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We deal with a CR-submanifold M of a para-Kählerian manifold M̃ , which carries a J-skew-
symmetric vector field X. It is shown that X defines a global Hamiltonian of the symplectic
form Ω onM� and JX is a relative infinitesimal automorphism of Ω. Other geometric prop-
erties are given.
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1. Introduction. CR-submanifoldsM of some pseudo-Riemannian manifolds M̃ have

been first investigated by Rosca [10], and also studied in [2, 3, 11].

If M̃ is a para-Kählerian manifold, it has been proved that any coisotropic submani-

foldM of M̃ is a CR-submanifold (such CR-submanifolds have been denominated CICR-

submanifolds [6]).

In this note, one considers a foliate CICR-submanifold M of a para-Kählerian man-

ifold M̃(J,Ω̃, g̃). It is proved that the necessary and sufficient condition in order that

the leaf M� of the horizontal distribution D� on M carries a J-skew-symmetric vector

field X, that is, ∇X = X ∧ JX, is that the vertical distribution D⊥ on M is autoparal-

lel.

In this case, M may be viewed as the local Riemannian product M =M�×M⊥, where

M� is an invariant totally geodesic submanifold of M and M⊥ is an isotropic totally

geodesic submanifold.

Furthermore, if Ω is the symplectic form of M�, it is shown that X is a global Hamil-

tonian of Ω and JX is a relative infinitesimal automorphism of Ω (a similar discussion

can be made for proper CR-submanifolds of a Kählerian manifold).

2. Preliminaries. Let M̃(J,Ω̃, g̃) be a 2m-dimensional para-Kählerian manifold,

where, as is well known [7], the triple (J,Ω̃, g̃) of tensor fields is the paracomplex oper-

ator, the symplectic form, and the para-Hermitian metric tensor field, respectively.

If ∇̃ is the Levi-Civita connection on M̃ , these manifolds satisfy

J2 = Id, dΩ̃ = 0,
(∇̃J)Z̃ = 0, Z̃ ∈ ΓTM̃. (2.1)

Let x : M → M̃ be the immersion of an l-codimensional submanifold M , l < m, in

M̃ and let T⊥p M and TpM be the normal space and the tangent space at each point

p ∈M .
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If J(T⊥p M) ⊂ TpM , then M is said to be a coisotropic submanifold of M̃ (see [2]). If

W̃ = vect{ha,ha∗ ; a= 1, . . . ,m, a∗ = a+m} is a real Witt vector basis on M̃ , one has

g̃
(
ha,hb

)= g̃(ha∗ ,hb∗)= δab. (2.2)

Next, if W̃∗ = {ωa,ωa∗} denotes the associated cobasis of W̃ , then g̃ and Ω̃ are

expressed by

g̃ = 2
∑
ωa⊗ωa∗ , (2.3)

Ω̃ =
∑
ωa∧ωa∗ . (2.4)

We recall also that W̃ may split as

W̃ = S̃+ S̃∗, (2.5)

where the pairing (S̃, S̃∗) defines an involutive automorphism of square 1, that is,

Jha = ha∗ , Jha∗ = ha, (2.6)

and the local connection forms θ̃AB ∈Λ1M̃ , A,B ∈ {1,2, . . . ,2m} satisfy

θ̃a
∗
b = 0, θ̃ab∗ = 0, θ̃ab + θ̃b

∗
a∗ = 0. (2.7)

It has been proved in [10] that any coisotropic submanifold M of a para-Kählerian

manifold M̃ is a CR-submanifold of M̃ and such a submanifold has been called a CICR-

submanifold [6].

Let D� : p → D�p = TpM \ J(T⊥p M) and D⊥ : p → D⊥p = J(T⊥p M) ⊂ TpM be the two

complementary differentiable distributions on M . One has

JD�p =D�p , JD⊥p = T⊥p M, (2.8)

and D� (resp., D⊥) is called the horizontal (resp., vertical) distribution on M .

As in the Kählerian case, the vertical distribution D⊥ is always involutive.

If M is defined by the Pfaffian system

ωr = 0, r = 2m+1−l, . . . ,2m, (2.9)

then one has

D�p =
{
hi,hi∗ , i= 1, . . . ,m−l, i∗ = i+m},

D⊥p =
{
hr , r =m−l+1, . . . ,m

}
.

(2.10)

Further denote by

ϕ⊥ =ωm−l+1∧···∧ωm (2.11)

the simple unit form which corresponds to D⊥.
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Then, in order that the distributionD� be also involutive, it is necessary and sufficient

that ϕ⊥ be a conformal integral invariant of D�, that is,

�D�ϕ⊥ = fϕ⊥ (2.12)

for a certain scalar function f .

By a standard calculation, one derives that the above equation implies

θri = 0, (2.13)

and in this case, one may write

dϕ⊥ = −
(∑

θrr
)
∧ϕ⊥, (2.14)

that is, ϕ⊥ is exterior recurrent.

In this case, as is known [2, 10], M is a foliated CR-submanifold of M̃ .

