q-RIEMANN ZETA FUNCTION

TAEKYUN KIM

Received 19 July 2003

We consider the modified q-analogue of Riemann zeta function which is defined by $\zeta_{q}(s)=$ $\sum_{n=1}^{\infty}\left(q^{n(s-1)} /[n]^{s}\right), 0<q<1, s \in \mathbb{C}$. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some identities of q-Bernoulli numbers using nonArchimedean q-integration.

2000 Mathematics Subject Classification: 11S80, 11B68.

1. Introduction. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$, and \mathbb{C}_{p} will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of \mathbb{Q}_{p}.

The p-adic absolute value in \mathbb{C}_{p} is normalized so that $|p|_{p}=1 / p$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, we normally assume $|q|<1$. If $q \in \mathbb{C}_{p}$, then we normally assume $|q-1|_{p}<p^{-1 /(p-1)}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the notation

$$
\begin{equation*}
[x]=[x: q]=\frac{1-q^{x}}{1-q}=1+q+q^{2}+\cdots+q^{x-1} \tag{1.1}
\end{equation*}
$$

Note that $\lim _{q \rightarrow 1}[x]=x$ for $x \in \mathbb{Z}_{p}$ in the p-adic case.
Let $U D\left(\mathbb{Z}_{p}\right)$ be denoted by the set of uniformly differentiable functions on \mathbb{Z}_{p}.
For $f \in U D\left(\mathbb{Z}_{p}\right)$, we start with the expression

$$
\begin{equation*}
\frac{1}{\left[p^{N}\right]} \sum_{0 \leq j<p^{N}} q^{j} f(j)=\sum_{0 \leq j<p^{N}} f(j) \mu_{q}\left(j+p^{N} \mathbb{Z}_{p}\right) \tag{1.2}
\end{equation*}
$$

representing the analogue of Riemann's sums for f (cf. [4]).
The integral of f on \mathbb{Z}_{p} will be defined as the limit $(N \rightarrow \infty)$ of these sums, which exists. The p-adic q-integral of a function $f \in U D\left(\mathbb{Z}_{p}\right)$ is defined by (see [4])

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]} \sum_{0 \leq j<p^{N}} f(j) q^{j} . \tag{1.3}
\end{equation*}
$$

For d that is a fixed positive integer with $(p, d)=1$, let

$$
\begin{align*}
X=X_{d} & =\varliminf_{N} \frac{\mathbb{Z}}{d p^{N} \mathbb{Z}}, \quad X_{1}=\mathbb{Z}_{p}, \\
X^{*} & =\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p}, \tag{1.4}\\
a+d p^{N} \mathbb{Z}_{p} & =\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\},
\end{align*}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$.
Let \mathbb{N} be the set of positive integers. For $m, k \in \mathbb{N}$, the q-Bernoulli polynomials, $\beta_{m}^{(-m, k)}(x, q)$, of higher order for the variable x in \mathbb{C}_{p} are defined using p-adic q-integral by (cf. [4])

$$
\begin{align*}
& \beta_{m}^{(-m, k)}(x, q) \\
&=\underbrace{\int_{\mathbb{Z}_{p}} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+x_{1}+x_{2}+\cdots+x_{k}\right]^{m} \tag{1.5}\\
& \cdot q^{-x_{1}(m+1)-x_{2}(m+2)-\cdots-x_{k}(m+k)} d \mu_{q}\left(x_{1}\right) d \mu_{q}\left(x_{2}\right) \cdots d \mu_{q}\left(x_{k}\right) .
\end{align*}
$$

Now, we define the q-Bernoulli numbers of higher order as follows (cf. [2, 4, 7]):

$$
\begin{equation*}
\beta_{m}^{(-m, k)}\left(=\beta_{m}^{(-m, k)}(q)\right)=\beta_{m}^{(-m, k)}(0, q) . \tag{1.6}
\end{equation*}
$$

