
IJMMS 2004:10, 487–534
PII. S0161171204206147

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

SYMMETRY GROUP ANALYSIS AND INVARIANT SOLUTIONS
OF HYDRODYNAMIC-TYPE SYSTEMS

M. B. SHEFTEL

Received 25 June 2002

We study point and higher symmetries of systems of the hydrodynamic type with and with-
out an explicit dependence on t,x. We consider such systems which satisfy the existence
conditions for an infinite-dimensional group of hydrodynamic symmetries which implies lin-
earizing transformations for these systems. Under additional restrictions on the systems, we
obtain recursion operators for symmetries and use them to construct infinite discrete sets
of exact solutions of the studied equations. We find the interrelation between higher sym-
metries and recursion operators. Two-component systems are studied in more detail than
n-component systems. As a special case, we consider Hamiltonian and semi-Hamiltonian
systems of Tsarëv.
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1. Introduction. This paper summarizes published and unpublished results of the

author on the systems of the hydrodynamic type admitting infinite-dimensional sym-

metry Lie groups. We study point and higher symmetries, recursion operators, and

Hamiltonian structures and use these results for obtaining exact analytical solutions

of these equations. Originally Dubrovin and Novikov meant by hydrodynamic-type sys-

tems any quasilinear systems of first-order partial differential equations (PDEs) possess-

ing the Hamiltonian structure [4, 5]. Here we consider a more general class of equations

of the hydrodynamic type which includes in particular semi-Hamiltonian equations of

Tsarëv [39, 40] and equations explicitly dependent on t (or x). Being rich in symme-

tries, they can be linearized, and infinite sets of exact solutions can be obtained if, in

addition, existence conditions for recursion operators are satisfied. Thus, they have as

good integrability properties as the Hamiltonian equations.

Systems of the hydrodynamic type describe various physical phenomena such as gas

dynamics and hydrodynamics, magnetic hydrodynamics [27], models of nonlinear elas-

ticity and phase transitions [24], chromatography, and electrophoresis equations from

physical chemistry and biology [10, 26]. Applications of a different kind are obtained

by a representation of the physically interesting higher-order equations as integrability

conditions of the hydrodynamic-type systems such as the Euler and Poisson equations

of nonlinear acoustics [14] and the Born-Infeld equation of nonlinear electrodynamics

[2]. Other applications of hydrodynamic-type systems arise in the theory of averaging

nonlinear soliton equations: dispersionless limits of integrable systems [4, 5]. More re-

cent applications use the reductions of nonlinear PDEs to systems of the hydrodynamic

type by imposing the dependence of the unknowns on solutions of the hydrodynamic-

type systems [8, 9, 12].
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Symmetry group analysis of systems of the hydrodynamic type leads in a natural and

algorithmic way to the associated differential geometric structures: metric, connection,

curvature, curvilinear orthogonal coordinate systems and their transformations. If, in

addition, the Hamiltonian structure exists, then it turns out to be merely an aspect of

this geometrical theory [4, 39, 40]. However, the differential geometric theory cannot

solve the problem of integration for equations of the hydrodynamic type. We present

here another approach to this problem based on a systematic study of higher symme-

tries and recursion operators [33, 34, 35, 36]. We find the class of such hydrodynamic-

type systems which admits a infinite set of hydrodynamic symmetries depending on

arbitrary solutions of a linear system of PDEs. Formulas for the corresponding invariant

solutions determine a linearizing transformation which reduces the problem of obtain-

ing solutions of a nonlinear system of the hydrodynamic type to the problem of solving

a linear system. If, in addition, there exist recursion operators mapping symmetries

again into symmetries, then they give rise to recursions of hydrodynamic symmetries

and, as a consequence, lead to recursions for solutions of the corresponding linear

system. Thus, we obtain the recursion formulas which allow us to generate new solu-

tions out of the known “seed” solutions of the original nonlinear system. The action

of recursion operators on the hydrodynamic symmetries explicitly dependent on x,t
gives rise to infinite discrete sets of higher symmetries which make it possible to find

explicitly the corresponding invariant solutions. Thus we obtain infinite discrete sets of

exact solutions of the hydrodynamic-type system. They are analogous to the similarity

solutions which are well known in the gas and fluid dynamics, and therefore they are

expected to describe a physically interesting behavior of the system.

Symmetries, recursions, Hamiltonian structures, and exact solutions of two-compo-

nent systems of the hydrodynamic type with one space-dimension were studied by

the author mainly before Tsarëv’s publications [29, 30, 31, 34]. Symmetries, linearizing

transformations, and geometric theory of the multicomponent hydrodynamic-type sys-

tems explicitly dependent on x,t have been constructed by the author in 1989 [28, 32].

Higher symmetries, higher conservation laws, their interrelations, and the theory of

recursion operators for multicomponent hydrodynamic-type systems have been con-

structed by the author in 1993, 1994, and 1995 [33, 35, 36, 37]. Finally in [13], we

further developed the theory of integrability of diagonal hydrodynamic-type systems

with an explicit dependence on t or x and presented a nontrivial example of such an

integrable system. There we also clarified and formulated precisely the concept of the

hydrodynamic symmetries which are first-order symmetries though, generically, they

are neither point nor contact symmetries. Therefore, there is no symmetry reduction for

solutions invariant with respect to these nonclassical symmetries so that they depend

again on two variables.

In Section 2, we study two-component diagonal systems of the hydrodynamic type

with an explicit dependence on t or x. We find an infinite-dimensional group of their

hydrodynamic symmetries and its existence conditions. By considering corresponding

invariant solutions, we derive linearizing transformations for these systems. We obtain

second-order symmetries and first- and second-order recursion operators with their

existence conditions which give rise to infinite discrete sets of exact solutions.
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In Section 3, we study the generalized gas dynamics equations which include, in

particular, the equations of the one-dimensional isentropic gas dynamics. We obtain

all their hydrodynamic and higher symmetries up to the third order inclusively. We

construct first-order recursion operators leading naturally to the Lax representation

of these equations, which is used for obtaining explicitly infinite sets of invariant

solutions.

In Section 4, we study a particular class of two-component systems which may ex-

plicitly depend on t which possesses the Hamiltonian structure, the so-called separable

Hamiltonian systems. We obtain their hydrodynamic and higher symmetries, lineariz-

ing transformation, second-order recursion operator, Lax representation, and infinite

sets of exact solutions.

In Section 5, we consider n-component diagonal systems of the hydrodynamic type

with no explicit dependence on t and x which admit an infinite-dimensional group of

the hydrodynamic symmetries, the so-called semi-Hamiltonian systems. We obtain their

hydrodynamic symmetries together with their existence conditions and the associated

differential geometric structure. A linearizing transformation, first- and second-order

recursion operators, higher symmetries, and infinite sets of exact solutions are con-

structed.

Finally, in Section 6, we study n-component diagonal hydrodynamic-type systems

with an explicit dependence on t or x. We obtain their hydrodynamic symmetries and

the corresponding linearizing transformations.

2. Symmetries, recursions, and invariant solutions for two-component systems

of the hydrodynamic type. Here we study two-component diagonal systems of the

hydrodynamic type, which may depend explicitly on the time variable t. They are linear

homogeneous in the derivatives of unknowns s(x,t), r(x,t):

st =φ(s,r ,t)sx, rt =ψ(s,r ,t)rx, (2.1)

where φ and ψ are real-valued functions satisfying nondegeneracy conditions

φ≠ψ, φr (s,r ,t)ψs(s,r ,t)≠ 0, (2.2)

and the subscripts denote partial derivatives with respect to corresponding variables.

Generalized one-parameter symmetry Lie groups of order N of system (2.1) are gen-

erated in an evolutionary (canonical) representation by the Lie equations [1, 15, 23]

sτ = f
(
x,t,s,r ,sx,rx, . . . ,s(N)x ,r (N)x

)
,

rτ = g
(
x,t,s,r ,sx,rx, . . . ,s(N)x ,r (N)x

)
, xτ = tτ = 0,

(2.3)

compatible with (2.1). Here s = s(x,t,τ) and r = r(x,t,τ), where τ is the parameter of

a symmetry group whereas s(N)x = ∂Ns/∂xN and r (N)x = ∂Nr/∂xN .

Compatibility conditions for (2.1) and (2.3), sτt = stτ and rτt = rtτ , take the form of

the determining equations for the symmetry characteristics (f ,g):

Dt[f]−φDx[f]−sx
(
φsf +φrg

)= 0,

Dt[g]−ψDx[g]−rx
(
ψsf +ψrg

)= 0,
(2.4)
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where Dt and Dx are the operators of total derivatives with respect to t and x:

Dx = ∂
∂x

+sx ∂∂s +rx
∂
∂r
+

∞∑
k=1

(
s(k+1)
x

∂
∂s(k)x

+r (k+1)
x

∂
∂r (k)x

)
,

Dt = ∂
∂t
+φsx ∂∂s +ψrx

∂
∂r
+

∞∑
k=1

(
Dkx
[
φsx

] ∂
∂s(k)x

+Dkx
[
ψrx

] ∂
∂r (k)x

)
,

(2.5)

and Dt is calculated with the use of system (2.1).

2.1. Hydrodynamic symmetries of diagonal systems with explicit time depen-

dence. For hydrodynamic symmetries, N = 1 in (2.3) and (2.4). Solving (2.4), we ob-

tain the following results. Introduce four functions of one variable b(s), d(r), Φ0(s),
and Θ0(r) and define the functions Φ(s,r ,t), Θ(s,r ,t), Φ̂(s,r ,t), Θ̂(s,r ,t), φ̂(s,r ,t),
and ψ̂(s,r ,t) by the formulas

Φr (s,r ,t)= φr(s,r ,t)(φ−ψ) ,

Θs(s,r ,t)= ψr(s,r ,t)(ψ−φ) ,
(2.6)

Φ̂(s,r ,t)= b(s)Φs(s,r ,t)+d(r)Φr (s,r ,t)+Φ0(s),

Θ̂(s,r ,t)= b(s)Θs(s,r ,t)+d(r)Θr (s,r ,t)+Θ0(r),
(2.7)

φ̂(s,r ,t)= b(s)φs(s,r ,t)+d(r)φr (s,r ,t),
ψ̂(s,r ,t)= b(s)ψs(s,r ,t)+d(r)ψr (s,r ,t).

(2.8)

Definition 2.1. We call (2.1) a generic system (with respect to the hydrodynamic

symmetries) if its coefficients φ, ψ do not satisfy the following constraints:

φt = β(t)φ2+ε(t)φ+λ(t), ψt = β(t)ψ2+ε(t)ψ+λ(t), (2.9)

with arbitrary smooth functions β(t), ε(t), and λ(t).

Results of the symmetry analysis are summarized in the following theorem [34].

Theorem 2.2. A diagonal two-component generic system (2.1) of the hydrodynamic

type, which may explicitly depend on t admits an infinite set of hydrodynamic symmetries

with a functional arbitrariness if and only if the following two conditions are satisfied:

(1) coefficients φ, ψ of system (2.1) satisfy the equations

Φrt = βφr , Θst = βψs, (2.10)

where β is an arbitrary real constant, Φ(s,r ,t) and Θ(s,r ,t) are determined by

(2.6), and partial derivatives with respect to t are taken at constant values of s
and r ;

(2) there exist four functions of one variable b(s), d(r), Φ0(s), and Θ0(r) satisfying

the equations

Φ̂r = Φr
(
Φ̂−Θ̂), Θ̂s =Θs

(
Θ̂− Φ̂), (2.11)

with Φ̂(s,r ,t) and Θ̂(s,r ,t) defined by (2.7).
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The symmetries in this theorem are generated by the Lie equations

sτ = f = φ̃(x,t,s,r)sx+b(s), rτ = g = ψ̃(x,t,s,r)rx+d(r), (2.12)

φ̃(x,t,s,r)= a(s,r)exp
{
β
[
x+

∫ t
0
φ(s,r ,t)dt

]}
+ 1
β
Φ̂(s,r ,t)

ψ̃(x,t,s,r)= c(s,r)exp
{
β
[
x+

∫ t
0
ψ(s,r ,t)dt

]}
+ 1
β
Θ̂(s,r ,t)

for β≠ 0, (2.13)

φ̃(x,t,s,r)= a(s,r)+
∫ t

0
φ̂(s,r ,t)dt− Φ̂(s,r)

[
x+

∫ t
0
φ(s,r ,t)dt

]

ψ̃(x,t,s,r)= c(s,r)+
∫ t

0
ψ̂(s,r ,t)dt−Θ̂(s,r)

[
x+

∫ t
0
ψ(s,r ,t)dt

] for β= 0. (2.14)

Here the integrals with respect to t are taken at constant values of s and r and the

functions φ̂, ψ̂ are defined by formulas (2.8). The functions a(s,r) and c(s,r) form an

arbitrary smooth solution of the linear system

ar (s,r)= Φr (s,r ,0)(a−c), cs(s,r)=Θs(s,r ,0)(c−a). (2.15)

Remark 2.3. We can use the freedom in definition (2.6) of the functions Φ, Θ to

transform (2.10) to a more simple form

Φt(s,r ,t)= βφ(s,r ,t), Θt(s,r ,t)= βψ(s,r ,t). (2.16)

Remark 2.4. Solution manifold of the linear system (2.15) is locally parameterized

by two arbitrary functions of one variable c1(s) and c2(r). They determine a functional

arbitrariness in the hydrodynamic symmetries (2.12), (2.13), and (2.14) of system (2.1).

System (2.15) has the trivial solution a(s,r)= c(s,r)= c0 = const.

Condition (2) of Theorem 2.2 always has the trivial solution

b(s)=d(r)=0, Φ0(s)=Θ0(r)=c0=const, Φ̂=Θ̂=c0, φ̂=ψ̂=0. (2.17)

Corollary 2.5. Condition (1) of Theorem 2.2 is necessary and sufficient for system

(2.1) to admit an infinite set of hydrodynamic symmetries generated by the Lie equations

sτ = φ̃(x,t,s,r)sx, rτ = ψ̃(x,t,s,r)rx (2.18)

which are linear homogeneous in the derivatives with the coefficients φ̃, ψ̃ defined as

φ̃(x,t,s,r)= a(s,r)exp
{
β
[
x+

∫ t
0
φ(s,r ,t)dt

]}
+c0

ψ̃(x,t,s,r)= c(s,r)exp
{
β
[
x+

∫ t
0
ψ(s,r ,t)dt

]}
+c0

for β≠ 0, (2.19)

φ̃(x,t,s,r)= a(s,r)+c0

[
x+

∫ t
0
φ(s,r ,t)dt

]

ψ̃(x,t,s,r)= c(s,r)+c0

[
x+

∫ t
0
ψ(s,r ,t)dt

] for β= 0. (2.20)
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Remark 2.6. Condition (1) of Theorem 2.2 with β = 0 is satisfied in particular for

system (2.1) with the coefficients φ(s,r) and ψ(s,r) with no explicit dependence on t.
Such a system always has an infinite set of hydrodynamic symmetries with a functional

arbitrariness. In this case, the coefficients (2.20) of the Lie equations become

φ̃(x,t,s,r)= a(s,r)+c0
[
x+tφ(s,r)],

ψ̃(x,t,s,r)= c(s,r)+c0
[
x+tψ(s,r)]. (2.21)

Remark 2.7. Condition (2) of Theorem 2.2 is an additional constraint which pro-

vides the existence of symmetries, with the Lie equations (2.12) linear inhomogeneous

in derivatives. Every nontrivial solution of (2.11) generates such symmetries.

