(s,r):[ ](qb—w, (3.26)

that is, (¢, ) is an arbitrary smooth solution of the linear system (3.6).

Equations (3.26) appeared for the first time in [30, 31] and later Olver and Nutku
had called them generalized gas dynamics (GGD) equations [24]. They also pointed out
many interesting applications of these equations in physics.

The determining equation for symmetries of any of GGD systems (3.26) has the form

(ID; + App) (f,9)T = (0,0)T, (3.27)

where the operator Ay ) is defined by the formula

0 x 0 0 ’ 1 -1
A“’""’):_((g w)D"_<SO r){(%l w1>_oih(xg)(¢_w)(—1 1)} (3-28)

with ¢, 1 generated from ¢, ¢ by (3.23) and hence satisfying (3.26):

P1(s,7) = ps(s,7) + [ ?;((;;;](cb—tﬂ).
’ (3.29)
W1(s,7) =y (5,7) + [&&i;]w—w.

THEOREM 3.7. For the GGD equations (3.26), all the hydrodynamic symmetries ho-
mogeneous in derivatives with no explicit dependence on x,t are generated by the Lie
equations (3.25) with the coefficients a(s,v) and c(s,v) satisfying the linear system (3.6)
and hence coincide with the hydrodynamic symmetries of the gas dynamics equations.

Thus, the hydrodynamic symmetries of any GGD system are generated by the Lie
equations which belong to the same GGD hierarchy but have a different time variable T.

THEOREM 3.8. Operator R defined by formula (3.14) is a recursion operator for sym-
metries of the whole infinite GGD hierarchy (3.26). It commutes with the operator of the
determining equation (3.27) on the solution manifold of the latter equation

[ID; +A(py),R] =0, (3.30)

where the operator D; is calculated with the use of GGD equations.
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THEOREM 3.9. All the hydrodynamic symmetries of the generalized gas dynamics
equations (3.26) with the coefficients ¢p(s,v), Y (s,v) are generated by the Lie equations

St =asSx —A(x+tp)sy+co(l+thisy),
3.31
Yo =Crx—AX+EY) T +co(1+tYiTy), ( )

where a = a(s,r), c = c(s,r) satisfy (3.6) and A, co are arbitrary constants.

THEOREM 3.10. Generalized gas dynamics equations with the coefficients ¢ (s,r),
Y (s,v) have an infinite discrete set of higher symmetries of any order N = 2,3,... with
a functional arbitrariness and an explicit dependence on t.

Symmetries of the order N = 2 are generated by the Lie equations

St =a1Sx —A(1+tp1Sy) +co(thasy + f2),

(3.32)
e =C1¥x — AL +t@17y) +co(tary +go).

Here the functions ai (s,v), ¢1(s,r) and ¢ (s,¥), @1 (s,r) are obtained by the trans-
formations (3.23) and (3.29) from a(s,r), c(s,r) and ¢ (s,7), Y (s,7), respectively. The
functions ¢ (s,7), Y2 (s,7) are obtained by a two-fold application of the transformation
(3.29) to ¢, Y, and the functions a, (s,7), ¢ (s,7r) form an arbitrary smooth solution of
(3.6). The functions f>, g» are defined by (3.7). Symmetries of order N+1 (N +1 > 3)
are generated by the Lie equations

() - ) )l () ()} oo
L CNTx IN WNTx IN+1 WYN+1Vx

Here ay = an(s,7), cn = cN(8,7), dN = PN (S,7), YN = Yn(S,T), the subscript N de-
notes N-fold application of the transformations (3.23) and (3.29), the functions fy, gn
are defined by formula (3.18) with their explicit form for N = 2,3 given by formulas
(3.7) and (3.8), and A, ¢q are arbitrary constants.

3.4. Noncommutative algebra of higher symmetries of gas dynamics equations.
Denote by X(a,c) the evolutionary representatives [23] of generators of the hydrody-
namic symmetries corresponding to the Lie equations (3.25) subject to condition (3.6).
Let Xy denote the evolutionary representatives of generators of Nth-order higher sym-
metries (3.18) of the gas dynamics equations for N = 2,3,....

THEOREM 3.11. Hydrodynamic and higher symmetries of the gas dynamics equa-
tions generate an infinite-dimensional noncommutative Lie algebra in which the hydro-
dynamic symmetries form an infinite-dimensional commutative ideal

(X0, X@ae] =0, (XN, X(a.0)] = Xian.en)» [Xum,Xn] =0, (3.34)

where M,N = 2,3,..., a,c and a,¢ satisfy (3.6), and an,cn are defined by (3.24).

THEOREM 3.12. Let N = 2,3,.... The generalized gas dynamics equations have the
common infinite set of higher symmetries (3.33) of the order greater than or equal to
N +1 if and only if the right-hand sides of these equations differ only by a term belonging
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to the kernel of the operator RN, that is, pn, Yn coincide for all these equations. If the
right-hand sides ¢sy, Yryx of GGD equations (3.26) themselves belong to the kernel of
the operator RN, then for all such equations, the generators )?<¢_q,) commute with all the
generators X, of the higher symmetries (3.18) forn = N,N +1,....

COROLLARY 3.13. Commutative symmetry subalgebras for the gas dynamics equa-
tions are formed by the generators X (a,c) Of such hydrodynamic symmetries whose char-
acteristics (asy,cry) belong to a kernel of some integer power RN of the recursion op-
erator for N > 2 and by the generators X, of higher symmetries (3.18) of the order
n=N.

Thus, according to Corollary 3.13, a problem of a constructive description of the
kernel of RN naturally arises. It is solved by means of the inverse recursion operator

R 1:
S O a1 -1 x
-1 & 18 [ -1
Rl= (0 rx) {I+ 5 (1 ) )DX o }DX , (3.35)

where D! = [dx is the operator of integration with respect to x at a constant value
of t with the integration “constant” c(t) depending on t. Hence a kernel of R has the

form
0 Sx —Sx
R! ( ) =c1(t) ( ) +ea(t)a(p) ( ) (3.36)
0 TX TX

A kernel of R? is given by the formula

e (0) - ((up(x(p))sx) o) chz(p)dp—ua(p)]sx
= ,
0 (u+pa(p))ry [J(xz(p)dp+u(x(p)]rx

Sy —Sx
+C3(t)< )+C4(t)tx(p)< )
Tx Vx

where c;(t) are arbitrary smooth functions.

(3.37)

3.5. Lax representation and invariant solutions of generalized gas dynamics equa-
tions. Formula (3.15) implies the Lax representation [18] of the gas dynamics equations
OR
— =[R,A], 3.38
T [R,A] (3.38)
where the recursion operator (3.14) and the “stationary part” (3.4) of the operator of the
determining equation for symmetries (3.3) form the Lax pair of the Ibragimov-Shabat
type [16, 17, 21]. Equation (3.30) gives the Lax representation for any generalized gas
dynamics equations (3.26) with the change of A to A,y defined by (3.28):
OR

T [R, A ] (3.39)
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In 1982, Faddeev and Kulish in a private communication pointed out to the author
that these Lax pairs were degenerate, that is, the mapping of a potential to the scattering
data was singular so that the method of the inverse scattering transform could not be
applied. However, it is not a bad feature of GGD equations since they can be linearized
in a classical sense by the hodograph transformation. The Lax representation for these
equations is still useful for the construction of their invariant solutions by means of
the inverse recursion operator (3.35) [30].