By (1.5), it is known that (cf. [4])

$$
\begin{align*}
\beta_{m}^{(-m, k)} & =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]^{k}} \sum_{x_{1}=0}^{p^{N}-1} \cdots \sum_{x_{k}=0}^{p^{N}-1}\left[x_{1}+\cdots+x_{k}\right]^{m} q^{-x_{1} m-x_{2}(m+1)+\cdots-x_{k}(m+k-1)} \tag{1.7}\\
& =\frac{1}{(1-q)^{m}} \sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \frac{(i-m)(i-m-1) \cdots(i-m-k+1)}{[i-m][i-m-1] \cdots[i-m-k+1]}
\end{align*}
$$

where $\binom{m}{i}$ are the binomial coefficients.
Note that $\lim _{q \rightarrow 1} \beta_{m}^{(-m, k)}=B_{m}^{(k)}$, where $B_{m}^{(k)}$ are ordinary Bernoulli numbers of order k (cf. [2, 3, 5, 7, 9]). By (1.5) and (1.7), it is easy to see that

$$
\begin{align*}
\beta_{m}^{(-m, 1)}(x, q) & =\sum_{i=0}^{m}\binom{m}{i} q^{x i} \beta_{i}^{(-m, 1)}[x]^{m-i} \\
& =\frac{1}{(1-q)^{m}} \sum_{j=0}^{m} q^{j x}\binom{m}{j}(-1)^{j} \frac{j-m}{[j-m]} . \tag{1.8}
\end{align*}
$$

We modify the q-analogue of Riemann zeta function which is defined in [1] as follows: for $q \in \mathbb{C}$ with $0<q<1, s \in \mathbb{C}$, define

$$
\begin{equation*}
\zeta_{q}(s)=\sum_{n=1}^{\infty} \frac{q^{(s-1) n}}{[n]^{s}} . \tag{1.9}
\end{equation*}
$$

The numerator ensures the analytic continuation for $\mathfrak{R}(s)>1$. In (1.9), we can consider the following problem.
"Are there q-Bernoulli numbers which can be viewed as interpolation of $\zeta_{q}(s)$ at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers?"

In this paper, we give the value $\zeta_{q}(-m)$ for $m \in \mathbb{N}$, which is the answer of the above problem, and construct a new complex q-analogue of Hurwitz's zeta function and $q-L$ series. Also, we will treat some interesting identities of q-Bernoulli numbers.
2. Some identities of q-Bernoulli numbers $\beta_{m}^{(-m, 1)}$. In this section, we assume $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 /(p-1)}$. By (1.5), we have

$$
\begin{align*}
\beta_{n}^{(-n, 1)}(x, q) & =\int_{X} q^{-(n+1) t}[x+t]^{n} d \mu_{q}(t) \\
& =[d]^{n-1} \sum_{i=0}^{d-1} q^{-n i} \int_{\mathbb{Z}_{p}} q^{-(n+1) d x}\left[\frac{x+i}{d}: q^{d}\right]^{n} d \mu_{q^{d}}(x) . \tag{2.1}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\beta_{n}^{(-n, 1)}(x, q)=[d]^{n-1} \sum_{i=0}^{d-1} q^{-n i} \beta_{n}^{(-n, 1)}\left(\frac{x+i}{d}, q^{d}\right) \tag{2.2}
\end{equation*}
$$

where d, n are positive integers.
If we take $x=0$, then we have

$$
\begin{equation*}
[n] \beta_{m}^{(-m, 1)}-n[n]^{m} \beta_{m}^{(-m, 1)}\left(q^{n}\right)=\sum_{k=0}^{m-1}\binom{m}{k}[n]^{k} \beta_{k}^{(-m, 1)}\left(q^{n}\right) \sum_{j=1}^{n-1} q^{-(m-j) k}[j]^{m-k} \tag{2.3}
\end{equation*}
$$

It is easy to see that $\lim _{q \rightarrow 1} \beta_{m}^{(-m, 1)}=B_{m}$, where B_{m} are ordinary Bernoulli numbers (cf. [7]).

