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Let § be a one-dimensional Lubin-Tate formal group over Z,. Colmez (1998) and Perrin-Riou
(1994) proved an explicit reciprocity law for tempered distributions over the formal group
G- In this paper, the general explicit reciprocity law over the formal group § is proved.

2000 Mathematics Subject Classification: 11S40.

1. Formal groups. In this section, we review some basic facts on formal groups.
De Shalit [3, Chapter I] is the source for this section. We just give the description on
Coleman power series and the associated measures, and then study such measures
extensively. These measures are the basic examples for our theory. For admissible dis-
tributions, see [8].

Let p be an odd prime. For « € Z;, let 71 = p«. Let fr(x) € Z,[[x]] be a Frobenius
corresponding to 1T, SO fr(x) = mx(moddeg?2), fr(x) = x” (modp). Let § be the one-
dimensional Lubin-Tate formal group over Z,, corresponding to fr, let [+] denote the
formal addition. Let W := {x € C, | f" (x) =0}, Kn = Q, (W}1), Kew = Up21Ky,. Hence,
K /Qy is a totally ramified extension with Galois group Zy;. We call this tower the Lubin-
Tate tower corresponding to the formal group §. Let R = Z,[[T]], U = limK};, where
the map is with respect to the norm map. Let n : G, — % be an isomorphism, then
ne @%\T[[T]] and n(T) = QT + - - -, such that Q¥ = , where @ = Frob, is a generator
of Gal(Q;;V/Qp). We have fon=n%o[p], where [p] = (1+T)? —1 is the Frobenius of
the formal group G,,. Let wy, = n® " (Cyn —1). Then it is easy to see that

(i) wn € WA,

(1) fr(wyn) = wWn-1,
as fr(wn) = fan® " (Con —1) =% " o [p1(Cpn —1) = n® " (Cpn1 = 1) = Wt

Let T = @W,(T") be the Tate module, where the inverse limit is taken with respect
to fr. Let k : Gal(Ko /Qp) — Zj; be the character given by the action of Gg, on Tr. If
the formal group is G,,, this character is just x, the cyclotomic character. We know that
K = Xy, where y is an unramified character.

Assume B € A, then Coleman’s theorem tells us that there is a unique (Coleman)
power series gg € Z,[[T]] such that

(i) gp(w;) =P, foralli=1,

(i) gg o fr(x) = [Tyenrgp(x[+]Iw).

To get a rough idea for what Coleman power series is, we look at some examples.
Consider the G,, case, let B, = (2) + w1 (2)(Cpn — 1), where w is the Teichmiiller
character. Then we have gg(T) = (2) + w1 (2)T. If we take B, = (g‘jn - 1)/(§Sn -1),
then gg(T) = (1+T)*-1)/((1+T)? -1).

-n+l1
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Assume B € A such that §, = 1(mod wy). Then gg(T) = 1mod(p,T), where p is the

maximal ideal in Z,, hence we can define

10mégﬁ(T):=loggﬂ(T)—l > loggp(T[+]w), (1.1)

wewk

property (ii) of the Coleman power series implies that faégﬁ (T) has integral coefficients.
Define an algebraic distribution pg € 9,,(Z,, Q") such that

| a1 ~10gggonc. (1.2)
p

PROPOSITION 1.1. (i) The restriction pg |z; is a measure and its Amice transformation

is loggp o n(T). -
(ii) The distribution pg can be extended to a distribution in QDI(QV,Q%V)“’ZI and has
the following Galois property:

U(Jpr(’OUB) = Jpr(LU(U)X)IJﬁ, Vo, (1.3)

forall f(x):Qp — Qp.

PROOF. It is easy to see that

JX(1+T)XHﬁ=J (1+T)"uﬁ—J (1+T)*ug. (1.4)
Zp Zp vrZp
By property (ii),
gpofnX) = [] gp(X[+]w). (1.5)
weWT,

Put X = n(T), then

gpofre(n(D) = [] gp(n(D+In(€-1)) = [] gsn(C1+T)-1).  (1.6)

Cepp Cepp
By using fron=n?ec[p], we see

(ggem)?olp]l=]](gpm) (CA+T)-1). (1.7)
4

Taking logarithm and using the definition of g, we have
cp(f (1+[v]T)xus) :ZJ €X(1+T)XIJ,BZPJ (1+T)*ug. (1.8)
Zp z Jzp pZp

We write down this useful property as follows.
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PROPOSITION 1.2. For g as above,