Consider solutions of the gas dynamics equations (3.1) invariant with respect to the
higher symmetries given by (3.18):

(fu,gn) =RV"1(1,1)T=0, N=2,3,.... (3.40)

Define the matrix U and the matrix-integral operator K by the formulas

p

2 2

v=|" Jo“(p)dp . K=D.'Ug =Dy (“" “(p)p"), (3.41)
P u Px Ux

where we define D! = [ dx so that all the integration constants ¢; do not depend on t.

THEOREM 3.14. For any N = 2,3,..., the equations

_ 2(p)d
oo (@)= () o[ s

2 2 ,
uJ(x(p)dP %+I(x2(p)pdp +... (342

+C2N-4 u2 +C2N-5
7+Jdpja2(p)dp up

_(x-ut
ol
determine in the implicit formt = t(u,p), x = x(u,p) an infinite set of exact solutions

u =u(x,t), p = p(x,t) of the gas dynamics equations (3.1) which are invariant with
respect to the higher symmetries (3.18).

For N = 1, formula (3.42) becomes ¢; = x —ut, c; = —pt and gives a trivial solution for
which u; +uu, =0, ps + puy = 0, thatis, the velocity and density u and p are constant in
the Lagrangian frame which moves together with a gas particle. For N = 2, formula (3.42)
takes the form u—ug = p(t —tgy), p(t —t9)% — 50 P (AP)(1/p%)dp = x —xo—uo(t —to),
where p = p/A and A, ug, xo, to, and py are constants. It describes the motion of a
piston in a gas flow after the explosion.

Now consider invariant solutions of the generalized gas dynamics equations ex-
pressed through the variables u, p:

U = w U, p)ux +v (U, p)o®(p)px, pr =v(u,plux +w(u,p)px, (3.43)
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where the coefficients v, w satisfy the linear system wy, = v,, w, = «2(p)vy. Corollary
3.13 implies that the higher symmetries (3.18) of gas dynamics equations of the orders
No,No + 1,... are also higher symmetries of those GGD equations (3.26) whose right-
hand sides belong to a kernel of the recursion operator R™o, that is, ¢n, = Yn, = 0. We
give now their explicit form allowing them to depend explicitly on t:

u Uy  o2(P)px L@ fux «*(p)px
D, = KNo-1 =
1% Px Ux a(t) Px Ux
~1() 2
2Nt +azny-2(1) Ja (Prdp + azny-3(1) “
apzn, (1) u p

uJaz(p)dp

”{ﬁdpjo@(pmp

(3.44)

+aony-4(t)

uZ
> +th2(p)pdp
up

+azny-s(t) e

Here in definition (3.41) of operator K, the “constants” a;(t) of the integration with
respect to x may depend on t as arbitrary smooth functions. Consider solutions of
GGD equations (3.44) invariant with respect to the higher symmetries (3.18).

THEOREM 3.15. For any N = Ny, No+1,... with Ny = 2, the equations

2
{5 e
CoN u p

=
7
-~
a o
N =
N—
Il

u | o(p)dp LI
tCaN-4]| 2 I ) +Con-5| 2 +Ja (p)pdp +oe
7+Jdpjtx (p)dp up
ES taany-1(t) «?(p)dp) (*
= (O) +J0 ( oy () )dt+ (J " L azn,-—2(t)dt (3.45)

) (t uleop )
+( )J azn,-3(t)dt + u? J azn,-4(t)dt
p) =+ ap [ prap)

u? ) ¢
3 +ch (p)pdp Jazz\/o—s(t)dtJr"'
up 0

determine an infinite set of exact solutions u = u(x,t), p = p(x,t) of the generalized
gas dynamics equations (3.44) which may explicitly depend on t. These solutions are
invariant with respect to the Nth-order higher symmetries (3.18) of these equations.



512 M. B. SHEFTEL

Here the functions a;(t) and the constants ¢; with i < 0 must be put equal to zero.
For the gas dynamics equations (3.1), axn,-3(t) = =1, a;(t) = 0 for i # 2Ny — 3.

4. Separable two-component Hamiltonian systems

4.1. Hamiltonian structure of generalized gas dynamics equations. Consider two-
component Hamiltonian systems of the hydrodynamic type of the form

u\ Hy,(u,p) (0 1
Dt(p)_alux(Hp(u,p)), al_(l O)_ @1

Here H(u,p) is the Hamiltonian density of the hydrodynamic type which corresponds
to the Hamiltonian % = [~ H(u, p)dx. For shortness, we will also call H(u, p) a Hamil-
tonian. Equations (4.1) take the form of the Hamilton equations

OREE

with the Poisson bracket of the hydrodynamic type [4]
{H,h} = (hy,h,)Dxoy (Hy, Hy) ' (4.3)

Define the Hamiltonian matrix

. (H,, H
= r "”) (4.4)
(Huu Hup

so that (4.1) takes the form

(Z)t s (;‘)X — (ID; - HADy) (Z) - (8) . (4.5)

The gas dynamics equations (3.1) have the Hamiltonian form (4.1) and (4.5) with the
Hamiltonian

Hup) = [ 22 +[an [ oo (4.6)

The same is valid for the generalized gas dynamics equations (3.44) with the Hamilto-
nians H(u, p,t) that may depend explicitly on t defined by the formula

Hp\ o (@1 (D)
(Hu) _x (a (t)) @7
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with the operator K defined by (3.41). For example, if Ny = 2, (4.7) becomes

H(u,p,t) = a(t) [pTuz +J: dp J: er(p)pdp] +az(t)[”3—: +uJ: dp Iop az(p)dp]

2 p p
+az(t)up +as(t) [u? +L dp Jo aZ(p)dp] +as(t)p+ag(t)u.
(4.8)

4.2. Separable Hamiltonian systems

DEFINITION 4.1. It is said that the Hamiltonians [, Hdx and ", hdx commute if
the Poisson bracket (4.3) is the exact total derivative with respect to x:

{H(u,p,t),h(u,p,t)} = D[Q(u,p,t)]. (4.9)

Then the Hamiltonian matrices H and h defined by (4.4) commute: [H, /] = 0, and also
it is said that the Hamiltonians H and h commute.

THEOREM 4.2. For any hydrodynamic-type Hamiltonian H(u,p), there exists an in-
finite set of Hamiltonians h(u, p) which commute with it and with each other, and are
arbitrary solutions of the wave equation Hyphyy — hppHuy = 0, or with the notation
V(u,p) = Hyy/Hp, fOVHuqup +0,

Mo =V (u,p)hyp = 0. (4.10)

DEFINITION 4.3. Systems (4.5) for which the wave equation (4.10) admits a separa-
tion of variables u, p, thatis, V(u,p) = B2(u)/x?(p), are called separable Hamiltonian
systems [24, 31]. Their Hamiltonians H and all the Hamiltonians h commuting with H
satisfy the same equation

O R ) IO

Gas dynamics equations (3.1) and GGD equations (3.26) with the Hamiltonians (4.6)
and (4.7) are examples of separable systems with f2(u) = 1.

DEFINITION 4.4. If H(u,p) is a Hamiltonian and Hyy/H,, = 1/&?(p) is a func-
tion of p only (B(u) = 1), then H is called the Hamiltonian of the generalized gas
dynamics.

Physical applications of the separable Hamiltonian systems are given in [24].