2.2. Infinite-dimensional Lie algebra of hydrodynamic symmetries and recursions

of symmetries. Let system (2.1) possess two one-parameter symmetry groups gener-

ated by the Lie equations (2.12) and by the Lie equations of the same form with another

parameter τ̄:

sτ̄ = f̄ = φ̄(x,t,s,r)sx+ b̄(s), rτ̄ = ḡ = ψ̄(x,t,s,r)rx+ d̄(r). (2.22)

Here the coefficients φ̄, ψ̄ are determined by formulas (2.13) or (2.14) for β ≠ 0 or for

β= 0, respectively, with the following change of notation:

(
a(s,r),c(s,r)

) � �→ (
ā(s,r), c̄(s,r)

)
,(

Φ̂(s,r ,t),Θ̂(s,r ,t)
) � �→ (ˆ̄Φ(s,r ,t), ˆ̄Θ(s,r ,t)),(

φ(s,r ,t),ψ(s,r ,t)
) � �→ ( ˆ̄φ(s,r ,t), ˆ̄ψ(s,r ,t)

)
,

(2.23)

where the functions ˆ̄Φ, ˆ̄Θ are defined by formulas (2.7) and the functions ˆ̄φ, ˆ̄ψ are

defined by formulas (2.8) with the change of b(s), d(r), Φ0(s), and Θ0(r) to b̄(s), d̄(r),
Φ̄0(s), and Θ̄0(r), respectively. Here the functions ˆ̄Φ, ˆ̄Θ must satisfy (2.11) in condition

(2) of Theorem 2.2 and the functions ā(s,r), c̄(s,r) form an arbitrary smooth solution

of the linear system (2.15).

Let σ = (f ,g) and σ̄ = (f̄ , ḡ) be characteristics of the symmetries (2.12) and (2.22).

A higher symmetry generator with the characteristic σ is defined as follows [23]:

X̂σ = f ∂∂s +g
∂
∂r
+(Dt[f]) ∂∂st

+(Dt[g]) ∂∂rt +
∞∑
N=1

{(
DNx [f]

) ∂
∂s(N)x

+(DNx [g]) ∂
∂r (N)x

}
,

(2.24)

where the operator Dt of the total derivative with respect to t is calculated with the

use of (2.1). The formula for X̂σ̄ is obtained by the substitution of (f̄ , ḡ) for (f ,g) in

formula (2.24).

The usual Lie commutator [X̂σ̄ , X̂σ ] = X̂[[σ ,σ̄ ]] ≡ X̂σ̃ generates the commutator of

symmetry characteristics

σ̃ = [[σ ,σ̄ ]]= σ ′[σ̄ ]− σ̄ ′[σ] (2.25)
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with σ ′ denoting the operator of the Frechét derivative [11]:

(σ ′)αβ =
∞∑
j=0

∂σα
∂uβ(j)x

Djx, α,β= 1,2, (2.26)

where σ1 = f , σ2 = g, u1 = s, and u2 = r . The commutator (2.25) of symmetry charac-

teristics for system (2.1) is again a characteristic σ̃ = (f̃ , g̃) of some symmetry for this

system generated by the Lie equations with the parameter τ̃ : sτ̃ = f̃ , rτ̃ = g̃, where

f̃ = [[σ ,σ̄ ]]1 = f̄
∂f
∂s
−f ∂f̄

∂s
+ ḡ ∂f

∂r
−g ∂f̄

∂r
+Dx[f̄ ] ∂f∂sx −Dx[f]

∂f̄
∂sx

,

g̃ = [[σ ,σ̄ ]]2 = f̄
∂g
∂s
−f ∂ḡ

∂s
+ ḡ ∂g

∂r
−g∂ḡ

∂r
+Dx[ḡ] ∂g∂rx −Dx[g]

∂ḡ
∂rx

.
(2.27)

Theorem 2.8 (see [34]). The commutator of the hydrodynamic symmetries (2.22) and

(2.12) with the characteristics σ̄ and σ is again a hydrodynamic symmetry of system

(2.21) with the characteristic σ̃ = [[σ ,σ̄ ]]= (f̃ , g̃) generated by the Lie equations

sτ̃ = f̃ = ˜̄φ(x,t,s,r)sx+ ˜̄b(s), rτ̃ = g̃ = ˜̄ψ(x,t,s,r)rx+ ˜̄d(r), (2.28)

with the coefficients ˜̄φ, ˜̄ψ determined by (2.13) or (2.14) for β ≠ 0 or for β = 0, respec-

tively, and the change of notation for any value of β:

(
a(s,r),c(s,r)

) � �→ (
˜̄a(s,r), ˜̄c(s,r)

)
,(

Φ̂(s,r ,t),Θ̂(s,r ,t)
) � �→ (ˆ̃Φ(s,r ,t), ˆ̃Θ(s,r ,t)),

(
φ(s,r ,t),ψ(s,r ,t)

) � �→ ( ˆ̃φ(s,r ,t), ˆ̃ψ(s,r ,t)
)
,

˜̄b(s)=
∣∣∣∣∣ b̄(s) b(s)
b̄′(s) b′(s)

∣∣∣∣∣ , ˜̄d(r)=
∣∣∣∣∣ d̄(r) d(r)
d̄′(r) d′(r)

∣∣∣∣∣ .
(2.29)

In Theorem 2.8 the following notation is used:

ˆ̃φ(s,r ,t)= ˜̄b(s)φs(s,r ,t)+ ˜̄d(r)φr (s,r ,t),

ˆ̃ψ(s,r ,t)= ˜̄b(s)ψs(s,r ,t)+ ˜̄d(r)ψr (s,r ,t),

ˆ̃Φ(s,r ,t)= b̄(s)Φ̂s+ d̄(r)Φ̂r −b(s)ˆ̄Φs−d(r)ˆ̄Φr ,
ˆ̃Θ(s,r ,t)= b̄(s)Θ̂s+ d̄(r)Θ̂r −b(s) ˆ̄Θs−d(r) ˆ̄Θr ,

˜̄a(s,r)= b̄(s)[as(s,r)−Φsa(s,r)]−b(s)[ās(s,r)−Φs ā(s,r)]
+Φr

[
d(r)c̄(s,r)− d̄(r)c(s,r)]+Φ0(s)ā(s,r)− Φ̄0(s)a(s,r),

˜̄c(s,r)= d̄(r)[cr (s,r)−Θr c(s,r)]−d(r)[c̄r (s,r)−Θr c̄(s,r)]
+Θs

[
b(s)ā(s,r)− b̄(s)a(s,r)]+Θ0(r)c̄(s,r)−Θ̄0(r)c(s,r),

(2.30)

with Φ = Φ(s,r ,0) and Θ = Θ(s,r ,0) if β ≠ 0, whereas Φ = Φ(s,r) and Θ = Θ(s,r) if

β= 0.
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Corollary 2.9. Formulas (2.30) determine recursions of solutions for the linear sys-

tems (2.11) and (2.15), respectively. They map any pair of solutions of the corresponding

system again into its solution.

Consider a special case b(s)= d(r)= 0, Φ̂ = Θ̂= c0 = 0, (b̄(s), d̄(r))≠ (0,0).

Corollary 2.10. Let condition (1) of Theorem 2.2 be satisfied for system (2.1) and let

the hydrodynamic symmetry inhomogeneous in derivatives of the form (2.22) exist. Then

the Lie commutator of symmetry (2.22) and the hydrodynamic symmetry homogeneous

in derivatives of the form (2.18), (2.19), and (2.20) with c0 = 0 is again a homogeneous

symmetry of the same form:

sτ̃ = f̃ = ˜̄φ(x,t,s,r)sx, rτ̃ = g̃ = ˜̄ψ(x,t,s,r)rx, (2.31)

where for any real value of β,

˜̄φ(x,t,s,r)= ˜̄a(s,r)exp
{
β
[
x+

∫ t
0
φ(s,r ,t)dt

]}
,

˜̄ψ(x,t,s,r)= ˜̄c(s,r)exp
{
β
[
x+

∫ t
0
ψ(s,r ,t)dt

]}
,

(2.32)

˜̄a(s,r)= b̄(s)as(s,r)−
[
b̄(s)Φs(s,r ,0)+ Φ̄0(s)

]
a(s,r)

− d̄(r)Φr (s,r ,0)c(s,r),
˜̄c(s,r)= d̄(r)cr (s,r)−

[
d̄(r)Θr (s,r ,0)+Θ̄0(r)

]
c(s,r)

− b̄(s)Θs(s,r ,0)a(s,r).

(2.33)

Thus, according to Corollary 2.10, the Lie commutator with the inhomogeneous-in-

derivatives symmetry (2.22) is a linear operator acting on the space of homogeneous

hydrodynamic symmetries with c0 = 0. It generates recursion (2.33) of solutions for the

linear system (2.15).

Remark 2.11. The hydrodynamic symmetry inhomogeneous in derivatives gener-

ates by the Lie commutator a recursion operator for homogeneous hydrodynamic sym-

metries.

Corollary 2.12. If system (2.1) satisfies condition (1) of Theorem 2.2, then it ad-

mits an infinite set of mutually commuting hydrodynamic symmetries homogeneous in

derivatives of the form (2.31) and (2.32) with c0 = 0 depending on arbitrary functions.

In particular, if for β= 0, the coefficients φ(s,r) and ψ(s,r) of (2.1) do not depend

explicitly upon t, then we reproduce Tsarëv’s result [39] about the commutativity of

flows of the hydrodynamic type with no explicit dependence on t,x.

2.3. Hydrodynamic symmetries of diagonal systems with an explicit space depen-

dence. Consider a diagonal system of the hydrodynamic type with an explicit depen-

dence on x:

st =φ∗(s,r ,x)sx, rt =ψ∗(s,r ,x)rx. (2.34)
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Define the functions Φ(s,r ,x) and Θ(s,r ,x) by the following equations:

Φr (s,r ,x)= [φ∗−1(s,r ,x)]r
[φ∗−1(s,r ,x)−ψ∗−1(s,r ,x)]

,

Θs(s,r ,x)= [ψ∗−1(s,r ,x)]s
[ψ∗−1(s,r ,x)−φ∗−1(s,r ,x)]

.
(2.35)

Theorem 2.13. A diagonal generic system of the hydrodynamic type (2.34) which

may explicitly depend on a space variable x admits an infinite set of hydrodynamic

symmetries with a functional arbitrariness locally parameterized by the two arbitrary

functions of one variable c1(s) and c2(r) if and only if the following two conditions are

satisfied:

(1) coefficients φ∗, ψ∗ of system (2.34) satisfy the equations

Φrx(s,r ,x)= β
(
φ∗−1(s,r ,x)

)
r , Θsx(s,r ,x)= β

(
ψ∗−1(s,r ,x)

)
s , (2.36)

with an arbitrary real constant β;

(2) there exist four functions of one variable b(s), d(r), Φ0(s), and Θ0(r) satisfying

(2.11), where the functions Φ̂(s,r ,x) and Θ̂(s,r ,x) are defined by (2.7) with t
changed to x. These symmetries are generated by the Lie equations

sτ = φ̃∗(x,t,s,r)sx+b(s), rτ = ψ̃∗(x,t,s,r)rx+d(r). (2.37)

The functions φ̃∗, ψ̃∗ are defined for β≠ 0 and β= 0, respectively, as

φ̃∗(x,t,s,r)

=φ∗(s,r ,x)
{
a(s,r)exp

[
β
(
t+

∫ x
0
φ∗−1(s,r ,x)dx

)]
+ 1
β
Φ̂(s,r ,x)

}
,

ψ̃∗(x,t,s,r)

=ψ∗(s,r ,x)
{
c(s,r)exp

[
β
(
t+

∫ x
0
ψ∗−1(s,r ,x)dx

)]
+ 1
β
Θ̂(s,r ,x)

}
,

φ̃∗(x,t,s,r)

=φ∗ ·
{
a(s,r)+

∫ x
0
φ̂(s,r ,x)dx− Φ̂(s,r)

[
t+

∫ x
0
φ∗−1(s,r ,x)dx

]}
,

ψ̃∗(x,t,s,r)

=ψ∗ ·
{
c(s,r)+

∫ x
0
ψ̂(s,r ,x)dx−Θ̂(s,r)

[
t+

∫ x
0
ψ∗−1(s,r ,x)dx

]}
.

(2.38)

Here the functions φ̂, ψ̂ are defined as follows:

φ̂(s,r ,x)= b(s)[φ∗−1(s,r ,x)
]
s+d(r)

[
φ∗−1(s,r ,x)

]
r ,

ψ̂(s,r ,x)= b(s)[ψ∗−1(s,r ,x)
]
s+d(r)

[
ψ∗−1(s,r ,x)

]
r .

(2.39)

The functions a(s,r) and c(s,r) form an arbitrary solution of the linear system (2.15)

with the coefficients Φr (s,r ,0) and Θs(s,r ,0) obtained from (2.35) at x = 0.
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2.4. Invariant solutions and linearizing transformations for the systems with an

explicit dependence on t or x. Let system (2.1) which may explicitly depend on t
satisfy condition (1) of Theorem 2.2 and hence admit an infinite set of hydrodynamic

symmetries homogeneous in derivatives (2.18). For the corresponding invariant solu-

tions, we have sτ = rτ = 0 which implies that φ̃(x,t,s,r) = 0 and ψ̃(x,t,s,r) = 0 due

to the condition sxrx ≠ 0. Using here formulas (2.19) and (2.20) for φ̃, ψ̃ with c0 = 1,

we obtain the following conditions determining the invariant solutions for β ≠ 0 and

β= 0, respectively:

a(s,r)+exp
{
−β

[
x+

∫ t
0
φ(s,r ,t)dt

]}
= 0,

c(s,r)+exp
{
−β

[
x+

∫ t
0
ψ(s,r ,t)dt

]}
= 0,

(2.40)

a(s,r)+x+
∫ t

0
φ(s,r ,t)dt = 0, c(s,r)+x+

∫ t
0
ψ(s,r ,t)dt = 0. (2.41)

Theorem 2.14 (see [34]). Let the coefficients φ, ψ of diagonal system (2.1) satisfy

condition (1) of Theorem 2.2. Then any solution of system (2.40) for β ≠ 0 or of system

(2.41) for β = 0 is also a solution of system (2.1) if the following conditions are satisfied

for β≠ 0 and β= 0, respectively:

{[
ln
∣∣a(s,r)∣∣+β

∫ t
0
φ(s,r ,t)dt

]
s

·
[

ln
∣∣c(s,r)∣∣+β

∫ t
0
ψ(s,r ,t)dt

]
r

}∣∣∣∣
(2.40)

≠ 0,

{[
a(s,r)+

∫ t
0
φ(s,r ,t)dt

]
s
·
[
c(s,r)+

∫ t
0
ψ(s,r ,t)dt

]
r

}∣∣∣∣
(2.41)

≠ 0.

(2.42)

Vice versa, any smooth solution s(x,t), r(x,t) of system (2.1) can be obtained from

systems (2.40) or (2.41) if condition (2.42) is satisfied in the vicinity of any point (x0, t0),
where sx(x0, t0)·rx(x0, t0)≠ 0.

Remark 2.15 (see [34]). Equations (2.40) for β≠ 0 and (2.41) for β= 0 determine an

implicit form of the linearizing point transformation for the nonlinear system (2.1) with

an explicit t-dependence satisfying condition (1) of Theorem 2.2. Indeed, the search for

solutions s(x,t), r(x,t) of the nonlinear system (2.1) is now reduced to the search

for solutions a(s,r), c(s,r) of the linear system (2.15) with variable coefficients. In

particular, if the coefficients φ(s,r) and ψ(s,r) of system (2.1) have no explicit de-

pendence on t, then condition (1) of Theorem 2.2 is satisfied with β = 0 and (2.41)

coincide with the classical hodograph transformation [27]: a(s,r)+x + tφ(s,r) = 0

and c(s,r)+x+tψ(s,r)= 0.

Consider now system (2.34) with an explicit x-dependence. Let it satisfy condition

(2.36) of Theorem 2.13 in order to admit an infinite set of the hydrodynamic symmetries

(2.37) with b(s) = d(r) = 0. Then for invariant solutions determined by the equations
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sτ = rτ = 0 with the condition sxrx ≠ 0, we obtain φ̃∗(x,t,s,r)= 0 and ψ̃∗(x,t,s,r)=
0. Here the functions φ̃∗, ψ̃∗ are defined by (2.38) for β≠ 0 and β= 0 with Φ̂ = Φ0(s),
Θ̂ = Θ0(r), and φ̂ = ψ̂ = 0. These equations determine a linearizing transformation

for system (2.34) with an explicit dependence on x if the existence conditions for the

implicit vector function similar to (2.42) are satisfied.