CP(L (1+T)”"uﬁ) =19LZ (1+T)*pg. (1.9)
r 4

Now continue the proof of Proposition 1.1.
The integral

1
LX (1+T)*pg =log ggn(T) ~ @ (logggon? o ([p1T))
P

1
=1Oggﬁ°nfgloggﬁofnon(T) (1.10)

= loggpen(T)
has integral coefficients, hence pg \z; is a measure. By Proposition 1.2 we extend pg to
Qp by defining

Jf f(x)u;s=v"fp’"f f(p™"x) g, (1.11)
p~"Zp Zp

for any f(x) with supportin p~"Z,.Itis easy to see that this definition does not depend
on n.
To prove the second property, since

n(T) : Gy — Fr, (1.12)

we can show that
o(n(T)) =n((1+T)¥7' -1), Vo €Gq,. (1.13)

To see this, define
he(T) =0 (n(T)) —n(A+T)* 7 -1). (1.14)

For Ty, = Cpn — 1, n(Ty) € WY,

(o) (0Tn) = 0(n(Tn)) = [k(0)]n(Tn) = n([k(0)]Tn)

- (1.15)
=0 =1) =n((+0 )" 1),

hence hs(oT,) = 0 for all n > 1. The function h,(T) has infinitely many zeros by
Weierstrass lemma, then h,(T) = 0.
From this property, we see that

U(L (1+T)XUB> =0 (logggon(T)) =logggoo(n(T))
p
(1.16)
=loggpgon((1 + )W) _ 1) = J (1 +T)w(rr)xuﬁ,

Zp
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so for general f, we have
U(Lpf(xwg) - Lpf(lll((T)x)uﬁ- (1.17)

From the extension definition (1.11) of ug, we have, for all f,

U(J@nf(x)uﬁ) = Jpr(w(U)x)ug. (1.18)

To show that pg is 1-admissible, by definition and [8, Proposition 3.3], we only need to
show that pn(1-J) faﬂ,nzv (x —a)lug is r-bounded for j = 0,1. For j = 0, if a # 0, then
since pglz; is a measure, the integral p" Ja +pnz, Mp 1s always bounded. If a = 0, then
p" fpnlp Ug = (p”(fzp ug) = @loggp(0) =loggp(0), hence bounded.

For j=1,if a+0, then fa+pn1p X Hg is bounded. If a = 0, then fpnzp XHg = cp”(fzp XUp) =
P (Q-(g5(0)/gp(0))) = x™Q(g(0)/gp(0)), hence bounded. O

Next, we will restrict to the Gy, case. pg is an example which is a distribution on Q,
but not a measure. We will show an example of distribution which is not a tempered
distribution. pg can be extended to negative power. For k > 0, define

J x *ug = (1 —p’k’l)flJ‘ § x *ug, (1.19)
Zp Zp
define vg € QD;g(Zp,Km,cyc) such that
Ky, — ok ax \ Hg
x*vgi= k!J E(—)—, k=0. 1.20
Iaﬂo"lp 4 P Zp p" xk ( )
The relation between pg and vg is that
Vﬁ®%=@a1g<ul;®%>. (1.21)

LEMMA 1.3. The distribution vg is a distribution over Z,, but it is not a tempered
distribution ifloggp(T) # loggg(0) (mod(p, TP~1)).

PROOF. The additivity of vg follows from the relation

' ((a+ipm)x Pf( aad >, x=0
> s(w) = prt (modp). (1.22)
i=0 p 0, x#0

Assume ﬁ:ggg(T) =Y a;T!, since faggg # 0mod(p,TP~1), hence there exists i, 1 <i <
p—1,such thata; # 0(mod p). Then [; +pnz, VB =108 By has denominator with valuation
n-1-1i/(p—1), so vg is not a measure.
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If vg is r-admissible, assume r € N, then for all X,

p[nmmj (x —a)lvg

a+p"Zy

sup
aeX

(1.23)

is r-bounded. Taking j = 7, we would have that [,

n — oo,

pnz, (X —a)"vg is bounded when

We will calculate the valuation of |, ,nz ,(x—a)'vg.Fora=1,
v r v
j (x-1)"vg=> ( ) -(—1)’*kj xkvg = > dy. (1.24)
a+pnZy k=0 k 1+pnzy k=0
CrAamM 14. v(dy) >i/(p—-1)—(n—-1) =v(dy).