4.3. Second-order recursion operator and Lax representation for separable Hamil-
tonian systems. We show that separable Hamiltonian systems obtained by the Manin’s
construction possess higher symmetries, a recursion operator, the Lax representation
of the Ibragimov-Shabat type, and good integrability properties [20, 31].

We introduce the notation 9, = 3/0u, 9, = 3/0p, 3;' = [y du, and 3, = [ dp, where
the integration with respect to one variable is performed at a constant value of another
variable. The Manin’s construction gives rise to the two fundamental series of mutually
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commuting Hamiltonians [31]

H(Zm)(l,o) — Z (5;232)7’"—"(6;2“2)"[)’
n=0
HEm-1(1.0) = Z (a;ZBZ)m*"*I(aEZIXZ)"up’
n=0
H(Zm)((),l) — Z (a;ZBZ)m*"(agzaZ)"u,
n=0
H(Zm—l)(O,l) _ Z (a;ZBZ)m—n(a;zaz)n’

0

=
Il

(4.12)

where B = B(u), & = x(p), m =0,1,2,..., H-V(1,0) = 0, and H-Y(0,1) = 1. Here
every operator of 9;,, 0, L acts on all the factors standing to the right of it; for example,

(3;2B%(w))* = JOM du K [ﬁZ(u) J: du Lu ﬁz(u)du]du.

For arbitrary constants ci, c», we define

HN (¢1,¢2) = ctHN (1,0) + coHN (0, 1).

The basic Hamiltonians for the GGD equations (3.44) are obtained at S(u) = 1:

[N/2]  N—-2n

(N) _ 2 20\
H™(1,0) = go N2 G )7

(N) (N yNe1-2n 2 2 n
HYY(0,1) = go m(ap o (p))".

We list explicitly several Hamiltonians from series (4.12):

H'"(1,0) = p,
H9(0,1) = u,
H™Y(1,0) = up,

H™(0,1) = 9,°B*+0,%,

H?(1,0) = (3,2 B*(u) +3,%c*(p)) p,
H®(1,0) = (3,2B*(u) +0,%cc (p)) up,
H?(0,1) = (3,2p*+9,%*)u,
H®(0,1) = (0

1;2 2)2+B;2[328;20(2+(8;20(2)2.

(4.13)

(4.14)

(4.15)

(4.16)



SYMMETRY GROUP ANALYSIS AND INVARIANT SOLUTIONS ... 515
In particular, for the Hamiltonians (4.15) of the generalized gas dynamics [24]:

2 ~
H?(1,0) = % +G1(p),

3 ~
H®(1,0) = %mclm),
4.17)

u? us
HY(0,1) = S +Gilp), H®(0,1) = 5 TuGi(p),

P
def defj (p— ) (o)do.
0

. 14
Gip) jo (p-o)oeld(o)do,  Gi(p) L

Consider the special case f(u) = 1 of the generalized gas dynamics Hamiltonians. De-
fine the integral-matrix operator K, using the matrix U defined by (3.41):

X 2
Ko = a;lUx - JO dx (7;;( (04 gfx)px>

(u,p) 0 2(p) (4.18)
’ 6.4
_ J Undu + Updp = 0311+, ( p ) .
(0,0)

1 0

Here the integral with respect to x is taken at a constant value of t and the latter
integral operator is the curvilinear integral independent of the integration path in the
(u,p) plane.

THEOREM 4.5. Generalized gas dynamics Hamiltonians of series (4.15) and their com-
binations HN) (cy,c») defined by (4.14) satisfy the recursion relation

(HND HNN) =Ko (HNY, HNM), N=0,1,2,..., (4.19)
with the recursion operator K defined by (4.18) and the solution
HN BN =K (HY B =K (c1,.c2), HYECHN (c1,c5). (420

In the general case with arbitrary functions (1) and x(p), we define the matrices

_(u 9% (p) _ (9B () 9, (p)
o= ). = (% ¢ @2

and the matrix-integral operators

X 2
K = a;lle _ JO dx (ux X (p)Px)

px  BP(u)uy
(w.p) 1 0 0 «?
:J(O 0) Urudu+Urydp = 0" (0 BZ(u)) 9! (1 (gp)>’
| X (BA(u) 2(p) “22)
KZ =a;1U2X=J dx( U)Ux xX(p pX)
0 Px Ux

(p) B*(u) 0 0 «’(p)
_ _ -1 -1
_LO‘O) Usudu + Uzpdp au( 0 1>+ap <1 o)
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with the operator 05! defined as in (4.18). Here again the curvilinear integrals in the
second lines are independent of the integration path. Define also the operator

K = K1K> = 05 U105 Uay. (4.23)

THEOREM 4.6. The separable Hamiltonians (4.12) and their combinations H™) (c1,¢»)
for N =0,1,2,... satisfy the recursion relation

(N2, HN )T = KHN HD), HY L HO (0,¢), (4.24)
with the recursion operator K defined by (4.23) and the solutions

(Hl()zm),Hitzm))T:Km(HéO)sH:LO))T:Km(clsCZ)Ts m=0,1,2,..., ( )
4.25
(HEmD, g = kmt(HD B = K™ (e,00) ', m=1,2,....

Thus, by Theorem 4.6, all the Hamiltonians of the Manin’s series (4.12) are generated
by the recursion operator (4.23) (see [31]). The inverse recursion operator has the form

K™ = K; 'Ky ' = (Uzx) ' Dx(Uix) ' Dy,

-1 1 Biuy —o2py
(Uix) =557 ,
BPux —o?px \ —Px Ux (4.26)
1 1 Ux —02py
U, == .
(Uzx) B2u — o2 p} (—px B2u )
Define the second-order matrix-differential operator
L =DyK'3;' = Dy (Uax) 'Dx(Upx) . (4.27)

Consider Lie equations for the Nth-order higher symmetries of the Hamiltonian sys-
tem (4.5) with the Hamiltonian H and the Hamiltonian matrix H in the evolutionary

form
(u) (Ot o ul ) _(fn> (428)
P). \glx,t,u,pux, pxyee s ul, o) ) \Gn '
that implies x+ = t+ = 0. These symmetries satisfy the determining equation
AT
(ID{—DxH) (g =0/ (4.29)

THEOREM 4.7. Any separable Hamiltonian system (4.5) possesses the second-order
matrix-differential recursion operator of the form (4.27) satisfying the recursion relation

L(fndn)" = (fuiorgnia)', n=2,3,.... (4.30)
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COROLLARY 4.8. On the solution manifolds of systems (4.5),
[ID;—DxH,L] = 0. (4.31)

Thus, the Lax representation for these systems o0L/ot = [L,A] is obtained with the Lax
pair of the Ibragimov-Shabat type [16, 17], where A = —D,H and L is defined by (4.27).

COROLLARY 4.9. For the GGD equations f(u) = 1, Uy = U = U and the second-order
recursion operator (4.27) is reduced to the squared first-order recursion operator Ly:

1

L=1L13 Lo=Dx(Ux) . (4.32)

The operator Ly coincides with the recursion operator (3.14) transformed from the Rie-
mann invariants s, v to the separable variables u, p, and satisfies the relation

Lo(fa,gn)" = (fastngna)'s m=2,3,.... (4.33)

THEOREM 4.10. For separable Hamiltonian systems (4.5) with the generic functions
B(u) and «(p), no first-order recursion operators exist and the second-order recursion
operator (4.27) cannot be reduced to a square of the first-order recursion operator or to
a product of different first-order operators.