We will investigate now the case when the leaf M� of D� carries a J-skew-symmetric

vector field X, that is,

∇X =X∧JX. (2.15)

One may express ∇X as

∇X = (JX)�⊗X−X�⊗JX, (2.16)

where

X =Xihi+Xi∗hi∗ =Xiωi∗ +Xi∗ωi. (2.17)

Recalling Cartan structure equations [4],

∇h= θ⊗e∈A1(M,TM),

dω=−θ∧ω,
dθ =−θ∧θ+Θ.

(2.18)

In the above equations, θ, respectivelyΘ, are the local connection forms in the bundle

W , respectively the curvature forms on M .

Then making use of Cartan structure equations, one finds by a standard calculation

that (2.16) implies that the vertical distribution D⊥ is autoparallel, that is,∇Z′Z′′ ∈D⊥,

for all Z′,Z′′ ∈D⊥, which, in terms of connection forms, is expressed by

θir = 0. (2.19)

We agree to call θir and θri the mixed connection forms.

Taking account of (2.13) and (2.19), one derives from (2.16)

dX� = 2(JX)�∧X�, (2.20)

which agrees with the general equation of skew-symmetric killing vector fields [5, 8].
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Next, by (2.1), one has

∇JX = (JX)�⊗JX−X�⊗X, (2.21)

which shows that JX is a gradient vector field.

Hence, we may state the following theorem.

Theorem 2.1. Let x : M → M̃ be an improper immersion of a CR-submanifold in a

para-Kählerian manifold M̃(J,Ω̃, g̃) and let D� (resp., D⊥) be the horizontal distribution

(resp., the vertical distribution) onM . IfM is a foliate CR-submanifold, then the necessary

and sufficient condition in order that the leafM� ofD� carries a J-skew-symmetric vector

field X is that D⊥ is an autoparallel foliation. In this case, the CR-submanifold M under

consideration may be viewed as the local Riemannian product M =M�×M⊥, where M�

is an invariant totally geodesic submanifold of M and M⊥ is an isotropic totally geodesic

submanifold. In addition, in this case, JX is a gradient vector field.

3. Properties. In this section, we will pointout some additional properties of X in-

volving the symplectic form Ω of M� and the exterior covariant differential d∇ of ∇X.

Operating on (2.16) and (2.21), one derives by a short calculation

d∇(∇X)=∇2X = 2
(
X�∧(JX)�)⊗JX,

d∇(∇JX)=∇2JX = 2
(
X�∧(JX)�)⊗X, (3.1)

which gives

∇2(X+JX)= 2
(
X�∧(JX)�)⊗(X+JX),

∇2(X−JX)=−2
(
X�∧(JX)�)⊗(X−JX). (3.2)

Therefore, we agree to defineX+JX andX−JX as 2-covariant recurrent vector fields.

It should also be noticed that by reference to the general formula

∇V
(
X1∧···∧Xp

)=∑(
X1∧···∧∇VXj∧···∧Xp

)
, V ∈ ΓTM, (3.3)

one finds by (2.15) and (2.21)

∇V
(
X∧JX)= 2g

(
V,JX

)(
X∧JX). (3.4)

This shows that the covariant derivative of X∧JX with respect to any vector field V
is proportional to X∧JX.

On the other hand, by the general formula

∇2V
(
Z,Z′

)= R(Z,Z′)V, (3.5)
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where R denotes the curvature tensor field and V , Z , Z′ are vector fields, one has (see

also [9])

�(Z,V)= TrR(·,Z)V , (3.6)

where � is the Ricci tensor field of ∇.

Since in the case under consideration one must take in (3.6) the para-Hermitian trace,

then setting in (3.6) Z = V =X, one finds

�(X,X)= 0, (3.7)

that is, the Ricci curvature of X vanishes.

Denote by Ω̃ the symplectic form of M̃ , then Ω = Ω̃|M� is a symplectic form of rank

equal to the dimension of M�, that is, in our case, 2(m−l).
Then, if �Z : Z →−iZΩ is the symplectic isomorphism, by a short calculation and on

behalf of (2.4), one gets

�X =−(JX)�, (3.8)

and since JX is a gradient vector field, we conclude according to a known definition

(see also [1]) that X is a global Hamiltonian of Ω.

In a similar manner, one finds

�(JX)=X�, (3.9)

and by (2.20), it follows that

d
(
�JXΩ

)= 0, (3.10)

which shows that JX is a relative infinitesimal automorphism of Ω [1].

We state the following theorem.

Theorem 3.1. LetM be a CR-submanifold of a para-Kählerian manifold M̃ and let Ω
be the symplectic form on M�. If M carries a J-skew-symmetric vector field X, then the

following properties hold:

(i) X is a global Hamiltonian of Ω and JX is a relative infinitesimal automorphism

of Ω;

(ii) the Ricci tensor field �(X,X) vanishes;

(iii) the vector fields X+JX and X−JX are 2-covariant recurrent.
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