2.5. Higher symmetries of diagonal two-component systems. Higher symmetries

of the second order are generated by the Lie equations (2.3) with N = 2:

sτ = f
(
x,t,s,r ,sx,rx,sxx,rxx

)
, rτ = g

(
x,t,s,r ,sx,rx,sxx,rxx

)
(2.43)

which are compatible with system (2.1).

Definition 2.16. System (2.1) is called generic with respect to the second-order

symmetries if its coefficients φ, ψ do not satisfy the constraints

Φ(s,r ,t)= ln
∣∣∣∣ φs
C(s,t)φ+D(s,t)

∣∣∣∣, Θ(s,r ,t)= ln
∣∣∣∣ ψr
G(r ,t)ψ+H(r ,t)

∣∣∣∣,
Φt(s,r ,t)=A(s,t)φ+B(s,t), Θt(s,r ,t)= E(r ,t)ψ+F(r ,t),

(2.44)

with arbitrary functions A, B, C , D, E, F , G, H and Φ, Θ defined by (2.6).

For the symmetries (2.43) of the generic system (2.1), the following results hold.

Theorem 2.17. The necessary existence condition for the second-order symmetries of

the generic system (2.1) coincides with condition (1) of Theorem 2.2, necessary and suffi-

cient for system (2.1) to admit an infinite set of hydrodynamic symmetries homogeneous

in derivatives.

Define the functions Λ, Φ̂, and Θ̂ by the following equations:

Λsr (s,r)=−Φr (s,r ,t)Θs(s,r ,t),
Φ̂(s,r ,t)=A(s)(Φ2

s −Φss+2Λss
)+A′(s)Λs+C(r)(2ΦrΘr +Φrr −Φ2

r
)

+C′(r)Φr +b(s)Φs+d(r)Φr +Φ0(s),

Θ̂(s,r ,t)=A′(s)Θs+A(s)
(
2ΘsΦs+Θss−Θ2

s
)+C(r)(Θ2

r −Θrr +2Λrr
)

+C′(r)Λr (s,r)+b(s)Θs+d(r)Θr +Θ0(r),

(2.45)

where A(s), C(r), b(s), d(r), Φ0(s), and Θ0(r) are arbitrary smooth functions of one

variable and the function Λ(s,r) has no explicit dependence on t as a consequence of

the first equation of (2.45) and (2.6), (2.10). If β = 0 in (2.10), then in virtue of condi-

tion (2.16) the functions Φ(s,r), Θ(s,r) do not depend explicitly on t. Then define the

functions φ̂, ψ̂:

φ̂(s,r ,t)=A(s)(2Φsφs−φss)+C(r)[2Θrφr +φrr −2Φr
(
φr −ψr

)]
+C′(r)φr +b(s)φs+d(r)φr ,

ψ̂(s,r ,t)=A(s)[2Φsψs+ψss−2Θs
(
ψs−φs

)]+A′(s)ψs
+C(r)(2Θrψr −ψrr )+b(s)ψs+d(r)ψr .

(2.46)
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Theorem 2.18 (see [36]). The diagonal two-component generic hydrodynamic-type

system (2.1) which may explicitly depend on t admits an infinite set of second-order sym-

metries with a functional arbitrariness which is locally parameterized by two arbitrary

functions of one variable c1(s) and c2(r) if and only if the following two conditions are

satisfied:

(1) the coefficients φ, ψ of system (2.1) satisfy (2.10) with an arbitrary real constant

β, where the functions Φ, Θ are defined by (2.6);

(2) there exist six functions A(s), C(r), b(s), d(r), Φ0(s), and Θ0(r) of one variable

satisfying (2.11) with Φ̂(s,r ,t) and Θ̂(s,r ,t) defined by (2.45).

The symmetries in Theorem 2.18 are generated by the Lie equations

sτ = f =A(s)sxxs2
x
+Φr

[
A(s)

rx
sx
+C(r) sx

rx

]
+βA(s)

sx
+sxν+2A(s)Φs+b(s),

rτ = g = C(r)rxxr 2
x
+Θs

[
A(s)

rx
sx
+C(r) sx

rx

]
+βC(r)

rx
+rxρ+2C(r)Θr +d(r),

(2.47)

where the coefficients ν(x,t,s,r) and ρ(x,t,s,r) are defined by formulas (2.13) and

(2.14) for β ≠ 0 and β = 0, respectively, with the change of φ̃ to ν and ψ̃ to ρ, where

φ̂, ψ̂ are defined by formulas (2.46). The functions a(s,r) and c(s,r) form an arbitrary

smooth solution of the linear system (2.15).

Remark 2.19. For A(s) = C(r) = 0, the higher symmetries (2.47) reduce to the hy-

drodynamic symmetries (2.12), and the coefficients ν , ρ coincide with φ̃, ψ̃.

2.6. First-order recursion operators. An effective description of an infinite set of

symmetries of any order is obtained by means of recursion operators which, by their

definition, map any symmetry again into a symmetry. Here we consider recursion op-

erators from the class of matrix differential operators:

R =ANDNx +AN−1DN−1
x +···+A1Dx+A0. (2.48)

For n-component systems, Ai are n×n matrices. We set n= 2 until Section 5. Ai may

depend on s, r and their derivatives of finite orders with respect to x.

Definition 2.20. If AN ≠ 0, then N is called the order of the recursion operator

(2.48). Consider the case N = 1. Define the functions

S(s,r)= Φ̂(s,r ,0)=A(s)Φs(s,r ,0)+C(r)Φr (s,r ,0)+Φ0(s),

T(s,r)= Θ̂(s,r ,0)=A(s)Θs(s,r ,0)+C(r)Θr (s,r ,0)+Θ0(r),
(2.49)

where A(s), C(r), Φ0(s), and Θ0(r) are arbitrary smooth functions of one variable.

Theorem 2.21 (see [36]). Let system (2.1) satisfy condition (1) of Theorem 2.2. Then

a first-order recursion operator for system (2.1) exists if and only if there exist such

functions A(s) and C(r) which satisfy the conditions

Sr (s,r)= Φr (s,r ,0)(S−T), Ts(s,r)=Θs(s,r ,0)(T −S), (2.50)
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with S(s,r) and T(s,r) defined by (2.49), where Φ0(s)=Θ0(r)= 0 (this is equivalent to

a redefinition of Φs(s,r ,0) and Θr (s,r ,0)). This recursion operator has the form

R =
{((

A(s) 0

0 C(r)

))
·(Dx−β)

−
((

A(s)Dx
[
Φ(s,r ,t)

] −Φr (s,r ,t)
[
A(s)rx−C(r)sx

]
Θs(s,r ,t)

[
A(s)rx−C(r)sx

]
C(r)Dx

[
Θ(s,r ,t)

]
))}

×






1
sx

0

0
1
rx




 .

(2.51)

The first example of first-order recursion operators for a class of two-component

systems of the hydrodynamic type was given in [30]. Later, Teshukov [38] generalized

it for n×n systems with no explicit dependence on t.

Theorem 2.22. System (2.1) satisfying condition (1) of Theorem 2.2 admits first-

order recursion operator R if and only if there exists a recursion operator R̂ which acts

on a subspace of hydrodynamic symmetries homogeneous in derivatives, of the form

(2.18), (2.19), and (2.20) with C0 = 0.

The action of R̂ is defined by the appropriate restriction of R

R



a(s,r)exp

{
β
[
x+

∫ t
0
φ(s,r ,t)dt

]}
sx

c(s,r)exp

{
β
[
x+

∫ t
0
ψ(s,r ,t)dt

]}
rx


=



â(s,r)exp

{
β
[
x+

∫ t
0
φ(s,r ,t)dt

]}
sx

ĉ(s,r)exp

{
β
[
x+

∫ t
0
ψ(s,r ,t)dt

]}
rx




(2.52)

with the functions â(s,r) and ĉ(s,r) defined by the formulas

â(s,r)=A(s)[as(s,r)−Φs(s,r ,0)a(s,r)]−Φ0(s)a(s,r)

−C(r)Φr (s,r ,0)c(s,r),
ĉ(s,r)= C(r)[cr (s,r)−Θr (s,r ,0)c(s,r)]−Θ0(r)c(s,r)

−A(s)Θs(s,r ,0)a(s,r).

(2.53)

Corollary 2.23. For any smooth solution a(s,r), c(s,r) of the linear system (2.15),

the functions â(s,r) and ĉ(s,r) defined by (2.53) also form a solution of this system if and

only if condition (2.50) is satisfied. Therefore, the formulas (2.53) determine a recursion

of solutions of system (2.15).

Remark 2.24. In virtue of the linearizing transformations (2.40) or (2.41), a search

for any “nonsingular” solutions of the nonlinear system (2.1) reduces to a search for

solutions a(s,r), c(s,r) of the linear system (2.15) with variable coefficients. However,

the integration of (2.15) may also be a problem. The existence of a recursion operator

and hence of the recursion (2.53) which generates new solutions of the linear equations

(2.15) out of known “seed” solutions is the important property of system (2.1). It allows
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us to pass from a linearization of system (2.1) to its integration if the coefficients φ, ψ
satisfy condition (1) of Theorem 2.2 and conditions (2.50).

Remark 2.25. Linear system (2.15) has two trivial solutions (a,c)= (−1,−1) and

(a(s,r),c(s,r))= (φ(s,r ,0),ψ(s,r ,0)) (see (2.6)). Recursion formulas (2.53) map them

to nontrivial solutions â(s,r), ĉ(s,r) of (2.15).

In particular, the first solution is mapped to the solution (2.49): â = S(s,r) and ĉ =
T(s,r). Substituting these new solutions for a, c to (2.53), we obtain new nontrivial

solutions of system (2.15). Thus, we construct two infinite series of its solutions. Then

the linearizing transformations (2.40) and (2.41) generate two infinite series of exact

solutions of (2.1) in an explicit form.

Corollary 2.26. Transformation (2.53) maps any smooth solution (a,c) of system

(2.15) again into a solution (â, ĉ) of this system if and only if it maps the trivial solution

a= 1, c = 1 into some solution of (2.15).

Corollary 2.27. Recursion (2.33) for solutions of the linear system (2.15) generated

by the Lie commutator with the hydrodynamic symmetry inhomogeneous in derivatives

coincides with recursion (2.53) generated by the first-order recursion operator (2.51).

The existence conditions for the recursion operator and for the hydrodynamic symmetry

inhomogeneous in derivatives of system (2.1) coincide. If there exist several such symme-

tries of the form (2.22), then there exist several corresponding recursion operators of the

form (2.51) with A(s)= b̄(s) and C(r)= d̄(r).
Recursion operatorR of the form (2.51) generates an infinite set of higher symmetries

(2.3) of any order N. Second-order symmetries are generated by a two-fold action of

the operator R on hydrodynamic symmetries homogeneous in derivatives (2.18), (2.19),

and (2.20) with c0 ≠ 0, where we set c0 = 1 and a(s,r) = c(s,r) = 0. In the case β = 0

according to formulas (2.18) and (2.20), this seed symmetry has the form sτ = sx[x+∫ t
0φ(s,r ,t)dt], rτ = rx[x+

∫ t
0ψ(s,r ,t)dt].

2.7. Second-order recursion operators and higher symmetries

Definition 2.28. System (2.1) is called generic with respect to second-order recur-

sion operators if its coefficients do not satisfy any of the constraints Φrs/Φr +Θs =
c1(s)eΦ or Θsr /Θs+Φr = c2(r)eΘ with arbitrary functions c1(s) and c2(r).

Define the functions

S(s,r)=A(s)(Φ2
s −Φss+2Λss

)+A′(s)Λs+C(r)(2ΦrΘr +Φrr −Φ2
r
)

+C′(r)Φr +b(s)Φs+d(r)Φr +Φ0(s),

T(s,r)=A′(s)Θs+A(s)
(
2ΘsΦs+Θss−Θ2

s
)+C(r)(Θ2

r −Θrr +2Λrr
)

+C′(r)Λr +b(s)Θs+d(r)Θr +Θ0(r),

(2.54)

where A(s), C(r), b(s), d(r), Φ0(s), and Θ0(r) are arbitrary smooth functions and the

functions Φ(s,r ,t), Θ(s,r ,t), and Λ(s,r) are defined by formulas (2.6) and (2.45).

Theorem 2.29 (see [36]). Let the generic system (2.1) satisfy condition (1) of Theorem

2.2. Then second-order recursion operator of the form (2.48) with N = 2 exists for system
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(2.1) if and only if there exist six functions A(s), C(r), b(s), d(r), Φ0(s), and Θ0(r) of

one variable which satisfy conditions (2.50) with S and T defined by (2.54).

The recursion operator in Theorem 2.29 is determined by the formula

R = (AD2
x+BDx+F

)



1
sx

0

0
1
rx


 (2.55)

with 2×2 matrices A, B defined as follows:

A=



A(s)
sx

0

0
C(r)
rx


 ,

B =
(
−
[
A(s)

sxx
s2
x
+2A(s)

(
Φs+Φr rxsx +

β
sx

)
+b(s)

]
,

−Θs(s,r ,t)
[
A(s)

rx
sx
−C(r) sx

rx

]
,Φr (s,r ,t)

[
A(s)

rx
sx
−C(r) sx

rx

]

−
[
C(r)

rxx
r 2
x
+2C(r)

(
Θs
sx
rx
+Θr + βrx

)
+d(r)

])
,

(2.56)

and the elements fij of the matrix F are defined by the equations

f12 =A(s)
[
−Φr rxsx

(
sxx
sx
− rxx
rx

)
+(Φrr −Φ2

r
)r 2
x
sx

]
−C(r)Λsr s

2
x
rx

+{A(s)[2(Φrs−ΦrΦs)−Λsr ]−b(s)Φr}rx
+{C(r)(2ΦrΘr +Φrr −Φ2

r
)+[C′(r)+d(r)]Φr}sx

−βΦr
[
A(s)

rx
sx
−C(r) sx

rx

]
,

f21 = C(r)
[
Θs
sx
rx

(
sxx
sx
− rxx
rx

)
+(Θss−Θ2

s
) s2
x
rx

]
−A(s)Λsr r

2
x
sx

+{C(r)[2(Θsr −ΘsΘr )−Λsr ]−d(r)Θs}sx
+{A(s)(2ΘsΦs+Θss−Θ2

s
)+[A′(s)+b(s)]Θs}rx

+βΘs
[
A(s)

rx
sx
−C(r) sx

rx

]
,

f11+f12 = Φ̂(s,r ,t)sx+β
{
A(s)

[
sxx
s2
x
+2Φs(s,r ,t)+ βsx

]

+Φr (s,r ,t)
[
A(s)

rx
sx
+C(r) sx

rx

]
+b(s)

}
,

f21+f22 = Θ̂(s,r ,t)rx+β
{
C(r)

[
rxx
r 2
x
+2Θr (s,r ,t)+ βrx

]

+Θs(s,r ,t)
[
A(s)

rx
sx
+C(r) sx

rx

]
+d(r)

}
.

(2.57)

Here Φ = Φ(s,r ,t) and Θ=Θ(s,r ,t), and Φ̂(s,r ,t) and Θ̂(s,r ,t) are defined by (2.45).
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Theorem 2.30. For system (2.1) satisfying condition (1) of Theorem 2.2, there exists

a second-order recursion operator R of the form (2.55) if and only if there exists the

recursion operator R̂ acting on the subspace of hydrodynamic symmetries homogeneous

in derivatives of the form (2.18), (2.19), and (2.20) with c0 = 0.

In Theorem 2.30, the action of R̂ is defined as an appropriate restriction of R by (2.52)

with â(s,r) and ĉ(s,r) defined as

â=A(s)ass−
[
2A(s)Φs+b(s)

]
as−C(r)Φr cr

+[A′(s)Λs+A(s)(Φ2
s −Φss+2Λss

)+b(s)Φs+Φ0(s)
]
a

+[C′(r)Φr +C(r)(2ΦrΘr +Φrr −Φ2
r
)+d(r)Φr ]c,

ĉ = C(r)crr −
[
2C(r)Θr +d(r)

]
cr −A(s)Θsas

+[C′(r)Λr +C(r)(Θ2
r −Θrr +2Λrr

)+d(r)Θr +Θ0(r)
]
c

+[A′(s)Θs+A(s)(2ΘsΦs+Θss−Θ2
s
)+b(s)Θs]a.