4.4. Hydrodynamic and higher symmetries

THEOREM 4.11. Separable systems (4.5) with the Hamiltonian H (u, p) with no explicit
dependence on t admit an infinite set of hydrodynamic symmetries homogeneous in
derivatives with or without an explicit dependence on x,t generated by the Lie equations

(u) = (xI+tH+h) (u) , (4.34)
p). P

u\ o fu) _ hy (u,p)
(ﬂ)T_h<ﬂ)X_UID"(hp<u,p>>’ .39

Here h(u,p) is an arbitrary smooth solution of (4.11), and H and h are Hamiltonian
matrices of the form (4.4).

respectively.

COROLLARY 4.12. All the hydrodynamic symmetries (4.35) with no explicit depen-
dence on x,t are separable Hamiltonian systems with the Hamiltonians h(u,p) which
mutually commute and also commute with the Hamiltonian H(u,p) of system (4.5).

Thus, any separable Hamiltonian system (4.5) is included into the infinite hievarchy of
commuting separable Hamiltonian flows.

THEOREM 4.13. Hydrodynamic symmetries (4.35) of system (4.5) with no explicit de-
pendence on x,t form an invariant subspace for the second-order recursion operator L.
This operator generates the recursion relation for the hydrodynamic symmetries

pU) _ hiw(u,p)) _ - (u
th (ﬂ)x — b (hlpm,p)) =h (p>xv (4.36)
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and generates the recursion of their Hamiltonians

hy(u,p) = ——hyu(u,p) = ———hyp(u,p). (4.37)

32( ) 2( )

COROLLARY 4.14. Hydrodynamic symmetries (4.35) of the separable Hamiltonian sys-
tem (4.5) with no explicit dependence on x,t form an infinite-dimensional commutative
Lie algebra. Its elements depend on arbitrary smooth solutions h(u,p) of (4.11).

Denote by h,, (u,p) the result of the m-fold application of (4.37) to h(u,p):

-2 2\m -2 2\m
B (u)a) h(u’p)=<a (p)o

hm(u,p)=< FvE 3p? )h(u,p). (4.38)

Then formula (4.36) gives the result

Lmh (”) — hy, (”) . (4.39)
p X p X

THEOREM 4.15. For any separable Hamiltonian system (4.5), all its higher symmetries
of an even order n = 2m generated by the action of the recursion operators L™ on the
hydrodynamic symmetries (4.34) are given by the formula

(f 2’”) —I"mx (“) + (tHm + o) (“) (4.40)
g2m P x p x

Here H,, (u,p) is obtained by transformation (4.38) out of H(u,p). For m = 1, this
formula gives all second-order symmetries of (4.5).

form=1,2,....

THEOREM 4.16. The separable system (4.5) with the Hamiltonian H(u,p) possesses
an infinite series of higher symmetries of even orders 2m with no explicit dependence on
t,x if for some integer N, the Hamiltonian H satisfies the condition

X 0 )
N (:‘)X - (()) e Ay =0, (4.41)

that is, the vector H (uy, px)T belongs to the kernel of the operator LN, and then m = N.

The symmetries in Theorem 4.16 are determined by (4.40) with Hy, =0 being com-
mon symmetries of all systems (4.5) with the right-hand side belonging to the kernel
of the operator LV. For I, = 0, the special form of higher symmetries satisfying (4.41)
with m > N is

u u fzm(u’p!uXJpXI-' (ZM),p(2m>)
=LMx = em emy |- (4.42)
p T p X me(u;psux;pr-- le )
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For B(u) =1, L = L(z), where L is the first-order recursion operator (4.32). Then (4.5)
form the GGD system with the higher symmetries of any order n > N > 2:

().
P, p), In

if the following condition is satisfied:

N fu) (O
LYA (P>x = <0> . (4.44)

For the generic function f(u), denote by Xy and X»,, the evolutionary generators of
the hydrodynamic symmetries (4.35) and of the higher symmetries (4.42), respectively.

THEOREM 4.17. Hydrodynamic and higher symmetries of separable Hamiltonian sys-
tems (4.5) with no explicit dependence on x,t form the infinite-dimensional noncommu-
tative Lie algebra

[XI’UX}:[] = Oy I:sz!Xh] = XAhml [XZ‘}’H!XZ‘VL] = Oy (4-45)
with the hydrodynamic symmetries X; forming an infinite-dimensional commutative
ideal.

COROLLARY 4.18. Higher and hydrodynamic symmetries in (4.45) commute if and
only if hy, = 0, where h(u,p) are the Hamiltonians of the hydrodynamic symmetries
(4.35).

Theorem 4.16 poses a problem of obtaining the kernel of the operator LN to solve
(4.41). In order to obtain its general solution, we have to allow an explicit dependence of
the Hamiltonians on t and use the Manin’s series (4.12) of Hamiltonians H™ (1 —v,v)
with v = 0,1. Let a;(t) denote arbitrary smooth functions and

H™NV(u,p,t)

N
= Z [asv—t)+1 (O)HZ (1,0) + asn-r)+2 (1) H?(0,1) (4.46)
k=0
+asn-k)+3 (O HZ*D(1,0) + agn-r+a(OHZ*1(0,1)], N=1,2,....

Consider the explicitly t-dependent Hamiltonian system (4.5) with the Hamiltonians
HINI;
[N]
Hy' (u,p,t) N
(“) — oD | P 2 A (“) , N=1.2,.... (4.47)
p t Hp (u! p: t) p X

THEOREM 4.19. The kernel of the operator LN coincides with the right-hand side of
the Hamiltonian system (4.47):

LN (8) =AWl (u,p,t) (Z) . L YU, DI UNDSL. (4.48)
X



520 M. B. SHEFTEL

COROLLARY 4.20. Let N be some integer. Any separable Hamiltonian system which
has higher symmetries (4.40) with H,, = 0 (with no explicit dependence on t,x) of the
order 2m > 2N has the form (4.47). In particular, such a system has higher symmetries
(4.42) which satisfy the condition m > N.

THEOREM 4.21. A separable Hamiltonian system (4.5) with a Hamiltonian H(u, p,t)
explicitly dependent on t admits an infinite set of the hydrodynamic symmetries

u L N u
(p)T = [XI+J0 H(u,p,t)dt+h(u,p)] (p) (4.49)

X

explicitly dependent on t,x and on an arbitrary smooth solution h(u,p) of the wave
equation (4.11). An infinite set of higher symmetries of any even order 2m for such a
system is generated by the action of the recursion operators L™ on the symmetries (4.49):

t
(Z)T LMy (;‘)x + UO Ay (u,p,t)dt + ﬁ(u,p)] (Z)X (4.50)

and has the same extent of arbitrariness as the symmetries (4.49). In formulas (4.49) and
(4.50), integrations with respect to t are performed at constant values of u, p.