To prove the claim, keeping using the relation

= ) )
Lzz,,s(pm)xk pk+l ng pm-1 ) xk (1.25)

and the decomposition

T, =TyupZyu---up" ' Zyup"T,, (1.26)

we have

J xkvg
1+pnz,

e 2
p 2, \pn
k(S e, ()
Z iz pnz, S\ pn ) xk (1.27)
n-1
1 X\ Mg 1 Hg
_pk
=p "'k!< Z(:) pikeD) JZ;‘S(pn 1>Xk T pnken sz F)
i=

n-1
1 X '\ Hp 1 k-1 [ HB
_ kn | _ k-1
=P k!<izo itk D) L; E<pn 1>xk T pnkn (1-p™7) Jz; P

The last two terms for dy equal

1 J (x) p—-1 1 ~
e + = lo -1)+(p—1lo 0)). 1.28
it S JHE et [ e = —— (loggp(C1-1) + (p—1)loggs(0)).  (1.28)

Assume HggB(T) =ap+a,T+---.From the hypothesis we know that there exists a
minimal i with 1 <i < p—1 such that a; # Omod p, hence the above expression equals

i (pao+ai(Ci—-1)+---+a;(Gi-1)" +---), (1.29)
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and therefore v(dy) = i/(p—1) — (n—1). For k > 0, we easily see that v(dy) > k —
(n—1) > v(do), hence the claim follows. The sequence f“p% (x —1)"vg could not be
bounded, hence this completes the proof of the lemma. ]

If ¢ R, taking j = [v], then pt"""UDI [, ) (x —1)[")vg cannot tend to zero.

2. Galois action on B;k. Let § be a one-dimensional height-one formal group over
Z,, let T = px be the uniformizer with « € Z3;, and let f be a Frobenius power series
corresponding to £, then we have f(x) = mx(moddeg?2), f(x) = x?(modp). Let n(x) :
Gy — § which is an isomorphism, such that n(x) = Qx + - - -, where Q is a p-adic unit
with QP! = . Let wy = n? " (Cpn — 1), Kn = Qp(wy), and Ko = Up=0Ky, let Ty be
the Tate module, and let « : Gal(Ko /Qp) — Z; be the character given by the action on
Tr, then we know that k = x with ¢ an unramified character such that ¢ (Frob,) = «
and o (wy) = [k(0)]wy,, where for a € Z,, [a] denotes the unique endomorphism of
% such that [a] = aX + --- (see [4, Section 20.1]). Let E be the completion of Qp". Let
tr = Qt. Then t; has the property that o (t;) = k(0 )tr, Q(ty) = 5.

If x € Ko and n € N, we define T, (x) := (1/p™) Trk,, /k, (x) for m > 1. We extend
T, to a map from Ko ((trr)) to Ky ((tr)) by Tn(X artk) = 3 Ty (ax)tk. Note that this
definition does not depend on the choice of t,; since the different choice only differs
a multiple in Q, and T is Qp-linear. We also define Trk, = (1/[Kwm : Kun]) Trg,, /&, (X)
for m > 1.

Recall that % is the projective limit of the following diagram:

O—0—---. (2.1)

For x € R, X = (Xn)nen, Xh,, = xn. Choose X, € Oc, such that X, = x, (modp).

LEMMA 2.1. The limit im, ... f™ (X p+m) exists and does not depend on the choice of
X,. Denote it by x™ and then we have f(x™) = x(m-1,

PROOF. We first prove that f has the property, for y € R,
FM(x+py)=f™(x)(modp™y). (2.2)

This is true for n = 1 from the definition of f. Assume it is true for n, then we have
fMW(x+py)=f"(x)+p"1yz for some z € R, hence

F e +py) = FIF™ () +p"y2))
:f<”*1)(x)(modp-p”“yz) (2.3)
_ f(n+1) (x) (modp”*zy).

From this we see that

f(n) (Xnim) _f(ml) (Xnsms1) = f(n) (Xn+m) —f(ml) (Xn+em +pY)

2.4
=0(modp™*!), (2.4)

hence the lemma follows. |
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On the other hand, if (x™)) satisfies the relation f(x™)) = x(™-D then (x™) € R,
hence % is one-to-one corresponding to

{6 e £ () =m0, 25

Let W = {w € C,, | 3n, s.t. [T]"w = 0}. For w € W, if n € N such that [r]"w = 0,
[r]" 1w = 0, then we say that w has order n. To w € W, we can associate an element
w = (w, f Y (w), fC?(w),...). The association is not unique.