Remark 2.1. By (2.3), note that

$$
\begin{equation*}
n\left(1-n^{m}\right) B_{m}=\sum_{k=0}^{m-1}\binom{m}{k} n^{k} B_{k} \sum_{j=1}^{n-1} j^{m-k} \tag{2.4}
\end{equation*}
$$

Let $F_{q}(t)$ be the generating function of $\beta_{n}^{(-n, 1)}$ as follows:

$$
\begin{equation*}
F_{q}(t)=\sum_{k=0}^{\infty} \beta_{k}^{(-k, 1)} \frac{t^{k}}{k!} \tag{2.5}
\end{equation*}
$$

By (1.7) and (2.5), we easily see that

$$
\begin{equation*}
F_{q}(t)=-\sum_{m=0}^{\infty}\left(m \sum_{n=0}^{\infty} q^{-m n}[n]^{m-1}\right) \frac{t^{m}}{m!} . \tag{2.6}
\end{equation*}
$$

Through differentiating both sides with respect to t in (2.5) and (2.6), and comparing coefficients, we obtain the following proposition.

Proposition 2.2. For $m>0$, there exists

$$
\begin{equation*}
-\frac{\beta_{m}^{(-m, 1)}}{m}=\sum_{n=1}^{\infty} q^{-n m}[n]^{m-1} . \tag{2.7}
\end{equation*}
$$

Moreover, $\beta_{0}^{(0,1)}=(q-1) / \log q$.
Remark 2.3. Note that Proposition 2.2 is a q-analogue of $\zeta(1-2 m)$ for any positive integer m.

Let χ be a primitive Dirichlet character with conductor $f \in \mathbb{N}$.
For $m \in \mathbb{N}$, we define

$$
\begin{equation*}
\beta_{m, X}^{(-m, 1)}=\int_{X} q^{-(m+1) x} X(x)[x]^{m} d \mu_{q}(x), \quad \text { for } m \geq 0 \tag{2.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\beta_{m, X}^{(-m, 1)}=[d]^{m-1} \sum_{i=0}^{d-1} \chi(i) q^{-m i} \beta_{m}^{(-m, 1)}\left(\frac{i}{d}, q^{d}\right) \tag{2.9}
\end{equation*}
$$

3. q-analogs of zeta functions. In this section, we assume $q \in \mathbb{C}$ with $|q|<1$. In [1], the q-analogue of Riemann zeta function was defined by (cf. [1])

$$
\begin{equation*}
\zeta_{q}^{*}(s)=\sum_{n=1}^{\infty} \frac{q^{n s}}{[n]^{s}}, \quad \Re(s)>0 . \tag{3.1}
\end{equation*}
$$

Now, we modify the above q-analogue of Riemann zeta function as follows: for $q \in \mathbb{C}$ with $0<|q|<1, s \in \mathbb{C}$, define

$$
\begin{equation*}
\zeta_{q}(s)=\sum_{n=1}^{\infty} \frac{q^{(s-1) n}}{[n]^{s}} \tag{3.2}
\end{equation*}
$$

By (2.5), (2.6), and (2.7), we obtain the following proposition.
Proposition 3.1. For $m \in \mathbb{N}$, there exists
(i) $\zeta_{q}(1-m)=-\beta_{m}^{(-m, 1)} / m$, for $m \geq 1$;
(ii) $\zeta_{q}(s)$ having simple pole at $s=1$ with residue $(q-1) / \log q$.

By (1.7) and (1.8), we see that

$$
\begin{equation*}
\beta_{n}^{(-n, 1)}(x, q)=-n \sum_{k=0}^{\infty}\left([k] q^{x}+[x]\right)^{n-1} q^{-n(k+x)}, \quad \text { where } 0 \leq x<1 \tag{3.3}
\end{equation*}
$$

Hence, we can define q-analogue of Hurwitz ζ-function as follows: for $s \in \mathbb{C}$, define

$$
\begin{equation*}
\zeta_{q}(s, x)=\sum_{n=0}^{\infty} \frac{q^{(s-1)(n+x)}}{\left([n] q^{x}+[x]\right)^{s}} . \tag{3.4}
\end{equation*}
$$