4.5. Invariant solutions and linearization. Consider solutions of the Hamiltonian
systems (4.47) invariant with respect to the higher symmetries (4.50) with no explicit
dependence on t,x due to the condition FI%V] (u,p,t) =0 for m > N. Invariance condi-

tions for these solutions have the form

me<”) +f1(u,p)(“> =<0>, m=N,N+1,..., (4.51)
r/, p). \O

with h(u,p) satisfying (4.11). We will obtain such solutions by the method which uses
the Lax representation (4.31) and the inverse recursion operator (4.48) [30, 31]. Define
the Hamiltonian H™(u, p) by (4.46) with N = m and a;(t) = ¢; = const:

m
H™ (u,p) = > [caom-r+«1H® (1,0) + cam-ry+2H?¥ (0,1)
k=0 (4.52)

+Caim-t)+3HZ D (1,0) + cagm-k)+aHZ*1 (0, 1) ].
Let H(u,p) denote an arbitrary solution of the wave equation (4.11).

THEOREM 4.22. Invariant solutions (u(x,t),p(x,t)) of system (4.47) with the Hamil-
tonian HN(u, p, t) satisfying the invariance condition (4.51) are determined by

Hopu (u, ¢ (Hp (u,p,t)
( pu (U p)) _ (X) +J ;[J;] p dt (4.53)
Hyy (u,p) 0 o \ Hyuy'(u,p,t)
if the conditions of the implicit function theorem are satisfied for (4.53).

Equation (4.53) determines the linearizing transformation which reduces the solution
of the nonlinear separable Hamiltonian system (4.47) which may explicitly depend on
t to the solution of the linear wave equation (4.11) for H (u,p).



SYMMETRY GROUP ANALYSIS AND INVARIANT SOLUTIONS ... 521

COROLLARY 4.23. The formula

HYW (u,p)) (x) N
W, p) 0
gives an infinite discrete set of exact solutions of (4.47) satisfying condition (4.51) with
h(u,p) = 0, invariant with respect to the higher symmetries (4.42).

Jf (H,Eﬁ]m,p,t)

dt, m=NN+1,...,  (4.54)
0 Hﬁﬁ](u,p,t))

For an explicit form of these solutions, expression (4.52) for H"! (1, p) must be used.

COROLLARY 4.24. For system (4.47) with the Hamiltonian HN(u, p) having no ex-
plicit dependence on t, formula (4.53) gives the hodograph transformation

H HE (u,
( pum,p)) _ <x>+t m( P) 455)
Hyy (u,p) 0 Huw (u,p)
which interchanges the roles of independent and dependent variables (x,t) and (u,p).

REMARK 4.25. Explicitly t-dependent Hamiltonian systems (4.47) are not lineariz-
able by the usual hodograph transformation (4.55). The correct linearizing transforma-
tion is given by (4.53) and presents a generalization of the hodograph transformation
for explicitly time-dependent systems.

THEOREM 4.26. Consider a separable system of the form (4.5) with the explicitly t-
dependent Hamiltonian H (u, p,t) satisfying (4.11). Its invariant solutions with respect to
the hydrodynamic symmetries (4.49) are given by the equations

t t
x+J0 Hop (1,0, 0)dt = hpu (u, ), L Huw (0, At = N (), (456)

where h(u,p) is an arbitrary smooth solution of the linear equation (4.11).

In (4.56), Hy, and h,, may be replaced by H,, and h,,. These formulas reduce
the solution of any separable time-dependent system (4.5) to the solution of the linear
equation (4.11) for h(u,p). This is the linearizing transformation which generalizes
the hodograph transformation for the explicitly time-dependent separable Hamiltonian
systems (4.5).

5. Semi-Hamiltonian equations
5.1. Geometry of semi-Hamiltonian systems and hydrodynamic symmetries. Con-
sider first-order quasilinear nondegenerate systems homogeneous in derivatives

ul =vi(wul, vi(w) #vj(w) (i=j),i=12,...,n, (5.1)

with a diagonal n X n matrix V(u) = diag(v;(u)). From now on, no summation on
repeated indices is assumed. Here u = (u!,u?,...,u") is n-vector, u! are Riemann in-
variants [27]. Higher symmetries of the Nth-order of system (5.1) are generated by the
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Lie equations
=ni(x, L u, .., ulN), i=1,2,...,n, (5.2)

where T is the group parameter and we assume that x; =t =0. Denote n= (1,...,0.) 7.
Consider the operators D, D; of the total derivatives with respect to x,t:

0 2 ji(k+1)
J(k+
D=2 4 (ux+Zu/ m1”>

(5.3)

where (5.1) is used in D, and a/ax and 8/8t are taken at constant values of u and u (k)
The compatibility conditions u’, = ul, of systems (5.1) and (5.2) take the form of
the determining equation for the symmetry characteristic n:

(IDt—VDX—UX<Z—E>>[n] =0. (5.4)

Here I is the unit matrix, Uy = diag(u), and 0V /oU = (v;,,7) is the Jacobian matrix.
For the hydrodynamic symmetries, we choose N = 1 in the Lie equations (5.2). Here
we consider only hydrodynamic symmetries linear homogeneous in derivatives

=Wilu,x,tiul, i=1,2,...,n. (5.5)

Define the symmetrical connection coefficients associated with system (5.1) [39]:

1uJ( )
(vj-vi)
I = (g”ﬁw (i#)), Th=0 (#j*k=i. (5.7)

T} (u) =T (u) = (i#j), (5.6)

This connection is compatible with the nondegenerate diagonal metric
gii(w) = H?(u) =e?®W  g,i=0 (i#j), det(g¥)=0. (5.8)

Here H;(u) are Lamé coefficients. The connection is determined by the metric

I}, = (Inygii) i = (InHy),j = ®; 5 (w). (5.9)
Integrability conditions Fl.ij k= Flk ; of system (5.9) with the use of the expressions
(5.6) take the form of Tsarév’s conditions [39]:
Vi ui ] [ Vi uk ] . .
= i+j+k=+1). 5.10
[hy—vﬁ L em oy Ly TFIEEED 610

DEFINITION 5.1 (see [40]). Diagonal nondegenerate system (5.1) is called semi-
Hamiltonian if its coefficients v;(u) satisfy conditions (5.10).

We will consider the generic case excluding weakly nonlinear systems [27] (v; ;i =0
for all i) which admit more general symmetries than in the following theorem.
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THEOREM 5.2 (see [40]). The generic diagonal system (5.1) admits an infinite set of
hydrodynamic symmetries with no explicit dependence on x,t

ul =w;(wul, i=1,2,...,n, (5.11)

with a functional arbitrariness if and only if (5.1) is semi-Hamiltonian, that is, condition
(5.10) is satisfied.

The symmetries in Theorem 5.2 are generated by Lie equations (5.11) with the coef-
ficients w; (u) which form an arbitrary smooth solution of the linear system

I (wi—wi) (i# ) (5.12)

Wiwi = 1ij

with l"iij(u) defined by (5.6). All these symmetries mutually commute. The set of such
symmetries is locally parameterized by n arbitrary functions c; (u') of one variable.

THEOREM 5.3 (see [33]). Semi-Hamiltonian systems of the form (5.1) admit an infinite
set of hydrodynamic symmetries explicitly dependent on x,t with the same functional
arbitrariness as in Theorem 5.2.

The symmetries in Theorem 5.3 are generated by the Lie equations
ul =[wi(u) +c(x+tvi(w)Jul, i=1,2,...,n, (5.13)

where w;(u) is an arbitrary solution of the linear system (5.12) and c is an arbitrary
constant.

THEOREM 5.4 (see [40]). Any semi-Hamiltonian system of the form (5.1) with the
nondegenerate metric (5.8) is a Hamiltonian system if and only if the following com-
ponents of the Riemann curvature tensor vanish: R}ji =0 (i # j). Then the curvature
tensor vanishes identically and the variables u' form an orthogonal curvilinear coordi-
nate system in a flat (pseudo-Euclidean) space.