(2.58)

Corollary 2.31. For any smooth solution a(s,r), c(s,r) of the linear system (2.15),

the functions â(s,r) and ĉ(s,r) defined by formulas (2.58) form also a solution of this

system if and only if condition (2.50) for the functions (2.54) is satisfied. Formulas (2.58)

determine a recursion of solutions for system (2.15).

Remarks 2.24 and 2.25 and Corollary 2.26 are still valid for recursion (2.58). Thus,

we can again construct two infinite series of solutions of system (2.1) starting from a

trivial solution of system (2.15).

Theorem 2.32. Existence conditions (2.50) with the notation (2.54) for the second-

order recursion of solutions of system (2.15) are less restrictive than the existence condi-

tions (2.50) with the notation (2.49) for the first-order recursion (2.53).

Higher symmetries of system (2.1) are generated by the action of the recursion oper-

ator (2.55) on the hydrodynamic symmetries homogeneous in derivatives (2.18), (2.19),

and (2.20) with c0 ≠ 0.

Theorem 2.33 (see [36]). All the second-order symmetries (2.47) of system (2.1) ob-

tained as a general solution of determining equations coincide with the symmetries ob-

tained by the action of the second-order recursion operator (2.55) on the hydrodynamic

symmetries (2.18), (2.19), and (2.20) with c0 ≠ 0. Existence conditions for the second-

order symmetries and for the second-order recursion operator also coincide.

Corollary 2.34. All the second-order symmetries are obtained by an action of the

second-order recursion operator on the hydrodynamic symmetries homogeneous in

derivatives.

Remark 2.35. The method of calculation of higher-order recursion operators devel-

oped in [35] is much more simple than a straightforward calculation of higher symme-

tries from determining equations. Thus, with the suitable extension of Corollary 2.34,

we see that this easier way of calculation of symmetries by means of the Nth-order

recursion operators will give all higher symmetries of the same order. Multiple appli-

cation of the recursion operator of the order less than N will not give the general form
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of the Nth-order symmetry. In particular, squared first-order recursion operator does

not give a general form of the second-order symmetry.

3. Generalized gas dynamics equations

3.1. Symmetries of one-dimensional isentropic gas dynamics equations. Consider

the one-dimensional gas dynamics equations for the isentropic plane-parallel gas flow:

ut+uux+α2(ρ)ρρx = 0, ρt+ρux+uρx = 0. (3.1)

Here u(x,t) and ρ(x,t) are gas velocity and density at the point x at the time t, c =
ρα(ρ) is the speed of sound, and α(ρ) is an arbitrary smooth function. In practice,

α(ρ) is determined by the gas state equation p = P(ρ), where p is a gas pressure:

α(ρ)= (1/ρ)√P ′(ρ).
Theorem 3.1 (see [27]). System (3.1) can be brought to the diagonal form (2.1),

st =−
[
s+r

2
−ρα(ρ)

]
sx, rt =−

[
s+r

2
+ρα(ρ)

]
rx, (3.2)

by the transformation from u, ρ to the Riemann invariants s = u− ∫ ρρ0
α(ρ)dρ and

r = u+ ∫ ρρ0
α(ρ)dρ, (u = (r +s)/2,

∫ ρ
ρ0
α(ρ)dρ = (r −s)/2), where ρ0 is an arbitrary

constant and the last equation determines ρ as an implicit function ρ = ρ(r−s) for any

fixed choice of the function α(ρ).

The determining equation for symmetries of system (3.2) has the form

(
IDt+A

)
(f ,g)T = (0,0)T , (3.3)

where I = (
1 0
0 1

)
, T denotes a transposed matrix, the total derivative operator Dt is

calculated with the use of (3.2), and the operator A is given by

A=


s+r

2
−ρα(ρ) 0

0
s+r

2
+ρα(ρ)


Dx+

(
sx 0

0 rx

)(
I+ ρα

′(ρ)
2α(ρ)

(
1 −1

−1 1

))
.

(3.4)

Characteristics of the Nth-order symmetries (2.3) with no explicit dependence on x,t
were obtained forN = 1,2,3 as general solutions of (3.3) for a genericα(ρ) (see [29, 30]).

Case N = 1.

f1 = a(s,r)sx, g1 = c(s,r)rx, (3.5)

where a(s,r), c(s,r) is an arbitrary smooth solution of the linear system

ar (s,r)= α
′(ρ)

4α2
(a−c), cs(s,r)= α

′(ρ)
4α2

(a−c). (3.6)
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Case N = 2.

f2 =−sxxs2
x
− α

′(ρ)
4α2

(
sx−rx

)2

sxrx
, g2 =−rxxr 2

x
+ α

′(ρ)
4α2

(
sx−rx

)2

sxrx
. (3.7)

Case N = 3.

f3 =−
(
sxxx
s3
x
− 3s2

xx

s4
x

)
− α

′(ρ)
4α2

(
1

s3
x
− 1

r 3
x

)
sxrxx

− 3α′(ρ)
4α2

sxx
s3
x

(
sx−rx

)−[1
2

(
α′

α2

)2( 1
sx
+ 1
rx

)
−
(
α′

α2

)′ 1
αsx

](
sx−rx

)3

8sxrx
,

g3 =−
(
rxxx
r 3
x
− 3r 2

xx

r 4
x

)
− α

′(ρ)
4α2

(
1

s3
x
− 1

r 3
x

)
rxsxx

− 3α′(ρ)
4α2

rxx
r 3
x

(
sx−rx

)+[1
2

(
α′

α2

)2( 1
sx
+ 1
rx

)
−
(
α′

α2

)′ 1
αrx

](
sx−rx

)3

8sxrx
.

(3.8)

Nth-order symmetries are defined up to the addition of lower-order symmetries, in

particular (3.5), so they have functional arbitrariness determined by the linear system

(3.6).

The following special choices of α(ρ) lead to new second-order symmetries.

(1) The function α(ρ) satisfies the differential equation

[
(cρ+b)α2(ρ)

α′(ρ)

]′
ρ
=−A

2
α(ρ) (3.9)

with arbitrary constants A, b, c. The second-order symmetries have the form

f2 = (As+Ā) sxxs2
x
+ α

′(ρ)
4α2

[
(As+Ā)

(
rx
sx
−2

)
+(Ar + C̄) sx

rx

]
+b+a(s,r)sx,

g2 = (Ar + C̄)rxxr 2
x
− α

′(ρ)
4α2

[
(Ar + C̄)

(
sx
rx
−2

)
+(As+Ā)rx

sx

]
+b+c(s,r)rx,

(3.10)

with arbitrary constants A, Ā, C̄ , b and a(s,r), c(s,r) satisfying (3.6).

In particular, if c = 0, (3.9) is satisfied for the physically interesting state equation of

a polytropic gas with the parameters a and γ:

P(ρ)= a2ργ, α(ρ)= a√γρ(γ−3)/2. (3.11)

(2) The function α(ρ) satisfies the condition α′(ρ) = 0. This is the polytropic gas

with γ = 3. Then the second-order symmetries depend on arbitrary smooth functions

ψ1, ψ2:

f2 = sxψ1

(
sxx
s3
x
,s
)
, g2 = rxψ2

(
rxx
r 3
x
,r
)
. (3.12)

The gas dynamics equations (3.2) have the form st = −ssx , rt = −rrx . Their general

solution x−st = F(s), x−rt =G(r) depends on two arbitrary smooth functions F and

G. Hence sτ = rτ = 0 and the solution manifold consists solely of invariant solutions.
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(3) The function α(ρ) satisfies the condition α′(ρ)=−(2/ρ)α(ρ). This is the Chap-

lygin gas [25] with the state equation

P(ρ)= P0− a
2

ρ
, α(ρ)= a

ρ2

(
P0 > 0

)
(3.13)

with the constants P0, a. Then the set of second-order symmetries again depends on

two arbitrary functions ψ1(s,sq) and ψ2(r ,rq), where q is the Lagrangian coordinate

defined by the equation dq = ρdx−ρudt [27]. The diagonal form (3.2) of gas dynamics

equations after transforming to the Lagrangian coordinates q, t becomes st = asq, rt =
−arq. Its general solution s = F(q+at), r =G(q−at) depends on two arbitrary smooth

functions F and G. Since xτ = tτ = 0 and hence qτ = 0, we have sτ = rτ = 0 as well and

the solution manifold again consists solely of invariant solutions.

In the last two cases, the reason for the gas dynamics equations to be integrable in

an explicit form is that the extent of arbitrariness of the set of invariant solutions and

of the general solution set turns out to be the same: two arbitrary functions of one

variable. Hence all (nonsingular) solutions are invariant.

3.2. Recursion operators for gas dynamics equations

Theorem 3.2. First-order recursion operator for symmetries of the gas dynamics

equations (3.2) is given by the formula

R =
(
IDx− αx(ρ)

2α

(
1 −1

−1 1

))
1
sx

0

0
1
rx


 . (3.14)

It commutes with the operator of (3.3) on the solution set of (3.3)

[
IDt+A,R

]= 0, (3.15)

where the operator Dt is calculated with the use of the gas dynamics equations.

Corollary 3.3. Operator (3.14) raises the order of higher symmetries by one unit:

R
(
fN,gN

)T = (fN+1,gN+1
)T (N = 2,3, . . .) (3.16)

and generates an infinite discrete set of higher symmetries of any order, for example,

(
f2

g2

)
= R

(
1

1

)
= R2x

(
s
r

)
x
. (3.17)

Corollary 3.4. The solution of the recursion relation (3.16) has the form

(
fN
gN

)
= RN−1

(
1

1

)
= RNx

(
s
r

)
x
, N = 2,3, . . . . (3.18)
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Formula (3.14) gives us a general form of the first-order recursion operator for a

generic function α(ρ). If the function α(ρ) satisfies the equation

(
α′

α2

)′[
A(r −s)+ c̄− ā]=−2A

α′

α
(3.19)

with arbitrary constants A, ā, c̄, then a more general form of the recursion operator is

obtained. In particular, (3.19) is satisfied by the state equation (3.11) of the polytropic

gas if the constants satisfy the equations

A= −(γ−1)(ā− c̄)
4a√γρ(γ−1)/2

0

(
ρ0 ≠ 0

)
or ā= c̄ (

ρ0 = 0
)
. (3.20)

Theorem 3.5. Equations of the polytropic gas admit first-order recursion operator

depending upon one essential arbitrary constant ā/c̄(ρ0 ≠ 0) or ā/A(ρ0=0) of the form

R =
{(
As+ ā 0

0 Ar + c̄

)
Dx− α

′(ρ)
4α2

·
(

(As+ ā)(rx−sx) −[(As+ ā)rx−(Ar + c̄)sx]
−[(As+ ā)rx−(Ar + c̄)sx] (Ar + c̄)(rx−sx)

)}

×




1
sx

0

0
1
rx


 ,

(3.21)

where α′(ρ)/(4α2)= (γ−3)/[8a√γρ(γ−1)/2] and A, ā, c̄ satisfy (3.20).

Now consider the action of the recursion operator (3.14) on the subspace of hydro-

dynamic symmetries (3.5) subject to conditions (3.6):

R
(
a(s,r)sx
c(s,r)rx

)
=
(
a1(s,r)sx
c1(s,r)rx

)
. (3.22)

Here the functions a1, c1 are generated from a, c by the transformation

a1(s,r)= as(s,r)+
[
α′(ρ)(
4α2

)](a−c), c1(s,r)= cr (s,r)+
[
α′(ρ)(
4α2

)](a−c). (3.23)

Corollary 3.6. Transformation (3.23) is a recursion for solutions of the linear sys-

tem (3.6), that is, if a(s,r), c(s,r) is its solution, then a1(s,r), c1(s,r) is also the solution.

From (3.22),

RN
(
a(s,r)sx
c(s,r)rx

)
=
(
aN(s,r)sx
cN(s,r)rx

)
(N = 1,2, . . .), (3.24)

where the solution aN(s,r), cN(s,r) of (3.6) is a result of the N-fold application of trans-

formation (3.23) to the solution a(s,r), c(s,r).
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3.3. Generalized gas dynamics equations, their symmetries, and recursion opera-

tors. Lie equations for hydrodynamic symmetries (3.5) of gas dynamics equations (3.2)

are

sτ = a(s,r)sx, rτ = c(s,r)rx, (3.25)

with a, c subject to conditions (3.6). Change the notation a(s,r), c(s,r) to φ(s,r),
ψ(s,r) and the group parameter τ to the new time variable t. We obtain the systems

of the form (2.1) subject to the additional constraints

st=φ(s,r)sx, rt=ψ(s,r)rx, φr (s,r)=ψs(s,r)=
[
α′(ρ)
4α2

]
(φ−ψ), (3.26)

that is, (φ,ψ) is an arbitrary smooth solution of the linear system (3.6).

Equations (3.26) appeared for the first time in [30, 31] and later Olver and Nutku

had called them generalized gas dynamics (GGD) equations [24]. They also pointed out

many interesting applications of these equations in physics.

The determining equation for symmetries of any of GGD systems (3.26) has the form

(
IDt+A(φ,ψ)

)
(f ,g)T = (0,0)T , (3.27)

where the operator A(φ,ψ) is defined by the formula

A(φ,ψ) =−
(
φ 0

0 ψ

)
Dx−

(
sx 0

0 rx

){(
φ1 0

0 ψ1

)
− α

′(ρ)
4α2

(φ−ψ)
(

1 −1

−1 1

)}
(3.28)

with φ1, ψ1 generated from φ, ψ by (3.23) and hence satisfying (3.26):

φ1(s,r)=φs(s,r)+
[
α′(ρ)(
4α2

)](φ−ψ),
ψ1(s,r)=ψr(s,r)+

[
α′(ρ)(
4α2

)](φ−ψ).
(3.29)

Theorem 3.7. For the GGD equations (3.26), all the hydrodynamic symmetries ho-

mogeneous in derivatives with no explicit dependence on x,t are generated by the Lie

equations (3.25) with the coefficients a(s,r) and c(s,r) satisfying the linear system (3.6)

and hence coincide with the hydrodynamic symmetries of the gas dynamics equations.

Thus, the hydrodynamic symmetries of any GGD system are generated by the Lie

equations which belong to the same GGD hierarchy but have a different time variable τ .

Theorem 3.8. Operator R defined by formula (3.14) is a recursion operator for sym-

metries of the whole infinite GGD hierarchy (3.26). It commutes with the operator of the

determining equation (3.27) on the solution manifold of the latter equation

[
IDt+A(φ,ψ),R

]= 0, (3.30)

where the operator Dt is calculated with the use of GGD equations.
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Theorem 3.9. All the hydrodynamic symmetries of the generalized gas dynamics

equations (3.26) with the coefficients φ(s,r), ψ(s,r) are generated by the Lie equations

sτ = asx−λ(x+tφ)sx+c0
(
1+tφ1sx

)
,

rτ = crx−λ(x+tψ)rx+c0
(
1+tψ1rx

)
,

(3.31)

where a= a(s,r), c = c(s,r) satisfy (3.6) and λ, c0 are arbitrary constants.

Theorem 3.10. Generalized gas dynamics equations with the coefficients φ(s,r),
ψ(s,r) have an infinite discrete set of higher symmetries of any order N = 2,3, . . . with

a functional arbitrariness and an explicit dependence on t.

Symmetries of the order N = 2 are generated by the Lie equations

sτ = a1sx−λ
(
1+tφ1sx

)+c0
(
tφ2sx+f2

)
,

rτ = c1rx−λ
(
1+tψ1rx

)+c0
(
tψ2rx+g2

)
.

(3.32)

Here the functions a1(s,r), c1(s,r) and φ1(s,r), ψ1(s,r) are obtained by the trans-

formations (3.23) and (3.29) from a(s,r), c(s,r) and φ(s,r), ψ(s,r), respectively. The

functionsφ2(s,r),ψ2(s,r) are obtained by a two-fold application of the transformation

(3.29) to φ, ψ, and the functions a1(s,r), c1(s,r) form an arbitrary smooth solution of

(3.6). The functions f2, g2 are defined by (3.7). Symmetries of order N+1 (N+1 ≥ 3)
are generated by the Lie equations

(
s
r

)
τ
=
(
aNsx
cNrx

)
−λ

{(
fN
gN

)
+t

(
φNsx
ψNrx

)}
+c0

{(
fN+1

gN+1

)
+t

(
φN+1sx
ψN+1rx

)}
. (3.33)

Here aN = aN(s,r), cN = cN(s,r), φN = φN(s,r), ψN = ψN(s,r), the subscript N de-

notes N-fold application of the transformations (3.23) and (3.29), the functions fN , gN
are defined by formula (3.18) with their explicit form for N = 2,3 given by formulas

(3.7) and (3.8), and λ, c0 are arbitrary constants.