Note that $\zeta_{q}(s, x)$ has an analytic continuation in \mathbb{C} with only one simple pole at $s=1$.
By (3.3) and (3.4), we have the following theorem.
Theorem 3.2. For any positive integer k, there exists

$$
\begin{equation*}
\zeta_{q}(1-k, x)=-\frac{\beta_{k}^{(-k, 1)}(x, q)}{k} \tag{3.5}
\end{equation*}
$$

Let χ be Dirichlet character with conductor $d \in \mathbb{N}$. By (2.9), the generalized q-Bernoulli numbers with χ can be defined by

$$
\begin{equation*}
\beta_{m, X}^{(-m, 1)}=[d]^{m-1} \sum_{i=0}^{d-1} \chi(i) q^{-m i} \beta_{m}^{(-m, 1)}\left(\frac{i}{d}, q^{d}\right) \tag{3.6}
\end{equation*}
$$

For $s \in \mathbb{C}$, we define

$$
\begin{equation*}
L_{q}(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n) q^{(s-1) n}}{[n]^{s}} \tag{3.7}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
L_{q}(\chi, s)=[d]^{-s} \sum_{a=1}^{d} \chi(a) q^{(s-1) a} \zeta_{q^{d}}\left(s, \frac{a}{d}\right) \tag{3.8}
\end{equation*}
$$

By (3.6), (3.7), and (3.8), we obtain the following theorem.
Theorem 3.3. Let k be a positive integer. Then there exists

$$
\begin{equation*}
L_{q}(1-k, \chi)=-\frac{\beta_{k, X}^{(-k, 1)}}{k} \tag{3.9}
\end{equation*}
$$

Let a and F be integers with $0<a<F$. For $s \in \mathbb{C}$, we consider the functions $H_{q}(s, a, F)$ as follows:

$$
\begin{equation*}
H_{q}(s, a, F)=\sum_{m \equiv a(F), m>0} \frac{q^{m(s-1)}}{[m]^{s}}=[F]^{-s} \zeta_{q^{F}}\left(s, \frac{a}{F}\right) . \tag{3.10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
H_{q}(1-n, a, F)=-\frac{[F]^{n-1}}{n} \beta_{n}^{(-n, 1)}\left(\frac{a}{F}, q^{F}\right), \tag{3.11}
\end{equation*}
$$

where n is any positive integer.

Therefore, we obtain the following theorem.
Theorem 3.4. Let a and F be integers with $0<a<F$. For $s \in \mathbb{C}$, there exists
(i) $H_{q}(1-n, a, F)=-\left([F]^{n-1} / n\right) \beta_{n}^{(-n, 1)}\left(a / F, q^{F}\right)$;
(ii) $H_{q}(s, a, F)$ having a simple pole at $s=1$ with residue $(1 /[F] F)\left(\left(q^{F}-1\right) / \log q\right)$.

In a recent paper, the q-analogue of Riemann zeta function was studied by Cherednik (see [1]). In [1], we can consider the q-Bernoulli numbers which can be viewed as an interpolation of the q-analogue of Riemann zeta function at negative integers. In this paper, we have shown that the q-analogue of zeta function interpolates q-Bernoulli numbers at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers (cf. [2, 5, 7]).

Remark 3.5. Let $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 /(p-1)}$. Then the p-adic q-gamma function was defined as (see [8])

$$
\begin{equation*}
\Gamma_{p, q}(n)=(-1)^{n} \prod_{1 \leq j<n,(j, p)=1}[j] . \tag{3.12}
\end{equation*}
$$

For all $x \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\Gamma_{p, q}(x+1)=\epsilon_{p, q}(x) \Gamma_{p, q}(x), \tag{3.13}
\end{equation*}
$$

where $\epsilon_{p, q}(x)=-[x]$ for $|x|_{p}=1$, and $\epsilon_{p, q}(x)=-1$ for $|x|_{p}<1$, (see [8]). By (3.13), we easily see that (cf. [6])

$$
\begin{equation*}
\log \Gamma_{p, q}(x+1)=\log \epsilon_{p, q}(x)+\log \Gamma_{p, q}(x) \tag{3.14}
\end{equation*}
$$