COROLLARY 5.5. For the semi-Hamiltonian system (5.1), the following components of
the curvature tensor vanish fori+ j+k+landi+ j+ k + i:

I

Lo=rt | — )
ikj = “ijuk ik,ut

i = riij,uk — [T T + T (T ~ T ) ] = .

Rl =0, =0,

(5.14)

REMARK 5.6. These equations give compatibility conditions for the linear system
(5.12) and they are equivalent to the Tsarév’s conditions (5.10).

5.2. Linearization and invariant solutions of semi-Hamiltonian systems. Consider
hydrodynamic symmetries (5.13) explicitly dependent on x,t with ¢ = —1. Then invari-
ant solutions of the semi-Hamiltonian system (5.1) with u, # 0 are determined by

wi(u) =tvi(uw)+x, i=1,2,...,n. (5.15)

THEOREM 5.7 (see [40]). Let wi(u) in (5.15) form an arbitrary smooth solution of
the linear system (5.12). Then any smooth solution ut(x,t) of (5.15) is a solution of the
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semi-Hamiltonian system (5.1). Vice versa, any solution ut(x,t) of (5.1) is a local solution
of (5.15) in the vicinity of such a point (xo,to), where ul.(xo,to) # 0 for each value of i.

REMARK 5.8. Equations (5.15) determine a linearizing transformation for the semi-
Hamiltonian system (5.1), that is, to obtain explicit formulas for the invariant solutions
of the nonlinear system (5.1), one must solve the linear system (5.12) for w;(u) with
variable coefficients. It generalizes the classical hodograph transformation for the case
of multicomponent systems and it is called the generalized hodograph transformation
[40]. We discover the group-theoretical origin of the linearizing transformation: every
nonsingular solution of system (5.1) is an invariant solution with respect to hydrody-
namic symmetries (5.13) and the extent of arbitrariness of symmetries and invariant
solutions is the same as for the general solution of (5.1), that is, n arbitrary functions
c;(u') of one variable.

5.3. First-order recursion operators. By definition, recursion operator R maps any
symmetry of the semi-Hamiltonian system (5.1) again into its symmetry, that is, any
solution n = (n1,...,n»)T of the determining equation (5.4) is mapped again into the
solution R[n]. For this to be true, it is sufficient for the operator R to commute with
the operator of the determining equation

[IthVDXfUXC;—E),R] ~0 (5.16)

on solution manifolds of (5.1) and (5.4). For systems (5.1), we use a different form of
recursion operators than (2.48). In particular, for the first-order recursion operators,

R = (AD, +B)U;!, (5.17)

where A = A(u) and B = B(u,u,) are n x n matrices. Define the functions
Si(u) = Z Lwer(uk) +di(ul), i=1,2,...,m, (5.18)

which depend on 2# functions ¢; (u') and d;(u’) of one variable.

THEOREM 5.9 (see [38]). For semi-Hamiltonian systems (5.1), there exists a first-order
recursion operator R of the form (5.17) if and only if there exist 2n functions c;(u') and
di(u') of one variable which satisfy the conditions

Siui (W) =T[(S;=Si)  (i#j) (5.19)
with S;(u) defined by (5.18).

Matrix elements of the recursion operator in Theorem 5.9 are

, no , - 01
Rij=|6ijcj(u) | Dx+ f(u)uii)ﬂ}'(u) cj(u!)us —ci(u' ”iK)
J [m< )( kzl ‘ e ) W) 7)) 5.0

+dj(uf)6ij,

where §;; is the Kroneker symbol.
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THEOREM 5.10. For semi-Hamiltonian systems (5.1), hydrodynamic symmetries (5.11)
homogeneous in derivatives with no explicit dependence on x,t, subject to condition
(5.12), form an invariant subspace for the recursion operator (5.20).

A restriction of the operator R to the invariant subspace becomes

wy (u)ulk wy(u)uk
R : = : : (5.21)

Wy (U)u} Wy (w)ul}

where the functions w;(u) are determined by the formula

Wi (u) = ¢ (u)w; i (w) +di (u)wi(uw) + > T (w)er (uF)wi (). (5.22)
k=1

COROLLARY 5.11. For any solution {w;(u)} of the linear system (5.12), the functions
w;i(u) also form a solution of this system if and only if the conditions (5.19) are satisfied.
Then (5.22) defines a recursion for solutions of system (5.12).

The first-order recursion operator (5.20) for the multicomponent system (5.1) was
constructed originally by a straightforward solution of (5.16) [38]. A new simpler
method for constructing recursion operators based on the study of symmetries of the
set of hydrodynamic symmetries of system (5.1) was developed by the author in [35],
where the group-theoretical origin of recursion operators was discovered. A geometri-
cal sense of the existence conditions (5.19) was also clarified in this paper.

To be explicit, consider other orthogonal curvilinear coordinates {r'}, which will
be specified later, with the Lamé coefficients H;(r) = +/g;;(r) = e®™). Consider the
rotation coefficients f;;(¥) of this coordinate system defined by the equations [6, 40]

H;,j=BjiHj (i#j). (5.23)

Let p = {(rk—71)} denote the set of the coordinate differences.

THEOREM 5.12 (see [35]). First-order recursion operator for the semi-Hamiltonian
system (5.1) exists if and only if the rotation coefficients B;;(r) of some curvilinear or-
thogonal coordinate system r* depend only on the coordinate differences p: Bji = Bji(p).

5.4. Second-order recursion operators. We will consider second-order recursion op-
erators in the form

R = (AD2 +BDy +F)U.t, (5.24)

where A = A(u,uy), B=B(U,Ux,Uxyx), DA F = F (U, Uy, Uxx, Uxxx) are 1 X 1 matrices.
Define the “connection potential” V(1) by a completely integrable system (in the sense
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of Frobenius)

Vi W) =TTY (i ) (5.25)

so that V(u) depends on n arbitrary functions of one variable. Integrability conditions
for (5.25) are satisfied as a consequence of the property (5.10). Define

bix(u) = fr(u*) [T (2T —Th) —riik wd e () = fru) I G+ k), (5.26)

bii(w) = fi(u') [T+ (T)° = 2Vyi ()] = £ (W) Vi () + ¢ ()T + i (u?), - (5.27)

and B;(u) = >}_, bix which depend on 37 functions f;(u?), ¢;(u'), and d;(u!) of one
variable. Let Rix, Aix, Bix, and F;; denote matrix elements of the operator R and of the
matrices A, B, and F, respectively.

DEFINITION 5.13. Let H;(u) and B;j(u) denote Lamé and rotation coefficients, re-
spectively, of the curvilinear orthogonal system {u}, and let G;(ii!) denote a function
of u independent of u!. Semi-Hamiltonian system (5.1) is called generic (with respect
to second-order recursion operators) if none of the following cases occurs:

V;yi(u) =0, Vi (U) = (M)evm)’

Yii
Biji (Bri/Hi) i _ Bri (Bji/Hi) i . (5.28)
[(Uj_vi)][ (7 :|ui [(Uk—vi)][ Vit ]ui (i=j=*k).