3.4. Noncommutative algebra of higher symmetries of gas dynamics equations.

Denote by X̂(a,c) the evolutionary representatives [23] of generators of the hydrody-

namic symmetries corresponding to the Lie equations (3.25) subject to condition (3.6).

Let X̂N denote the evolutionary representatives of generators of Nth-order higher sym-

metries (3.18) of the gas dynamics equations for N = 2,3, . . . .

Theorem 3.11. Hydrodynamic and higher symmetries of the gas dynamics equa-

tions generate an infinite-dimensional noncommutative Lie algebra in which the hydro-

dynamic symmetries form an infinite-dimensional commutative ideal

[
X̂(a,c), X̂(ã,c̃)

]= 0,
[
X̂N,X̂(a,c)

]= X̂(aN ,cN), [
X̂M,X̂N

]= 0, (3.34)

where M,N = 2,3, . . . , a,c and ã, c̃ satisfy (3.6), and aN,cN are defined by (3.24).

Theorem 3.12. Let N = 2,3, . . . . The generalized gas dynamics equations have the

common infinite set of higher symmetries (3.33) of the order greater than or equal to

N+1 if and only if the right-hand sides of these equations differ only by a term belonging
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to the kernel of the operator RN , that is, φN , ψN coincide for all these equations. If the

right-hand sides φsx , ψrx of GGD equations (3.26) themselves belong to the kernel of

the operator RN , then for all such equations, the generators X̂(φ,ψ) commute with all the

generators X̂n of the higher symmetries (3.18) for n=N,N+1, . . . .

Corollary 3.13. Commutative symmetry subalgebras for the gas dynamics equa-

tions are formed by the generators X̂(a,c) of such hydrodynamic symmetries whose char-

acteristics (asx,crx) belong to a kernel of some integer power RN of the recursion op-

erator for N ≥ 2 and by the generators X̂n of higher symmetries (3.18) of the order

n≥N.

Thus, according to Corollary 3.13, a problem of a constructive description of the

kernel of RN naturally arises. It is solved by means of the inverse recursion operator

R−1:

R−1 =

sx 0

0 rx



{
I+ α

2


 1 −1

−1 1


D−1

x
αx
α2

}
D−1
x , (3.35)

where D−1
x = ∫ dx is the operator of integration with respect to x at a constant value

of t with the integration “constant” c(t) depending on t. Hence a kernel of R has the

form

R−1


0

0


= c1(t)


sx
rx


+c2(t)α(ρ)


−sx
rx


 . (3.36)

A kernel of R2 is given by the formula

R−2


0

0


= c1(t)



(
u−ρα(ρ))sx(
u+ρα(ρ))rx


+c2(t)



[∫
α2(ρ)dρ−uα(ρ)

]
sx[∫

α2(ρ)dρ+uα(ρ)
]
rx




+c3(t)


sx
rx


+c4(t)α(ρ)


−sx
rx


 ,

(3.37)

where ci(t) are arbitrary smooth functions.

3.5. Lax representation and invariant solutions of generalized gas dynamics equa-

tions. Formula (3.15) implies the Lax representation [18] of the gas dynamics equations

∂R
∂t
= [R,A], (3.38)

where the recursion operator (3.14) and the “stationary part” (3.4) of the operator of the

determining equation for symmetries (3.3) form the Lax pair of the Ibragimov-Shabat

type [16, 17, 21]. Equation (3.30) gives the Lax representation for any generalized gas

dynamics equations (3.26) with the change of A to A(φ,ψ) defined by (3.28):

∂R
∂t
= [R,A(φ,ψ)]. (3.39)
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In 1982, Faddeev and Kulish in a private communication pointed out to the author

that these Lax pairs were degenerate, that is, the mapping of a potential to the scattering

data was singular so that the method of the inverse scattering transform could not be

applied. However, it is not a bad feature of GGD equations since they can be linearized

in a classical sense by the hodograph transformation. The Lax representation for these

equations is still useful for the construction of their invariant solutions by means of

the inverse recursion operator (3.35) [30].

Consider solutions of the gas dynamics equations (3.1) invariant with respect to the

higher symmetries given by (3.18):

(
fN,gN

)T = RN−1(1,1)T = 0, N = 2,3, . . . . (3.40)

Define the matrix U and the matrix-integral operator K by the formulas

U =

u

∫ ρ
0
α2(ρ)dρ

ρ u


 , K =D−1

x Ux =D−1
x

(
ux α2(ρ)ρx
ρx ux

)
, (3.41)

where we define D−1
x = ∫ dx so that all the integration constants ci do not depend on t.

Theorem 3.14. For any N = 2,3, . . . , the equations

KN−1

(
c1

c2

)
≡
(
c2N−1

c2N

)
+c2N−2



∫
α2(ρ)dρ

u


+c2N−3

(
u
ρ

)

+c2N−4




u
∫
α2(ρ)dρ

u2

2
+
∫
dρ

∫
α2(ρ)dρ


+c2N−5


u

2

2
+
∫
α2(ρ)ρdρ

uρ


+···

=
(
x−ut
−ρt

)
(3.42)

determine in the implicit form t = t(u,ρ), x = x(u,ρ) an infinite set of exact solutions

u = u(x,t), ρ = ρ(x,t) of the gas dynamics equations (3.1) which are invariant with

respect to the higher symmetries (3.18).

ForN = 1, formula (3.42) becomes c1 = x−ut, c2 =−ρt and gives a trivial solution for

whichut+uux = 0,ρt+ρux = 0, that is, the velocity and densityu andρ are constant in

the Lagrangian frame which moves together with a gas particle. ForN = 2, formula (3.42)

takes the form u−u0 = ρ̄(t−t0), ρ̄(t−t0)2−
∫ ρ̄
ρ̄0
P ′(λρ̄)(1/ρ̄2)dρ̄ = x−x0−u0(t−t0),

where ρ̄ = ρ/λ and λ, u0, x0, t0, and ρ̄0 are constants. It describes the motion of a

piston in a gas flow after the explosion.

Now consider invariant solutions of the generalized gas dynamics equations ex-

pressed through the variables u, ρ:

ut =w(u,ρ)ux+v(u,ρ)α2(ρ)ρx, ρt = v(u,ρ)ux+w(u,ρ)ρx, (3.43)
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where the coefficients v ,w satisfy the linear systemwu = vρ ,wρ =α2(ρ)vu. Corollary

3.13 implies that the higher symmetries (3.18) of gas dynamics equations of the orders

N0,N0+1, . . . are also higher symmetries of those GGD equations (3.26) whose right-

hand sides belong to a kernel of the recursion operator RN0 , that is, φN0 =ψN0 = 0. We

give now their explicit form allowing them to depend explicitly on t:

Dt


u
ρ


=


ux α2(ρ)ρx
ρx ux


KN0−1


a1(t)

a2(t)


≡


ux α2(ρ)ρx
ρx ux




·



a2N0−1(t)

a2N0(t)


+a2N0−2(t)



∫
α2(ρ)dρ

u


+a2N0−3(t)


u
ρ




+a2N0−4(t)




u
∫
α2(ρ)dρ

u2

2
+
∫
dρ

∫
α2(ρ)dρ




+a2N0−5(t)


u

2

2
+
∫
α2(ρ)ρdρ

uρ


+···


.

(3.44)

Here in definition (3.41) of operator K, the “constants” ai(t) of the integration with

respect to x may depend on t as arbitrary smooth functions. Consider solutions of

GGD equations (3.44) invariant with respect to the higher symmetries (3.18).

Theorem 3.15. For any N =N0, N0+1, . . . with N0 ≥ 2, the equations

KN−1


c1

c2


≡


c2N−1

c2N


+c2N−2



∫
α2(ρ)dρ

u


+c2N−3


u
ρ




+c2N−4




u
∫
α2(ρ)dρ

u2

2
+
∫
dρ

∫
α2(ρ)dρ


+c2N−5


u

2

2
+
∫
α2(ρ)ρdρ

uρ


+···

=

x

0


+

∫ t
0


a2N0−1(t)

a2N0(t)


dt+



∫
α2(ρ)dρ

u


∫ t

0
a2N0−2(t)dt

+

u
ρ


∫ t

0
a2N0−3(t)dt+




u
∫
α2(ρ)dρ

u2

2
+
∫
dρ

∫
α2(ρ)dρ



∫ t

0
a2N0−4(t)dt

+

u

2

2
+
∫
α2(ρ)ρdρ

uρ



∫ t

0
a2N0−5(t)dt+···

(3.45)

determine an infinite set of exact solutions u = u(x,t), ρ = ρ(x,t) of the generalized

gas dynamics equations (3.44) which may explicitly depend on t. These solutions are

invariant with respect to the Nth-order higher symmetries (3.18) of these equations.
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Here the functions ai(t) and the constants ci with i ≤ 0 must be put equal to zero.

For the gas dynamics equations (3.1), a2N0−3(t)=−1, ai(t)= 0 for i≠ 2N0−3.

4. Separable two-component Hamiltonian systems

4.1. Hamiltonian structure of generalized gas dynamics equations. Consider two-

component Hamiltonian systems of the hydrodynamic type of the form

Dt

(
u
ρ

)
= σ1Dx

(
Hu(u,ρ)
Hρ(u,ρ)

)
, σ1 =

(
0 1

1 0

)
. (4.1)

Here H(u,ρ) is the Hamiltonian density of the hydrodynamic type which corresponds

to the Hamiltonian �= ∫∞−∞H(u,ρ)dx. For shortness, we will also call H(u,ρ) a Hamil-

tonian. Equations (4.1) take the form of the Hamilton equations

Dt

(
u
ρ

)
=
{(
u
ρ

)
,H
}

(4.2)

with the Poisson bracket of the hydrodynamic type [4]

{H,h} = (hu,hρ)Dxσ1
(
Hu,Hρ

)T . (4.3)

Define the Hamiltonian matrix

Ĥ =
(
Hρu Hρρ
Huu Huρ

)
(4.4)

so that (4.1) takes the form

(
u
ρ

)
t
= Ĥ

(
u
ρ

)
x
⇐⇒ (

IDt−ĤDx
)(u
ρ

)
=
(

0

0

)
. (4.5)

The gas dynamics equations (3.1) have the Hamiltonian form (4.1) and (4.5) with the

Hamiltonian

H(u,ρ)=−
[
ρu2

2
+
∫ ρ

0
dρ

∫ ρ
0
α2(ρ)ρdρ

]
. (4.6)

The same is valid for the generalized gas dynamics equations (3.44) with the Hamilto-

nians H(u,ρ,t) that may depend explicitly on t defined by the formula

(
Hρ
Hu

)
=KN0

(
a1(t)
a2(t)

)
(4.7)



SYMMETRY GROUP ANALYSIS AND INVARIANT SOLUTIONS . . . 513

with the operator K defined by (3.41). For example, if N0 = 2, (4.7) becomes

H(u,ρ,t)= a1(t)
[
ρu2

2
+
∫ ρ

0
dρ

∫ ρ
0
α2(ρ)ρdρ

]
+a2(t)

[
u3

3!
+u

∫ ρ
0
dρ

∫ ρ
0
α2(ρ)dρ

]

+a3(t)uρ+a4(t)
[
u2

2
+
∫ ρ

0
dρ

∫ ρ
0
α2(ρ)dρ

]
+a5(t)ρ+a6(t)u.

(4.8)

4.2. Separable Hamiltonian systems

Definition 4.1. It is said that the Hamiltonians
∫∞
−∞Hdx and

∫∞
−∞hdx commute if

the Poisson bracket (4.3) is the exact total derivative with respect to x:

{
H(u,ρ,t),h(u,ρ,t)

}=Dx[Q(u,ρ,t)]. (4.9)

Then the Hamiltonian matrices Ĥ and ĥ defined by (4.4) commute: [Ĥ, ĥ]= 0, and also

it is said that the Hamiltonians H and h commute.

Theorem 4.2. For any hydrodynamic-type Hamiltonian H(u,ρ), there exists an in-

finite set of Hamiltonians h(u,ρ) which commute with it and with each other, and are

arbitrary solutions of the wave equation Hρρhuu −hρρHuu = 0, or with the notation

V(u,ρ)=Huu/Hρρ for HuuHρρ ≠ 0,

huu−V(u,ρ)hρρ = 0. (4.10)

Definition 4.3. Systems (4.5) for which the wave equation (4.10) admits a separa-

tion of variables u, ρ, that is, V(u,ρ)= β2(u)/α2(ρ), are called separable Hamiltonian

systems [24, 31]. Their Hamiltonians H and all the Hamiltonians h commuting with H
satisfy the same equation

(
1

β2(u)

)
Huu =

(
1

α2(ρ)

)
Hρρ,

(
1

β2(u)

)
huu =

(
1

α2(ρ)

)
hρρ. (4.11)

Gas dynamics equations (3.1) and GGD equations (3.26) with the Hamiltonians (4.6)

and (4.7) are examples of separable systems with β2(u)= 1.

Definition 4.4. If H(u,ρ) is a Hamiltonian and Huu/Hρρ = 1/α2(ρ) is a func-

tion of ρ only (β(u) = 1), then H is called the Hamiltonian of the generalized gas

dynamics.

Physical applications of the separable Hamiltonian systems are given in [24].

4.3. Second-order recursion operator and Lax representation for separable Hamil-

tonian systems. We show that separable Hamiltonian systems obtained by the Manin’s

construction possess higher symmetries, a recursion operator, the Lax representation

of the Ibragimov-Shabat type, and good integrability properties [20, 31].

We introduce the notation ∂u = ∂/∂u, ∂ρ = ∂/∂ρ, ∂−1
u = ∫u0 du, and ∂−1

ρ = ∫ ρ0 dρ, where

the integration with respect to one variable is performed at a constant value of another

variable. The Manin’s construction gives rise to the two fundamental series of mutually
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commuting Hamiltonians [31]

H(2m)(1,0)=
m∑
n=0

(
∂−2
u β2)m−n(∂−2

ρ α2)nρ,

H(2m−1)(1,0)=
m∑
n=0

(
∂−2
u β2)m−n−1(∂−2

ρ α2)nuρ,

H(2m)(0,1)=
m∑
n=0

(
∂−2
u β2)m−n(∂−2

ρ α2)nu,

H(2m−1)(0,1)=
m∑
n=0

(
∂−2
u β2)m−n(∂−2

ρ α2)n,

(4.12)

where β = β(u), α = α(ρ), m = 0,1,2, . . . , H(−1)(1,0) = 0, and H(−1)(0,1) = 1. Here

every operator of ∂−1
u , ∂−1

ρ acts on all the factors standing to the right of it; for example,

(
∂−2
u β2(u)

)2 =
∫ u

0
du

∫ u
0

[
β2(u)

∫ u
0
du

∫ u
0
β2(u)du

]
du. (4.13)

For arbitrary constants c1, c2, we define

H(N)
(
c1,c2

)= c1H(N)(1,0)+c2H(N)(0,1). (4.14)

The basic Hamiltonians for the GGD equations (3.44) are obtained at β(u)= 1:

H(N)(1,0)=
[N/2]∑
n=0

uN−2n

(N−2n)!
(
∂−2
ρ α2(ρ)

)nρ

H(N)(0,1)=
[(N+1)/2]∑
n=0

uN+1−2n

(N+1−2n)!
(
∂−2
ρ α2(ρ)

)n.
(4.15)

We list explicitly several Hamiltonians from series (4.12):

H(0)(1,0)= ρ,
H(0)(0,1)=u,
H(1)(1,0)=uρ,
H(1)(0,1)= ∂−2

u β2+∂−2
ρ α2,

H(2)(1,0)= (∂−2
u β2(u)+∂−2

ρ α2(ρ)
)
ρ,

H(3)(1,0)= (∂−2
u β2(u)+∂−2

ρ α2(ρ)
)
uρ,

H(2)(0,1)= (∂−2
u β2+∂−2

ρ α2)u,
H(3)(0,1)= (∂−2

u β2)2+∂−2
u β2∂−2

ρ α2+(∂−2
ρ α2)2.