By the differentiation of both sides in (3.14), we have (cf. [6])

$$
\begin{equation*}
\frac{\Gamma_{p, q}^{\prime}(x+1)}{\Gamma_{p, q}(x+1)}=\frac{\Gamma_{p, q}^{\prime}(x)}{\Gamma_{p, q}(x)}+\frac{\epsilon_{p, q}^{\prime}(x)}{\epsilon_{p, q}(x)} . \tag{3.15}
\end{equation*}
$$

By (3.15), we easily see that (cf. [6])

$$
\begin{equation*}
\frac{\Gamma_{p, q}^{\prime}(x)}{\Gamma_{p, q}(x)}=\left(\sum_{j=1}^{x-1} \frac{q^{j}}{[j]}\right) \frac{\log q}{q-1}+\frac{\Gamma_{p, q}^{\prime}(1)}{\Gamma_{p, q}(1)} . \tag{3.16}
\end{equation*}
$$

Define

$$
\begin{equation*}
L_{p, q}(x)=\sum_{j=0}^{x-1} \frac{\epsilon_{p, q}^{\prime}(j)}{\epsilon_{p, q}(j)} \tag{3.17}
\end{equation*}
$$

It is easy to check that $L_{p, q}(1)=0$. By (3.15), we also see that

$$
\begin{equation*}
\frac{\Gamma_{p, q}^{\prime}(x)}{\Gamma_{p, q}(x)}=L_{p, q}(x)+\frac{\Gamma_{p, q}^{\prime}(1)}{\Gamma_{p, q}(1)}, \quad \text { for } x \in \mathbb{Z}_{p}, \tag{3.18}
\end{equation*}
$$

where $L_{p, q}(x)$ denotes the indefinite sum of $\epsilon_{p, q}^{\prime}(x) / \epsilon_{p, q}(x)$. By using (3.18) after substituting $x=1$, we obtain $L_{p, q}(1)=0$. The classical Euler constant was known as $\gamma=$ $-\Gamma^{\prime}(1) / \Gamma(1)$. In [8], Koblitz defined the p-adic q-Euler constant $\gamma_{p, q}=-\Gamma_{p, q}^{\prime}(1) / \Gamma_{p, q}(1)$ (cf. [6, 8]). By using (3.16) and the congruence of Andrews (cf. [3]), we obtain the following congruence:

$$
\begin{equation*}
\frac{q-1}{\log q}\left(\frac{\Gamma_{p, q}^{\prime}(p)}{\Gamma_{p, q}(p)}-\gamma_{p, q}\right)=\sum_{j=1}^{p-1} \frac{q^{j}}{[j]} \equiv \frac{p-1}{2}(q-1)(\bmod [p]) . \tag{3.19}
\end{equation*}
$$

Acknowledgments. The author expresses his gratitude to the referees for their valuable suggestions and comments. This work was supported by the Korea Research Foundation Grant (KRF-2002-050-C00001).

References

[1] I. Cherednik, On q-analogues of Riemann's zeta function, Selecta Math. (N.S.) 7 (2001), no. 4, 447-491.
[2] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86.
[3] _, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187.
[4] _ q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
[5] ___, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.
[6] T. Kim, L. C. Jang, K-H. Koh, and I.-S. Pyung, A note on analogue of Γ-functions, Proceedings of the Conference on 5th Transcendental Number Theory, vol. 5, no. 1, Gakushuin University, Tokyo, 1997, pp. 37-44.
[7] T. Kim and S.-H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
[8] N. Koblitz, q-extension of the p-adic gamma function, Trans. Amer. Math. Soc. 260 (1980), no. 2, 449-457.
[9] Q.-M. Luo, Z.-L. Wei, and F. Qi, Lower and upper bounds of ζ (3), Adv. Stud. Contemp. Math. (Kyungshang) 6 (2003), no. 1, 47-51.

Taekyun Kim: Institute of Science Education, Kongju National University, Kongju 314-701, Korea

E-mail address: tkim@kongju.ac.kr