THEOREM 5.14 (see [35]). For the semi-Hamiltonian generic system (5.1), the second-
order recursion operator R of the form (5.24) exists if and only if there exist 3n functions
fiub), ci(u'), and d;(u') of one variable which satisfy the conditions

B;i(u) =T/;(Bj—Bi) (i+j) (5.29)

with the functions B;(u) defined by (5.26).

Its matrix elements in Theorem 5.14 are given by

Rix = (AikDgz("‘Bika"‘Fik)(%), (5.30)
Ak = 75“‘fi,.(“l), (5.31)
Ux
. k
Bix =T}, [fk(“k) (u") Sfi(u )(Z")] (i+k), (5.32)
—fi(u')ul ; ;
B; = - rl ux +2fi(u )rili""ci(ul): 5.33
()] [ ]Z 3%
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Fix = fi(u') lk(ulc) [h - L%]

ul /L ulk  uk

+ fi(u®) [ (1/5222 ]riikrlfi_fi(ui) H (L;%()Z :|riik,u’< +( iik)z]

+ {fl (ul) (riikrlfi - Zriii‘uk) - [Zfi (ui)riii +Ci (ui)]riik}uff (5_34)
+bik(u)u§—fi(ul)<u—f> > wh (TRTE +TLTH)
X7 j#ik
i k ”_gc iTk _ £.(a] u_;kc iJ :
+Uy z Sie(u®) X ikrkj fj(u ) J ijrjk (i+k),
JEik Ux Ux
Fii = Bj(w)ul — > Fy. (5.35)
k=#i

THEOREM 5.15 (see [35]). For semi-Hamiltonian systems (5.1), hydrodynamic sym-
metries (5.11) homogeneous in derivatives, with no explicit dependence on x,t, subject
to condition (5.12) form the invariant subspace for the second-order recursion operator
(5.30).

The action of the recursion operator (5.30) on the invariant subspace is determined
by (5.21) with the new definition of functions:

wi(u) = fi(ui)wi,uiui + [Zfi(ui)riii + Ci(ui)]wi,ui

) n (5.36)
+ ka(”k)rilkwk,uk + Z bix (w)wy,
k=i k=1

where b;, (1) are defined by (5.26).

COROLLARY 5.16. For any solution {w;(u)} of the linear system (5.12), formula (5.36)
again gives a solution {w;(u)} of (5.12) if and only if conditions (5.29) are satisfied. Thus,
(5.36) is a second-order recursion for solutions of system (5.12).

THEOREM 5.17 (see [35]). If the first-order recursion operator exists, then there also
exists the second-order recursion operator equal to the squared first-order recursion oper-
ator. The converse is not true: the existence conditions (5.19) for the first-order recursion
operator do not follow from the existence conditions (5.29) for the second-order recursion
operator.

Thus, the existence conditions for the second-order recursion operator are less restric-
tive than for the first-order operator.

REMARK 5.18. If system (5.1) is Hamiltonian, that is, all the components of the Rie-
mann curvature tensor vanish, R;kl = 0 (see Theorem 5.4), then the existence conditions
for recursion operators and for compatible bi-Hamiltonian structures of the hydrody-
namic type [7] should be related to each other due to the Magri’s theorem [19]. It seems
interesting to discover these relations.

5.5. Generation of infinite series of exact solutions. To obtain explicit formulas
for invariant solutions of (5.1), one must know solutions of the linear system (5.12)
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and substitute these solutions for the set of functions {w;(u)} in the linearizing trans-
formation (5.15). Existence of a recursion operator for the semi-Hamiltonian system
(5.1) is the additional constraint which makes it possible to obtain particular solutions
of (5.12).

The linear system (5.12) has two trivial solutions

wi=1, wi=vi(u), i=1,2,...,n. (5.37)

They serve as “seed” elements for the generation of infinite series of nontrivial solutions
by recursion operators. In particular, assume that the first-order recursion operator
(5.20) exists for system (5.1), that is, conditions (5.19) are satisfied. It generates the
recursion (5.22) for solutions of system (5.12):

n
Wi(u) = = > (Ry) yelwi],
k=1 (5.38)

(R1) . = i [cl( )aa +d1(ui)] T (e (uk).

The operator R; maps trivial solutions (5.37) to the nontrivial solutions of (5.12):

n

@i = (Ra(11), = 3T (w0 () +di(u) = Sitw),
ket . (5.39)
Wi(u) = (Ri[v]); = ci(u) v i (W) +di(u)vi(u) + > T (w)er (uX) vie(u).
k=1

Substituting (5.39) in (5.15), we obtain solutions u! = uf(x,t) of system (5.1):

Z k(u)ck rdi(uh) =tviw) +x, i=1,...,n,
(5.40)
ci(ui)vi'ui(u) +d;(uH)vi(u) + Z T/ (w)ex (u o) = tvi(u) +x

determined as implicit functions.
The action of powers of R; on the trivial solutions (5.37) generates the explicit for-
mulas for two infinite sets of invariant solutions, with N =1,2,...,

(RYN[11); = tvi(u) +x, (RY[v]); = tvi(u) +x. (5.41)

Assume now the less restrictive existence conditions (5.29) for the second-order re-
cursion operator. Then there exists the recursion (5.36) for solutions of (5.12):

n
wi(u) = (R2[w]) Z Ry)  [wi],

(ai) LA T ) + e (u)]

aii}+fk( )Flk(u) T hik(u),
(5.42)

(R2) g = 5ik{fi(ui)

where R» is the second-order recursion operator and b, (u) are defined by (5.26).
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Trivial solutions (5.37) are mapped by R, to nontrivial solutions of system (5.12) and
via (5.15) to the corresponding solutions of system (5.1)

(R2[11); = > bir(u) = Bi(u) = tvi(u) +x,
k=1
( ) fl( ) 1uiui(u)+[Zfi(ui)riii(u)+Ci(ui)]vi,ui(u) (5.43)

+ ka(uk)l"i"k(u)vk‘uk(u) + z bix(u)vi(u) =tv(u) +x.
k+i k=1

The powers R} generate two infinite sets of invariant solutions from (5.37)

RY[1]); = tvi(w) +x, RY[v]); =tvi(w)+x, N=1,2,.... (5.44)
We can use in (5.15) linear combinations of solutions of the two sets for w; (1)
c1(RY,[1]);+ o R, [v]); = tvi(w) +x, N,M=1,2,..., (5.45)

with the operator R, or R, and arbitrary constants cy, c.

Further generalization is obtained if we substitute for the characteristic n4 = x +
tv;(u) of the dilatation symmetry group in formulas (5.13) and (5.15) the results of the
action on n? of the operators ﬁf or RY, where L is any positive integer. Then we obtain
the formula

C1 (ﬁll\{z[l])ﬂrcz ([2]1\/,[2[1}])1' = t(R%,z[v])iJrX(ﬁfz[l])i- (5.46)

If L> N or L> M, (5.46) is equivalent to (5.45) with negative powers of Rl,g.

REMARK 5.19. The operators R, and R, coincide with the first- and second-order
symmetry generators for the linear system (5.12) essential for the separation of vari-
ables in linear equations [3, 22]. Solution of (5.12) by the separation of variables would
mean solving completely the nonlinear system (5.1). Thus, the linearizing transforma-
tion (5.15) presents an extension of the method of separation of variables to nonlinear
systems “rich in symmetries.”