(4.16)
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In particular, for the Hamiltonians (4.15) of the generalized gas dynamics [24]:

H(2)(1,0)= ρu
2

2
+G̃1(ρ),

H(3)(1,0)= ρu
3

6
+uG̃1(ρ),

H(1)(0,1)= u
2

2
+G1(ρ), H(2)(0,1)= u

3

6
+uG1(ρ),

G̃1(ρ)
def=
∫ ρ

0
(ρ−σ)σα2(σ)dσ, G1(ρ)

def=
∫ ρ

0
(ρ−σ)α2(σ)dσ.

(4.17)

Consider the special case β(u)= 1 of the generalized gas dynamics Hamiltonians. De-

fine the integral-matrix operator K0 using the matrix U defined by (3.41):

K0 = ∂−1
x Ux =

∫ x
0
dx

(
ux α2(ρ)ρx
ρx ux

)

=
∫ (u,ρ)
(0,0)

Uudu+Uρdρ = ∂−1
u I+∂−1

ρ

(
0 α2(ρ)
1 0

)
.

(4.18)

Here the integral with respect to x is taken at a constant value of t and the latter

integral operator is the curvilinear integral independent of the integration path in the

(u,ρ) plane.

Theorem 4.5. Generalized gas dynamics Hamiltonians of series (4.15) and their com-

binations H(N)(c1,c2) defined by (4.14) satisfy the recursion relation

(
H(N+1)
ρ ,H(N+1)

u
)T =K0

(
H(N)ρ ,H(N)u

)T , N = 0,1,2, . . . , (4.19)

with the recursion operator K0 defined by (4.18) and the solution

(
H(N)ρ ,H(N)u

)T =KN0 (H(0)ρ ,H(0)u )T =KN0 (c1,c2
)T , H(N) def= H(N)(c1,c2

)
. (4.20)

In the general case with arbitrary functions β(u) and α(ρ), we define the matrices

U1 =
(
u ∂−1

ρ α2(ρ)
ρ ∂−1

u β2(u)

)
, U2 =

(
∂−1
u β2(u) ∂−1

ρ α2(ρ)
ρ u

)
(4.21)

and the matrix-integral operators

K1 = ∂−1
x U1x =

∫ x
0
dx

(
ux α2(ρ)ρx
ρx β2(u)ux

)

=
∫ (u,ρ)
(0,0)

U1udu+U1ρdρ = ∂−1
u

(
1 0

0 β2(u)

)
+∂−1

ρ

(
0 α2(ρ)
1 0

)
,

K2 = ∂−1
x U2x =

∫ x
0
dx

(
β2(u)ux α2(ρ)ρx
ρx ux

)

=
∫ (u,ρ)
(0,0)

U2udu+U2ρdρ = ∂−1
u

(
β2(u) 0

0 1

)
+∂−1

ρ

(
0 α2(ρ)
1 0

)
,

(4.22)
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with the operator ∂−1
x defined as in (4.18). Here again the curvilinear integrals in the

second lines are independent of the integration path. Define also the operator

K =K1K2 = ∂−1
x U1x∂−1

x U2x. (4.23)

Theorem 4.6. The separable Hamiltonians (4.12) and their combinationsH(N)(c1,c2)
for N = 0,1,2, . . . satisfy the recursion relation

(
H(N+2)
ρ ,H(N+2)

u
)T =K(H(N)ρ ,H(N)u

)T , H(N) def= H(N)(c1,c2
)
, (4.24)

with the recursion operator K defined by (4.23) and the solutions

(
H(2m)ρ ,H(2m)u

)T =Km(H(0)ρ ,H(0)u )T =Km(c1,c2
)T , m= 0,1,2, . . . ,

(
H(2m−1)
ρ ,H(2m−1)

u
)T =Km−1(H(1)ρ ,H(1)u )T =Km−1U1

(
c1,c2

)T , m= 1,2, . . . .
(4.25)

Thus, by Theorem 4.6, all the Hamiltonians of the Manin’s series (4.12) are generated

by the recursion operator (4.23) (see [31]). The inverse recursion operator has the form

K−1 =K−1
2 K

−1
1 = (U2x

)−1Dx
(
U1x

)−1Dx,

(
U1x

)−1 = 1

β2u2
x−α2ρ2

x

(
β2ux −α2ρx
−ρx ux

)
,

(
U2x

)−1 = 1

β2u2
x−α2ρ2

x

(
ux −α2ρx
−ρx β2ux

)
.

(4.26)

Define the second-order matrix-differential operator

L=DxK−1∂−1
x =Dx

(
U2x

)−1Dx
(
U1x

)−1. (4.27)

Consider Lie equations for the Nth-order higher symmetries of the Hamiltonian sys-

tem (4.5) with the Hamiltonian H and the Hamiltonian matrix Ĥ in the evolutionary

form

(
u
ρ

)
τ
=

f

(
x,t,u,ρ,ux,ρx, . . . ,u

(N)
x ,ρ(N)x

)
g
(
x,t,u,ρ,ux,ρx, . . . ,u

(N)
x ,ρ(N)x

)

≡

(
fn
gn

)
(4.28)

that implies xτ = tτ = 0. These symmetries satisfy the determining equation

(
IDt−DxĤ

)(f
g

)
=
(

0

0

)
. (4.29)

Theorem 4.7. Any separable Hamiltonian system (4.5) possesses the second-order

matrix-differential recursion operator of the form (4.27) satisfying the recursion relation

L
(
fn,gn

)T = (fn+2,gn+2
)T , n= 2,3, . . . . (4.30)
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Corollary 4.8. On the solution manifolds of systems (4.5),

[
IDt−DxĤ,L

]= 0. (4.31)

Thus, the Lax representation for these systems ∂L/∂t = [L,A] is obtained with the Lax

pair of the Ibragimov-Shabat type [16, 17], where A=−DxĤ and L is defined by (4.27).

Corollary 4.9. For the GGD equations β(u)= 1, U1 =U2 =U and the second-order

recursion operator (4.27) is reduced to the squared first-order recursion operator L0:

L= L2
0, L0 =Dx

(
Ux
)−1. (4.32)

The operator L0 coincides with the recursion operator (3.14) transformed from the Rie-

mann invariants s, r to the separable variables u, ρ, and satisfies the relation

L0
(
fn,gn

)T = (fn+1,gn+1
)T , n= 2,3, . . . . (4.33)

Theorem 4.10. For separable Hamiltonian systems (4.5) with the generic functions

β(u) and α(ρ), no first-order recursion operators exist and the second-order recursion

operator (4.27) cannot be reduced to a square of the first-order recursion operator or to

a product of different first-order operators.

4.4. Hydrodynamic and higher symmetries

Theorem 4.11. Separable systems (4.5) with the HamiltonianH(u,ρ)with no explicit

dependence on t admit an infinite set of hydrodynamic symmetries homogeneous in

derivatives with or without an explicit dependence on x,t generated by the Lie equations

(
u
ρ

)
τ
= (xI+tĤ+ ĥ)

(
u
ρ

)
x
, (4.34)

(
u
ρ

)
τ
= ĥ

(
u
ρ

)
x
≡ σ1Dx

(
hu(u,ρ)
hρ(u,ρ)

)
, (4.35)

respectively.

Here h(u,ρ) is an arbitrary smooth solution of (4.11), and Ĥ and ĥ are Hamiltonian

matrices of the form (4.4).

Corollary 4.12. All the hydrodynamic symmetries (4.35) with no explicit depen-

dence on x,t are separable Hamiltonian systems with the Hamiltonians h(u,ρ) which

mutually commute and also commute with the Hamiltonian H(u,ρ) of system (4.5).

Thus, any separable Hamiltonian system (4.5) is included into the infinite hierarchy of

commuting separable Hamiltonian flows.

Theorem 4.13. Hydrodynamic symmetries (4.35) of system (4.5) with no explicit de-

pendence on x,t form an invariant subspace for the second-order recursion operator L.

This operator generates the recursion relation for the hydrodynamic symmetries

Lĥ
(
u
ρ

)
x
= σ1Dx

(
h1u(u,ρ)
h1ρ(u,ρ)

)
≡ ĥ1

(
u
ρ

)
x
, (4.36)



518 M. B. SHEFTEL

and generates the recursion of their Hamiltonians

h1(u,ρ)= 1
β2(u)

huu(u,ρ)= 1
α2(ρ)

hρρ(u,ρ). (4.37)

Corollary 4.14. Hydrodynamic symmetries (4.35) of the separable Hamiltonian sys-

tem (4.5) with no explicit dependence on x,t form an infinite-dimensional commutative

Lie algebra. Its elements depend on arbitrary smooth solutions h(u,ρ) of (4.11).

Denote by hm(u,ρ) the result of the m-fold application of (4.37) to h(u,ρ):

hm(u,ρ)=
(
β−2(u)∂2

∂u2

)m
h(u,ρ)=

(
α−2(ρ)∂2

∂ρ2

)m
h(u,ρ). (4.38)

Then formula (4.36) gives the result

Lmĥ
(
u
ρ

)
x
= ĥm

(
u
ρ

)
x
. (4.39)

Theorem 4.15. For any separable Hamiltonian system (4.5), all its higher symmetries

of an even order n = 2m generated by the action of the recursion operators Lm on the

hydrodynamic symmetries (4.34) are given by the formula

(
f2m

g2m

)
= Lmx

(
u
ρ

)
x
+(tĤm+ ĥm)

(
u
ρ

)
x

(4.40)

for m= 1,2, . . . .

Here Hm(u,ρ) is obtained by transformation (4.38) out of H(u,ρ). For m = 1, this

formula gives all second-order symmetries of (4.5).

Theorem 4.16. The separable system (4.5) with the Hamiltonian H(u,ρ) possesses

an infinite series of higher symmetries of even orders 2m with no explicit dependence on

t,x if for some integer N, the Hamiltonian H satisfies the condition

LNĤ
(
u
ρ

)
x
=
(

0

0

)
⇐⇒ ĤN = 0, (4.41)

that is, the vector Ĥ(ux,ρx)T belongs to the kernel of the operator LN , and thenm≥N.

The symmetries in Theorem 4.16 are determined by (4.40) with Ĥm = 0 being com-

mon symmetries of all systems (4.5) with the right-hand side belonging to the kernel

of the operator LN . For ĥm = 0, the special form of higher symmetries satisfying (4.41)

with m≥N is

(
u
ρ

)
τ
= Lmx

(
u
ρ

)
x
=

f2m

(
u,ρ,ux,ρx, . . . ,u

(2m)
x ,ρ(2m)x

)
g2m

(
u,ρ,ux,ρx, . . . ,u

(2m)
x ,ρ(2m)x

)

 . (4.42)
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For β(u) = 1, L = L2
0, where L0 is the first-order recursion operator (4.32). Then (4.5)

form the GGD system with the higher symmetries of any order n≥N ≥ 2:

(
u
ρ

)
τ
= Ln0x

(
u
ρ

)
x
=
(
fn
gn

)
(4.43)

if the following condition is satisfied:

LN0 Ĥ
(
u
ρ

)
x
=
(

0

0

)
. (4.44)

For the generic function β(u), denote by X̂h and X̂2m the evolutionary generators of

the hydrodynamic symmetries (4.35) and of the higher symmetries (4.42), respectively.

Theorem 4.17. Hydrodynamic and higher symmetries of separable Hamiltonian sys-

tems (4.5) with no explicit dependence on x,t form the infinite-dimensional noncommu-

tative Lie algebra

[
X̂h,X̂h̃

]= 0,
[
X̂2m,X̂h

]= X̂hm, [
X̂2m,X̂2n

]= 0, (4.45)

with the hydrodynamic symmetries X̂h forming an infinite-dimensional commutative

ideal.

Corollary 4.18. Higher and hydrodynamic symmetries in (4.45) commute if and

only if ĥm = 0, where h(u,ρ) are the Hamiltonians of the hydrodynamic symmetries

(4.35).

Theorem 4.16 poses a problem of obtaining the kernel of the operator LN to solve

(4.41). In order to obtain its general solution, we have to allow an explicit dependence of

the Hamiltonians on t and use the Manin’s series (4.12) of Hamiltonians H(N)(1−ν,ν)
with ν = 0,1. Let ai(t) denote arbitrary smooth functions and

H[N](u,ρ,t)

=
N∑
k=0

[
a4(N−k)+1(t)H(2k)(1,0)+a4(N−k)+2(t)H(2k)(0,1)

+a4(N−k)+3(t)H(2k−1)(1,0)+a4(N−k)+4(t)H(2k−1)(0,1)
]
, N = 1,2, . . . .

(4.46)

Consider the explicitly t-dependent Hamiltonian system (4.5) with the Hamiltonians

H[N]:
(
u
ρ

)
t
= σ1Dx


H[N]u (u,ρ,t)

H[N]ρ (u,ρ,t)


≡ Ĥ[N](u,ρ,t)

(
u
ρ

)
x
, N = 1,2, . . . . (4.47)

Theorem 4.19. The kernel of the operator LN coincides with the right-hand side of

the Hamiltonian system (4.47):

L−N
(

0

0

)
= Ĥ[N](u,ρ,t)

(
u
ρ

)
x
, L−1 def= U1xD−1

x U2xD−1
x . (4.48)
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Corollary 4.20. Let N be some integer. Any separable Hamiltonian system which

has higher symmetries (4.40) with Ĥm = 0 (with no explicit dependence on t,x) of the

order 2m≥ 2N has the form (4.47). In particular, such a system has higher symmetries

(4.42) which satisfy the condition m≥N.

Theorem 4.21. A separable Hamiltonian system (4.5) with a Hamiltonian H(u,ρ,t)
explicitly dependent on t admits an infinite set of the hydrodynamic symmetries

(
u
ρ

)
τ
=
[
xI+

∫ t
0
Ĥ(u,ρ,t)dt+ ĥ(u,ρ)

](u
ρ

)
x

(4.49)

explicitly dependent on t,x and on an arbitrary smooth solution h(u,ρ) of the wave

equation (4.11). An infinite set of higher symmetries of any even order 2m for such a

system is generated by the action of the recursion operators Lm on the symmetries (4.49):

(
u
ρ

)
τ
= Lmx

(
u
ρ

)
x
+
[∫ t

0
Ĥm(u,ρ,t)dt+ ĥ(u,ρ)

](u
ρ

)
x

(4.50)

and has the same extent of arbitrariness as the symmetries (4.49). In formulas (4.49) and

(4.50), integrations with respect to t are performed at constant values of u, ρ.

4.5. Invariant solutions and linearization. Consider solutions of the Hamiltonian

systems (4.47) invariant with respect to the higher symmetries (4.50) with no explicit

dependence on t,x due to the condition Ĥ[N]m (u,ρ,t)= 0 for m≥N. Invariance condi-

tions for these solutions have the form

Lmx
(
u
ρ

)
x
+ ĥ(u,ρ)

(
u
ρ

)
x
=
(

0

0

)
, m=N,N+1, . . . , (4.51)

with h(u,ρ) satisfying (4.11). We will obtain such solutions by the method which uses

the Lax representation (4.31) and the inverse recursion operator (4.48) [30, 31]. Define

the Hamiltonian H[m](u,ρ) by (4.46) with N =m and ai(t)= ci = const:

H[m](u,ρ)=
m∑
k=0

[
c4(m−k)+1H(2k)(1,0)+c4(m−k)+2H(2k)(0,1)

+c4(m−k)+3H(2k−1)(1,0)+c4(m−k)+4H(2k−1)(0,1)
]
.

(4.52)

Let H(u,ρ) denote an arbitrary solution of the wave equation (4.11).

Theorem 4.22. Invariant solutions (u(x,t),ρ(x,t)) of system (4.47) with the Hamil-

tonian H[N](u,ρ,t) satisfying the invariance condition (4.51) are determined by

(
Hρu(u,ρ)
Huu(u,ρ)

)
=
(
x
0

)
+
∫ t

0


H[N]ρu (u,ρ,t)

H[N]uu (u,ρ,t)


dt (4.53)

if the conditions of the implicit function theorem are satisfied for (4.53).

Equation (4.53) determines the linearizing transformation which reduces the solution

of the nonlinear separable Hamiltonian system (4.47) which may explicitly depend on

t to the solution of the linear wave equation (4.11) for H(u,ρ).
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Corollary 4.23. The formula


H[m]ρu (u,ρ)

H[m]uu (u,ρ)


=

(
x
0

)
+
∫ t

0


H[N]ρu (u,ρ,t)

H[N]uu (u,ρ,t)


dt, m=N,N+1, . . . , (4.54)

gives an infinite discrete set of exact solutions of (4.47) satisfying condition (4.51) with

h(u,ρ)= 0, invariant with respect to the higher symmetries (4.42).

For an explicit form of these solutions, expression (4.52) forH[m](u,ρ)must be used.

Corollary 4.24. For system (4.47) with the Hamiltonian H[N](u,ρ) having no ex-

plicit dependence on t, formula (4.53) gives the hodograph transformation

(
Hρu(u,ρ)
Huu(u,ρ)

)
=
(
x
0

)
+t


H[N]ρu (u,ρ)

H[N]uu (u,ρ)


 (4.55)

which interchanges the roles of independent and dependent variables (x,t) and (u,ρ).

Remark 4.25. Explicitly t-dependent Hamiltonian systems (4.47) are not lineariz-

able by the usual hodograph transformation (4.55). The correct linearizing transforma-

tion is given by (4.53) and presents a generalization of the hodograph transformation

for explicitly time-dependent systems.

Theorem 4.26. Consider a separable system of the form (4.5) with the explicitly t-
dependent HamiltonianH(u,ρ,t) satisfying (4.11). Its invariant solutions with respect to

the hydrodynamic symmetries (4.49) are given by the equations

x+
∫ t

0
Hρu(u,ρ,t)dt = hρu(u,ρ),

∫ t
0
Huu(u,ρ,t)dt = huu(u,ρ), (4.56)

where h(u,ρ) is an arbitrary smooth solution of the linear equation (4.11).

In (4.56), Huu and huu may be replaced by Hρρ and hρρ . These formulas reduce

the solution of any separable time-dependent system (4.5) to the solution of the linear

equation (4.11) for h(u,ρ). This is the linearizing transformation which generalizes

the hodograph transformation for the explicitly time-dependent separable Hamiltonian

systems (4.5).

5. Semi-Hamiltonian equations

5.1. Geometry of semi-Hamiltonian systems and hydrodynamic symmetries. Con-

sider first-order quasilinear nondegenerate systems homogeneous in derivatives

uit = vi(u)uix, vi(u)≠ vj(u) (i≠ j), i= 1,2, . . . ,n, (5.1)

with a diagonal n×n matrix V(u) = diag(vi(u)). From now on, no summation on

repeated indices is assumed. Here u = (u1,u2, . . . ,un) is n-vector, ui are Riemann in-

variants [27]. Higher symmetries of the Nth-order of system (5.1) are generated by the
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Lie equations

uiτ = ηi
(
x,t,u,ux, . . . ,u(N)x

)
, i= 1,2, . . . ,n, (5.2)

where τ is the group parameter and we assume that xτ=tτ=0. Denote η=(η1, . . . ,ηn)T .

Consider the operators Dx , Dt of the total derivatives with respect to x,t:

Dx = ∂
∂x

+
n∑
j=1

(
ujx

∂
∂uj

+
∞∑
k=1

uj(k+1)
x

∂
∂uj(k)x

)
,

Dt = ∂
∂t
+

n∑
j=1

(
vju

j
x
∂
∂uj

+
∞∑
k=1

Dkx
[
vju

j
x
] ∂
∂uj(k)x

)
,

(5.3)

where (5.1) is used in Dt , and ∂/∂x and ∂/∂t are taken at constant values of u and u(k)x .

The compatibility conditions uiτt = uitτ of systems (5.1) and (5.2) take the form of

the determining equation for the symmetry characteristic η:
(
IDt−VDx−Ux

(
∂V
∂U

))
[η]= 0. (5.4)

Here I is the unit matrix, Ux = diag(uix), and ∂V/∂U = (vi,uj ) is the Jacobian matrix.

For the hydrodynamic symmetries, we choose N = 1 in the Lie equations (5.2). Here

we consider only hydrodynamic symmetries linear homogeneous in derivatives

uiτ =Wi(u,x,t)uix, i= 1,2, . . . ,n. (5.5)

Define the symmetrical connection coefficients associated with system (5.1) [39]:

Γ iij(u)= Γ jji(u)=
vi,uj (u)(
vj−vi

) (i≠ j), (5.6)

Γ jii =−
(
gii
gjj

)
Γ iij (i≠ j), Γ ijk = 0 (i≠ j ≠ k≠ i). (5.7)

This connection is compatible with the nondegenerate diagonal metric

gii(u)=H2
i (u)= e2Φi(u), gij = 0 (i≠ j), det

(
gij
)
≠ 0. (5.8)

Here Hi(u) are Lamé coefficients. The connection is determined by the metric

Γ iij =
(
ln
√
gii
)
uj =

(
lnHi

)
uj = Φi,uj (u). (5.9)

Integrability conditions Γ iij,uk = Γ iik,uj of system (5.9) with the use of the expressions

(5.6) take the form of Tsarëv’s conditions [39]:[ vi,uj(
vj−vi

)]
uk
=
[ vi,uk(
vk−vi

)]
uj

(i≠ j ≠ k≠ i). (5.10)

Definition 5.1 (see [40]). Diagonal nondegenerate system (5.1) is called semi-

Hamiltonian if its coefficients vi(u) satisfy conditions (5.10).

We will consider the generic case excluding weakly nonlinear systems [27] (vi,ui = 0

for all i) which admit more general symmetries than in the following theorem.
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Theorem 5.2 (see [40]). The generic diagonal system (5.1) admits an infinite set of

hydrodynamic symmetries with no explicit dependence on x,t

uiτ =wi(u)uix, i= 1,2, . . . ,n, (5.11)

with a functional arbitrariness if and only if (5.1) is semi-Hamiltonian, that is, condition

(5.10) is satisfied.

The symmetries in Theorem 5.2 are generated by Lie equations (5.11) with the coef-

ficients wi(u) which form an arbitrary smooth solution of the linear system

wi,uj = Γ iij
(
wj−wi

)
(i≠ j) (5.12)

with Γ iij(u) defined by (5.6). All these symmetries mutually commute. The set of such

symmetries is locally parameterized by n arbitrary functions ci(ui) of one variable.

Theorem 5.3 (see [33]). Semi-Hamiltonian systems of the form (5.1) admit an infinite

set of hydrodynamic symmetries explicitly dependent on x,t with the same functional

arbitrariness as in Theorem 5.2.

The symmetries in Theorem 5.3 are generated by the Lie equations

uiτ =
[
wi(u)+c

(
x+tvi(u)

)]
uix, i= 1,2, . . . ,n, (5.13)

where wi(u) is an arbitrary solution of the linear system (5.12) and c is an arbitrary

constant.

Theorem 5.4 (see [40]). Any semi-Hamiltonian system of the form (5.1) with the

nondegenerate metric (5.8) is a Hamiltonian system if and only if the following com-

ponents of the Riemann curvature tensor vanish: Rijji = 0 (i ≠ j). Then the curvature

tensor vanishes identically and the variables ui form an orthogonal curvilinear coordi-

nate system in a flat (pseudo-Euclidean) space.

Corollary 5.5. For the semi-Hamiltonian system (5.1), the following components of

the curvature tensor vanish for i≠ j ≠ k≠ l and i≠ j ≠ k≠ i:

Rijkl = 0, Riikj ≡ Γ iij,uk−Γ iik,uj = 0,

Rijki ≡ Γ iij,uk−
[
Γ iikΓ

k
kj+Γ iij

(
Γ jjk−Γ iik

)]= 0.
(5.14)

Remark 5.6. These equations give compatibility conditions for the linear system

(5.12) and they are equivalent to the Tsarëv’s conditions (5.10).

5.2. Linearization and invariant solutions of semi-Hamiltonian systems. Consider

hydrodynamic symmetries (5.13) explicitly dependent on x,t with c =−1. Then invari-

ant solutions of the semi-Hamiltonian system (5.1) with ux ≠ 0 are determined by

wi(u)= tvi(u)+x, i= 1,2, . . . ,n. (5.15)

Theorem 5.7 (see [40]). Let wi(u) in (5.15) form an arbitrary smooth solution of

the linear system (5.12). Then any smooth solution ui(x,t) of (5.15) is a solution of the
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semi-Hamiltonian system (5.1). Vice versa, any solution ui(x,t) of (5.1) is a local solution

of (5.15) in the vicinity of such a point (x0, t0), where uix(x0, t0)≠ 0 for each value of i.

Remark 5.8. Equations (5.15) determine a linearizing transformation for the semi-

Hamiltonian system (5.1), that is, to obtain explicit formulas for the invariant solutions

of the nonlinear system (5.1), one must solve the linear system (5.12) for wi(u) with

variable coefficients. It generalizes the classical hodograph transformation for the case

of multicomponent systems and it is called the generalized hodograph transformation

[40]. We discover the group-theoretical origin of the linearizing transformation: every

nonsingular solution of system (5.1) is an invariant solution with respect to hydrody-

namic symmetries (5.13) and the extent of arbitrariness of symmetries and invariant

solutions is the same as for the general solution of (5.1), that is, n arbitrary functions

ci(ui) of one variable.

5.3. First-order recursion operators. By definition, recursion operator R maps any

symmetry of the semi-Hamiltonian system (5.1) again into its symmetry, that is, any

solution η = (η1, . . . ,ηn)T of the determining equation (5.4) is mapped again into the

solution R[η]. For this to be true, it is sufficient for the operator R to commute with

the operator of the determining equation

[
IDt−VDx−Ux

(
∂V
∂U

)
,R
]
= 0 (5.16)

on solution manifolds of (5.1) and (5.4). For systems (5.1), we use a different form of

recursion operators than (2.48). In particular, for the first-order recursion operators,

R = (ADx+B)U−1
x , (5.17)

where A=A(u) and B = B(u,ux) are n×n matrices. Define the functions

Si(u)=
n∑
k=1

Γ iik(u)ck
(
uk
)+di(ui), i= 1,2, . . . ,n, (5.18)

which depend on 2n functions ci(ui) and di(ui) of one variable.

Theorem 5.9 (see [38]). For semi-Hamiltonian systems (5.1), there exists a first-order

recursion operator R of the form (5.17) if and only if there exist 2n functions ci(ui) and

di(ui) of one variable which satisfy the conditions

Si,uj (u)= Γ iij
(
Sj−Si

)
(i≠ j) (5.19)

with Si(u) defined by (5.18).

Matrix elements of the recursion operator in Theorem 5.9 are

Rij =
[
δijcj

(
uj
)(
Dx+

n∑
k=1

Γ iik(u)u
k
x

)
+Γ iij(u)

(
cj
(
uj
)
uix−ci

(
ui
)
ujx
)]( 1

ujx

)

+dj
(
uj
)
δij,

(5.20)

where δij is the Kroneker symbol.
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Theorem 5.10. For semi-Hamiltonian systems (5.1), hydrodynamic symmetries (5.11)

homogeneous in derivatives with no explicit dependence on x,t, subject to condition

(5.12), form an invariant subspace for the recursion operator (5.20).

A restriction of the operator R to the invariant subspace becomes

R



w1(u)u1

x

...

wn(u)unx


=



ŵ1(u)u1

x

...

ŵn(u)unx


 , (5.21)

where the functions ŵi(u) are determined by the formula

ŵi(u)= ci
(
ui
)
wi,ui(u)+di

(
ui
)
wi(u)+

n∑
k=1

Γ iik(u)ck
(
uk
)
wk(u). (5.22)

Corollary 5.11. For any solution {wi(u)} of the linear system (5.12), the functions

ŵi(u) also form a solution of this system if and only if the conditions (5.19) are satisfied.

Then (5.22) defines a recursion for solutions of system (5.12).

The first-order recursion operator (5.20) for the multicomponent system (5.1) was

constructed originally by a straightforward solution of (5.16) [38]. A new simpler

method for constructing recursion operators based on the study of symmetries of the

set of hydrodynamic symmetries of system (5.1) was developed by the author in [35],

where the group-theoretical origin of recursion operators was discovered. A geometri-

cal sense of the existence conditions (5.19) was also clarified in this paper.

To be explicit, consider other orthogonal curvilinear coordinates {r i}, which will

be specified later, with the Lamé coefficients Hi(r) =
√
gii(r) = eΦi(r). Consider the

rotation coefficients βji(r) of this coordinate system defined by the equations [6, 40]

Hi,rj = βjiHj (i≠ j). (5.23)

Let ρ = {(rk−r l)} denote the set of the coordinate differences.

Theorem 5.12 (see [35]). First-order recursion operator for the semi-Hamiltonian

system (5.1) exists if and only if the rotation coefficients βji(r) of some curvilinear or-

thogonal coordinate system r i depend only on the coordinate differences ρ: βji = βji(ρ).

5.4. Second-order recursion operators. We will consider second-order recursion op-

erators in the form

R = (AD2
x+BDx+F

)
U−1
x , (5.24)

where A=A(u,ux), B = B(u,ux,uxx), and F = F(u,ux,uxx,uxxx) are n×n matrices.

Define the “connection potential” V(u) by a completely integrable system (in the sense
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of Frobenius)

Vuiuj (u)= Γ iijΓ jji (i≠ j) (5.25)

so that V(u) depends on n arbitrary functions of one variable. Integrability conditions

for (5.25) are satisfied as a consequence of the property (5.10). Define

bik(u)= fk
(
uk
)[
Γ iik
(
2Γ kkk−Γ iik

)−Γ iik,uk]+[ck(uk)−f ′k(uk)]Γ iik (i≠ k), (5.26)

bii(u)= fi
(
ui
)[
Γ iii,ui+

(
Γ iii
)2−2Vuiui(u)

]−f ′i (ui)Vui(u)+ci(ui)Γ iii+di(ui), (5.27)

and Bi(u) =
∑n
k=1bik which depend on 3n functions fi(ui), ci(ui), and di(ui) of one

variable. Let Rik, Aik, Bik, and Fik denote matrix elements of the operator R and of the

matrices A, B, and F , respectively.

Definition 5.13. Let Hi(u) and βij(u) denote Lamé and rotation coefficients, re-

spectively, of the curvilinear orthogonal system {ui}, and let Gi(ûi) denote a function

of u independent of ui. Semi-Hamiltonian system (5.1) is called generic (with respect

to second-order recursion operators) if none of the following cases occurs:

vi,ui(u)= 0, vi,ui(u)=
(
Fi
(
ui
)
Gi
(
ûi
)

gii

)
eV(u),

[ βji(
vj−vi

)][
(
βki/Hi

)
ui

vi,ui

]
ui
=
[

βki(
vk−vi

)][
(
βji/Hi

)
ui

vi,ui

]
ui

(i≠ j ≠ k).

(5.28)

Theorem 5.14 (see [35]). For the semi-Hamiltonian generic system (5.1), the second-

order recursion operator R of the form (5.24) exists if and only if there exist 3n functions

fi(ui), ci(ui), and di(ui) of one variable which satisfy the conditions

Bi,uj (u)= Γ iij
(
Bj−Bi

)
(i≠ j) (5.29)

with the functions Bi(u) defined by (5.26).