5.6. Higher symmetries of semi-Hamiltonian systems

THEOREM 5.20 (see [33]). All second-order symmetries of the semi-Hamiltonian sys-
tem (5.1) are generated by the second-order recursion operator (5.30) out of the hydro-
dynamic symmetries (5.13) (with ¢ = 1). The corresponding Lie equations have the form

=i = > Rijl wh(x+tv;(u) +wj(u)] = - fl(ugl)uzxx
j=1 (ux)
Zrl ux""uxz +2fl( ) ii 647
J#i J#i

+ci(u") +ul[xB;(u) +t(R2[v])i+wi(u)], i=1,...,n,
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where the set of functions {w;(u)} is an arbitrary solution of the linear system (5.12).
The existence conditions (5.29) for the second-order symmetries and for the second-order
recursion operators coincide and must be satisfied by a choice of functions f;(u'), c;(ut),
and d;(u'). In the case when B;(u) + 0 and (Rx[v]); # 0, these symmetries explicitly
depend on x,t. The action of powers RN of the recursion operator with N = 1,2,... on
the same hydrodynamic symmetries generates the infinite series of higher symmetries
of system (5.1):
n .
ub = > (RN)[uk (x +tvj(u) +w;i(u))]. (5.48)
j=1

If R is a second-order recursion operator, then all these symmetries are of an even or-
der 2N.

6. Multicomponent diagonal systems explicitly dependent on t or x

6.1. Hydrodynamic symmetries of time-dependent systems. Consider first-order
quasilinear diagonal explicitly t-dependent systems with n > 3

ul =v;(u,tHul, i=1,2,...,n, 6.1)

subject to the condition v; # v; for i # j. We search for hydrodynamic symmetries of
these systems with the Lie equations x =t =0 and

n .
ub = > Al(u,t,x)uk, i=12,...,n (6.2)
j=1
Define the functions
v; 0 (U, t) ; .
cij () = =SS, T ) = e, 0) (i # ). (6.3)
J— Y

THEOREM 6.1 (see [13, 28, 32]). Diagonal n-component system (6.1) of the hydro-
dynamic type with an explicit time dependence admits an infinite set of hydrodynamic
symmetries of the form (6.2) with a functional arbitrariness if and only if its coefficients
satisfy (5.10) and the condition

[ Vi (U, 1)

Ui(u,t)—vj(u,t)]t = B (u,1), (6.4)

for i + j with an arbitrary real constant 3.

The symmetries in Theorem 6.1 are generated by the Lie equations

ul = Al(u, t,x)ul, i=1,2,...,n, (6.5)
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with the coefficients A; defined by the formulas

t
Ai(u,t,x) =w;(u)exp {B [x+ JO vi(u,t)dt] 73» +C for B+0, .
A;(u,t,x) :wi(u)+C[x+Ltvi(u,t)dt] for =0, .

where C is an arbitrary constant, the integrations with respect to t are performed at
a constant value of u, and {w;(u)} form an arbitrary smooth solution of the linear
system (5.12) with F}J defined by (6.3). The solution manifold of (5.12) depends on n ar-
bitrary functions c;(u?) of one variable locally parameterizing the set of hydrodynamic

symmetries.

6.2. Hydrodynamic symmetries of x-dependent systems. Let coefficients of the
diagonal system explicitly depend on the coordinate x:

ul =vi(u,x)ul, i=1,2,...,n, n =3, (6.7)
and satisfy the condition ¥; # U; (i # j). Define the functions
ﬁi,uj (u,x)
V-7

él-j(u,O)f/j(u,O)
i(u,0)

Gij(u,x) = ,
(6.8)
l"i‘j(u)= (T+Jj).

THEOREM 6.2 (see [13, 28, 32]). Diagonal n-component systems (6.7) of the hydrody-
namic type with an explicit x -dependence admit an infinite set of hydrodynamic symme-
tries of the form (6.2) with a functional arbitrariness if and only if its coefficients satisfy
(5.10) with the change of U; to v; and the condition

(0, (uy x)) i it .
[f}{lw,x)—ﬁ]l(u,x)]x_B(Ui Wx))us (%) (6.9)

with an arbitrary real constant f3.

The symmetries in Theorem 6.2 are generated by the Lie equations
ul = Aj(u,t,x)ul, i=1,2,...,n, (6.10)

with the coefficients A; defined by the formulas

X

Ai(u,t,x) =i (u,x) {wi(u) exp [,B(t +J

. ﬁ{l(u,x)dx>]+C} for B+ 0,

N 6.11)
Ai(u,t,x) = ﬁi(u,x){wi(u) +C[t+Jo f)i‘l(u,x)dx]} for B =0,
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where C is an arbitrary constant, the integrations with respect to x are performed at a
constant value of u, and {w;(u)} form an arbitrary solution of the linear system (5.12)
with l"iij defined by (6.8). The extent of arbitrariness is the same as in Theorem 6.1.

6.3. Invariant solutions and linearization. The equations determining invariant so-
lutions of systems (6.1) and (6.7) subject to the constraint u% # 0 for i = 1,2,...,n are
obtained from the Lie equations (6.5) and (6.10) with the invariance condition ui = 0:
Ai(u,t,x) =0and A;(u,t,x) = 0with A; and A; defined by (6.6) and (6.11), respectively,
where ¢ = 1 without loss of generality:

w;i(u) +exp{—B[x+Lt vi(u,t)dt]} =0 (B=0),

t
wi(u) +x+J0 vi(u,t)dt =0 (B=0),
(6.12)

wi(u) +exp{—B[t+J:ﬁ[1(u,x)dx]} =0 (B+0),

w;(u) +t+J0 7 u,x)dx =0 (B=0),

with i = 1,2,...,n for systems (6.1) and (6.7), respectively. Here the set of functions
w;i(u) forms an arbitrary smooth solution of the linear system (5.12) with Flf,- defined
by (6.3) and (6.8), respectively. Thus, the above equations determine a linearizing trans-
formation for systems (6.1) and (6.7) reducing them to the linear system (5.12). These
equations determine the solutions u! = u’(x,t) of the original nonlinear system if the
conditions of the implicit function theorem are satisfied. More complete results for di-
agonal systems with an explicit ¢- or x-dependence and an example of a new integrable
system of this class can be found in [13].

7. Conclusions. The existence of an infinite-dimensional group of the hydrodynamic
symmetries for the equations of the hydrodynamic type is an important property which
provides the existence of linearizing transformations. The reason for this is that the
degree of generality of the set of symmetries coincides with the degree of general-
ity of the general solution set for these equations. Therefore, almost all solutions are
the invariant solutions and they are obtained by standard formulas provided that the
symmetries are already determined. Such a formula gives a linearizing transformation
reducing the original nonlinear problem to the linear problem of determining the sym-
metries. The additional property is the existence of the recursion operator which makes
it possible to solve partially the linear problem by constructing infinite discrete sets of
its solutions and hence solutions of the original nonlinear equations. The existence
of such an operator also has a group-theoretical basis since the recursion operator is
completely determined by the symmetries of the determining equations for the hydro-
dynamic symmetries, that is, by the “symmetries of symmetries.”

This shows a group-theoretical origin of linearizing transformations and of the in-
tegrability property by which we mean a possibility to construct infinitely many exact
solutions. The Hamiltonian structure, if it exists, does not improve the integrability
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properties of equations of the hydrodynamic type. We have to conclude that the sym-
metry is the major necessary property that insures the integrability which was the
original idea of S. Lie.
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