Its matrix elements in Theorem 5.14 are given by

Rik =
(
AikD2

x+BikDx+Fik
)( 1

ukx

)
, (5.30)

Aik = δikfi
(
ui
)

uix
, (5.31)

Bik = Γ iik
[
fk
(
uk
)(uix
ukx

)
−fi

(
ui
)(ukx
uix

)]
(i≠ k), (5.32)

Bii = −fi
(
ui
)
uixx[(

uix
)2] +2

[
fi
(
ui
)

uix

]∑
j≠i
Γ iiju

j
x+2fi

(
ui
)
Γ iii+ci

(
ui
)
, (5.33)
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Fik = fi
(
ui
)
Γ iik
(ukx
uix

)[uixx
uix

− u
k
xx

ukx

]

+fk
(
uk
)[(uix)2

ukx

]
Γ iikΓ

k
ki−fi

(
ui
)[[(ukx)2

uix

]
Γ iik,uk+

(
Γ iik
)2
]

+{fi(ui)(Γ iikΓ kki−2Γ iii,uk
)−[2fi(ui)Γ iii+ci(ui)]Γ iik}ukx

+bik(u)uix−fi
(
ui
)(ukx
uix

) ∑
j≠i,k

ujx
(
Γ iikΓ

k
kj+Γ iijΓ jjk

)

+uix
∑
j≠i,k

[
fk
(
uk
)(ujx
ukx

)
Γ iikΓ

k
kj−fj

(
uj
)(ukx
ujx

)
Γ iijΓ

j
jk

]
(i≠ k),

(5.34)

Fii = Bi(u)uix−
∑
k≠i
Fik. (5.35)

Theorem 5.15 (see [35]). For semi-Hamiltonian systems (5.1), hydrodynamic sym-

metries (5.11) homogeneous in derivatives, with no explicit dependence on x,t, subject

to condition (5.12) form the invariant subspace for the second-order recursion operator

(5.30).

The action of the recursion operator (5.30) on the invariant subspace is determined

by (5.21) with the new definition of functions:

ŵi(u)= fi
(
ui
)
wi,uiui+

[
2fi

(
ui
)
Γ iii+ci

(
ui
)]
wi,ui

+
∑
k≠i
fk
(
uk
)
Γ iikwk,uk+

n∑
k=1

bik(u)wk,
(5.36)

where bik(u) are defined by (5.26).

Corollary 5.16. For any solution {wi(u)} of the linear system (5.12), formula (5.36)

again gives a solution {ŵi(u)} of (5.12) if and only if conditions (5.29) are satisfied. Thus,

(5.36) is a second-order recursion for solutions of system (5.12).

Theorem 5.17 (see [35]). If the first-order recursion operator exists, then there also

exists the second-order recursion operator equal to the squared first-order recursion oper-

ator. The converse is not true: the existence conditions (5.19) for the first-order recursion

operator do not follow from the existence conditions (5.29) for the second-order recursion

operator.

Thus, the existence conditions for the second-order recursion operator are less restric-

tive than for the first-order operator.

Remark 5.18. If system (5.1) is Hamiltonian, that is, all the components of the Rie-

mann curvature tensor vanish, Rijkl = 0 (see Theorem 5.4), then the existence conditions

for recursion operators and for compatible bi-Hamiltonian structures of the hydrody-

namic type [7] should be related to each other due to the Magri’s theorem [19]. It seems

interesting to discover these relations.

5.5. Generation of infinite series of exact solutions. To obtain explicit formulas

for invariant solutions of (5.1), one must know solutions of the linear system (5.12)
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and substitute these solutions for the set of functions {wi(u)} in the linearizing trans-

formation (5.15). Existence of a recursion operator for the semi-Hamiltonian system

(5.1) is the additional constraint which makes it possible to obtain particular solutions

of (5.12).

The linear system (5.12) has two trivial solutions

wi = 1, wi = vi(u), i= 1,2, . . . ,n. (5.37)

They serve as “seed” elements for the generation of infinite series of nontrivial solutions

by recursion operators. In particular, assume that the first-order recursion operator

(5.20) exists for system (5.1), that is, conditions (5.19) are satisfied. It generates the

recursion (5.22) for solutions of system (5.12):

ŵi(u)=
(
R̂1[w]

)
i =

n∑
k=1

(
R̂1
)
ik
[
wk
]
,

(
R̂1
)
ik = δik

[
ci
(
ui
) ∂
∂ui

+di
(
ui
)]+Γ iik(u)ck(uk).

(5.38)

The operator R̂1 maps trivial solutions (5.37) to the nontrivial solutions of (5.12):

ŵi(u)=
(
R̂1[1]

)
i =

n∑
k=1

Γ iik(u)ck
(
uk
)+di(ui)≡ Si(u),

ŵi(u)=
(
R̂1[v]

)
i = ci

(
ui
)
vi,ui(u)+di

(
ui
)
vi(u)+

n∑
k=1

Γ iik(u)ck
(
uk
)
vk(u).

(5.39)

Substituting (5.39) in (5.15), we obtain solutions ui =ui(x,t) of system (5.1):

n∑
k=1

Γ iik(u)ck
(
uk
)+di(ui)= tvi(u)+x, i= 1, . . . ,n,

ci
(
ui
)
vi,ui(u)+di

(
ui
)
vi(u)+

n∑
k=1

Γ iik(u)ck
(
uk
)
vk(u)= tvi(u)+x

(5.40)

determined as implicit functions.

The action of powers of R̂1 on the trivial solutions (5.37) generates the explicit for-

mulas for two infinite sets of invariant solutions, with N = 1,2, . . .,
(
R̂N1 [1]

)
i = tvi(u)+x,

(
R̂N1 [v]

)
i = tvi(u)+x. (5.41)

Assume now the less restrictive existence conditions (5.29) for the second-order re-

cursion operator. Then there exists the recursion (5.36) for solutions of (5.12):

ŵi(u)=
(
R̂2[w]

)
i =

n∑
k=1

(
R̂2
)
ik
[
wk
]
,

(
R̂2
)
ik = δik

{
fi
(
ui
) ∂2(
∂ui

)2 +
[
fi
(
ui
)
Γ iii(u)+ci

(
ui
)] ∂
∂ui

}
+fk

(
uk
)
Γ iik(u)

∂
∂uk

+bik(u),
(5.42)

where R̂2 is the second-order recursion operator and bik(u) are defined by (5.26).
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Trivial solutions (5.37) are mapped by R̂2 to nontrivial solutions of system (5.12) and

via (5.15) to the corresponding solutions of system (5.1)

(
R̂2[1]

)
i ≡

n∑
k=1

bik(u)≡ Bi(u)= tvi(u)+x,
(
R̂2[v]

)
i ≡ fi

(
ui
)
vi,uiui(u)+

[
2fi

(
ui
)
Γ iii(u)+ci

(
ui
)]
vi,ui(u)

+
∑
k≠i
fk
(
uk
)
Γ iik(u)vk,uk(u)+

n∑
k=1

bik(u)vk(u)= tvi(u)+x.

(5.43)

The powers R̂N2 generate two infinite sets of invariant solutions from (5.37)

(
R̂N2 [1]

)
i = tvi(u)+x,

(
R̂N2 [v]

)
i = tvi(u)+x, N = 1,2, . . . . (5.44)

We can use in (5.15) linear combinations of solutions of the two sets for wi(u)

c1
(
R̂N1,2[1]

)
i+c2

(
R̂M1,2[v]

)
i = tvi(u)+x, N,M = 1,2, . . . , (5.45)

with the operator R̂1 or R̂2 and arbitrary constants c1, c2.

Further generalization is obtained if we substitute for the characteristic ηd = x+
tvi(u) of the dilatation symmetry group in formulas (5.13) and (5.15) the results of the

action on ηd of the operators R̂L1 or R̂L2 , where L is any positive integer. Then we obtain

the formula

c1
(
R̂N1,2[1]

)
i+c2

(
R̂M1,2[v]

)
i = t

(
R̂L1,2[v]

)
i+x

(
R̂L1,2[1]

)
i. (5.46)

If L >N or L >M , (5.46) is equivalent to (5.45) with negative powers of R̂1,2.

Remark 5.19. The operators R̂1 and R̂2 coincide with the first- and second-order

symmetry generators for the linear system (5.12) essential for the separation of vari-

ables in linear equations [3, 22]. Solution of (5.12) by the separation of variables would

mean solving completely the nonlinear system (5.1). Thus, the linearizing transforma-

tion (5.15) presents an extension of the method of separation of variables to nonlinear

systems “rich in symmetries.”

5.6. Higher symmetries of semi-Hamiltonian systems

Theorem 5.20 (see [33]). All second-order symmetries of the semi-Hamiltonian sys-

tem (5.1) are generated by the second-order recursion operator (5.30) out of the hydro-

dynamic symmetries (5.13) (with c = 1). The corresponding Lie equations have the form

uiτ = η2,i ≡
n∑
j=1

Rij
[
ujx
(
x+tvj(u)+wj(u)

)]≡−fi
(
ui
)
uixx(

uix
)2

+ fi
(
ui
)

uix

∑
j≠i
Γ iiju

j
x+uix

∑
j≠i
Γ iij
fj
(
uj
)

ujx
+2fi

(
ui
)
Γ iii

+ci
(
ui
)+uix[xBi(u)+t(R̂2[v]

)
i+ŵi(u)

]
, i= 1, . . . ,n,

(5.47)
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where the set of functions {ŵi(u)} is an arbitrary solution of the linear system (5.12).

The existence conditions (5.29) for the second-order symmetries and for the second-order

recursion operators coincide and must be satisfied by a choice of functions fi(ui), ci(ui),
and di(ui). In the case when Bi(u) ≠ 0 and (R̂2[v])i ≠ 0, these symmetries explicitly

depend on x,t. The action of powers RN of the recursion operator with N = 1,2, . . . on

the same hydrodynamic symmetries generates the infinite series of higher symmetries

of system (5.1):

uiτ =
n∑
j=1

(
RN
)
ij
[
ujx
(
x+tvj(u)+wj(u)

)]
. (5.48)

If R is a second-order recursion operator, then all these symmetries are of an even or-

der 2N.

6. Multicomponent diagonal systems explicitly dependent on t or x

6.1. Hydrodynamic symmetries of time-dependent systems. Consider first-order

quasilinear diagonal explicitly t-dependent systems with n≥ 3

uit = vi(u,t)uix, i= 1,2, . . . ,n, (6.1)

subject to the condition vi ≠ vj for i ≠ j. We search for hydrodynamic symmetries of

these systems with the Lie equations xτ = tτ = 0 and

uiτ =
n∑
j=1

Aij(u,t,x)u
j
x, i= 1,2, . . . ,n. (6.2)

Define the functions

cij(u,t)=
vi,uj (u,t)
(vj−vi) , Γ iij(u)= cij(u,0) (i≠ j). (6.3)

Theorem 6.1 (see [13, 28, 32]). Diagonal n-component system (6.1) of the hydro-

dynamic type with an explicit time dependence admits an infinite set of hydrodynamic

symmetries of the form (6.2) with a functional arbitrariness if and only if its coefficients

satisfy (5.10) and the condition

[ vi,uj (u,t)
vi(u,t)−vj(u,t)

]
t
= βvi,uj (u,t), (6.4)

for i≠ j with an arbitrary real constant β.

The symmetries in Theorem 6.1 are generated by the Lie equations

uiτ =Ai(u,t,x)uix, i= 1,2, . . . ,n, (6.5)
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with the coefficients Ai defined by the formulas

Ai(u,t,x)=wi(u)exp
{
β
[
x+

∫ t
0
vi(u,t)dt

]}
+C for β≠ 0,

Ai(u,t,x)=wi(u)+C
[
x+

∫ t
0
vi(u,t)dt

]
for β= 0,

(6.6)

where C is an arbitrary constant, the integrations with respect to t are performed at

a constant value of u, and {wi(u)} form an arbitrary smooth solution of the linear

system (5.12) with Γ iij defined by (6.3). The solution manifold of (5.12) depends on n ar-

bitrary functions ci(ui) of one variable locally parameterizing the set of hydrodynamic

symmetries.

6.2. Hydrodynamic symmetries of x-dependent systems. Let coefficients of the

diagonal system explicitly depend on the coordinate x:

uit = ṽi(u,x)uix, i= 1,2, . . . ,n, n≥ 3, (6.7)

and satisfy the condition ṽi ≠ ṽj (i≠ j). Define the functions

c̃ij(u,x)=
ṽi,uj (u,x)
ṽj− ṽi ,

Γ iij(u)=
c̃ij(u,0)ṽj(u,0)

ṽi(u,0)
(i≠ j).

(6.8)

Theorem 6.2 (see [13, 28, 32]). Diagonal n-component systems (6.7) of the hydrody-

namic type with an explicit x-dependence admit an infinite set of hydrodynamic symme-

tries of the form (6.2) with a functional arbitrariness if and only if its coefficients satisfy

(5.10) with the change of ṽi to vi and the condition

[ (
ṽ−1
i (u,x)

)
uj

ṽ−1
i (u,x)− ṽ−1

j (u,x)

]
x
= β(ṽ−1

i (u,x)
)
uj (i≠ j) (6.9)

with an arbitrary real constant β.

The symmetries in Theorem 6.2 are generated by the Lie equations

uiτ = Ãi(u,t,x)uix, i= 1,2, . . . ,n, (6.10)

with the coefficients Ãi defined by the formulas

Ãi(u,t,x)= ṽi(u,x)
{
wi(u)exp

[
β
(
t+

∫ x
0
ṽ−1
i (u,x)dx

)]
+C

}
for β≠ 0,

Ãi(u,t,x)= ṽi(u,x)
{
wi(u)+C

[
t+

∫ x
0
ṽ−1
i (u,x)dx

]}
for β= 0,

(6.11)
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where C is an arbitrary constant, the integrations with respect to x are performed at a

constant value of u, and {wi(u)} form an arbitrary solution of the linear system (5.12)

with Γ iij defined by (6.8). The extent of arbitrariness is the same as in Theorem 6.1.

6.3. Invariant solutions and linearization. The equations determining invariant so-

lutions of systems (6.1) and (6.7) subject to the constraint uix ≠ 0 for i= 1,2, . . . ,n are

obtained from the Lie equations (6.5) and (6.10) with the invariance condition uiτ = 0:

Ai(u,t,x)= 0 and Ãi(u,t,x)= 0 withAi and Ãi defined by (6.6) and (6.11), respectively,

where c = 1 without loss of generality:

wi(u)+exp
{
−β

[
x+

∫ t
0
vi(u,t)dt

]}
= 0 (β≠ 0),

wi(u)+x+
∫ t

0
vi(u,t)dt = 0 (β= 0),

wi(u)+exp
{
−β

[
t+

∫ x
0
ṽ−1
i (u,x)dx

]}
= 0 (β≠ 0),

wi(u)+t+
∫ x

0
ṽ−1
i (u,x)dx = 0 (β= 0),

(6.12)

with i = 1,2, . . . ,n for systems (6.1) and (6.7), respectively. Here the set of functions

wi(u) forms an arbitrary smooth solution of the linear system (5.12) with Γ iij defined

by (6.3) and (6.8), respectively. Thus, the above equations determine a linearizing trans-

formation for systems (6.1) and (6.7) reducing them to the linear system (5.12). These

equations determine the solutions ui =ui(x,t) of the original nonlinear system if the

conditions of the implicit function theorem are satisfied. More complete results for di-

agonal systems with an explicit t- or x-dependence and an example of a new integrable

system of this class can be found in [13].

7. Conclusions. The existence of an infinite-dimensional group of the hydrodynamic

symmetries for the equations of the hydrodynamic type is an important property which

provides the existence of linearizing transformations. The reason for this is that the

degree of generality of the set of symmetries coincides with the degree of general-

ity of the general solution set for these equations. Therefore, almost all solutions are

the invariant solutions and they are obtained by standard formulas provided that the

symmetries are already determined. Such a formula gives a linearizing transformation

reducing the original nonlinear problem to the linear problem of determining the sym-

metries. The additional property is the existence of the recursion operator which makes

it possible to solve partially the linear problem by constructing infinite discrete sets of

its solutions and hence solutions of the original nonlinear equations. The existence

of such an operator also has a group-theoretical basis since the recursion operator is

completely determined by the symmetries of the determining equations for the hydro-

dynamic symmetries, that is, by the “symmetries of symmetries.”

This shows a group-theoretical origin of linearizing transformations and of the in-

tegrability property by which we mean a possibility to construct infinitely many exact

solutions. The Hamiltonian structure, if it exists, does not improve the integrability
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properties of equations of the hydrodynamic type. We have to conclude that the sym-

metry is the major necessary property that insures the integrability which was the

original idea of S. Lie.
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