K= can be written in the form x = S a., (x)w with

weWw

LEMMA 2.2. All elements of Cg

ay (x) € Qp tending to zero when the order of w tends to infinity.

PROOF. Since Ko, = Qﬁkw, W is a base of Ok, /Z, and (Cg’("“ is a separated comple-
tion of K with respect to p-adic topology, hence the proof follows from Tate-Sen-Ax
theorem. 0

PROPOSITION 2.3. (i) The field K ((t)) is dense in (B;R)GKW and T,, can be extended
to a continuous Qy-linear map from (Bjz) k= to K, ((tx)).
(ii) If F € (BJz) ¢k, then limy,_.op™ Ty (F) = F.

PROOF. (i) Forall x € (B},) k=, 0(x) € <c,‘,f’<°° ,hence 0(x) = >, ciwaw (x)w for some
aw(x) € Qp from Lemma 2.2. Let

R(x)=t;! (x— Z Aw (x)[ﬁ;]) IS (B;R)GK“, (2.6)

wew

so we can repeat the above process and get

k
x = t,’;“R“l(x)—Zt;(Zaw (R (x))[w]), (2.7)
i=0 w
and this shows that K ((t5)) is dense in (Bjg)%=.

(i) For F € Ko, F € Ky, for some my, hence for n = mo, T, (F) = (1/p™) Trk,,/k,, (F) =
(1/p™)F. Hence, limy, .. p" T, (F) = F. By the definition of T}, on K« ((t;)) we have for
F € Ko ((tr)), limy..p™T, (F) = F.

For F e (B(;R)GKOO, (i) shows that we can take Fy € K« ((t)) such that limy_ . Fx = F.
Hence

—+00 k—+00n—+o0 k—+o00

lim p"T,(F) = lim p"Tn( lim Fk) = lim lim p"T,(Fx)= lim Fr=F. (2.8)
Nn—+oo Nn—+oo k D

We can change the order of the limit since p"T, is continuous.

Recall that LA denotes the space of locally analytic functions with compact sup-
port in Q, taking values in Q. For a p-adic Banach space A, define Dcont(Qp,A) =
Homgont (LA, A) with respect to Morita topology. Define

@cont(QpaE)w:: {Uegcont(Qp,E) U(J f(X)Ll) :J f(lll(O')X)[,l, VO’EGQP}.
Qp Qp
(2.9)
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For p € Beont (Qp,E)¥ with compact support, we can define an element in Bsg as

Feont (U) = J/ [EX]IJ- (2.10)
Qp

Colmez called this element as the continuous Fourier transformation of y and we con-

tinue using his notation. Recall from [8, Section 4] that p € Dcont (Qp, E) is said to be of

order » € R* if for all open compact set X C Q, and all j > 0, the following sequence

is r-bounded:

pE(n(r—ﬁ)J (x—a)ju
a

+pnZy

sup ‘ (2.11)

aeX

Define Blont := Nn=0@™ (Bfax). An element F € B, is said to be of order r if the
sequence p"1p~"F is r-bounded. The power series A(T)= > a,T" € E[[T]] is said
to be of order r if n="|ay| is ¥-bounded. Define E[[T]]¥ := {h(T) € E[[T]] such that
for all o € Gg,,0 (h(T)) = h((1+T)¥@) —1)}.

PROPOSITION 2.4. (i) For pt € Deont (Qp,E)Y, Feont (U) € (Biont) €K

(i) For p € Beont (Zp,E)Y¥, the Amice transformation s, (T) is in E[[T11¥, p has order
v if and only if si,, has.

(iii) For p € Deont(Zp,E)Y, if u has order v, then Feoni (1) has order v.

(iv) For a crystalline representation V, for p € Deont(Z,,E @ D(V))¥, if u has order
¥, then Feonc (1) has order v +v(V), where ¥ (V) = min{k € Z | p(d) = p*d for some
deD(V)}.

PROOE. (i) For 0 € Gg, and p € Deont (Qp,E)Y,

T (Feomt (1)) =a(J [EX],J) =J

o o [Ew(mxx(o)]u:J [Sx(a)x]u_ (2.12)
p p

Qp
If k(o) =1, then 0 (Feont (U)) = Feont (1), SO Feont () € (B;lax)GKm. On the other hand,
let Fn = [qg, [e&"¥]u; we have

P(F) =07 ([ [erJu) = [ 1ol 2.13)

and this shows that Feon (1) € (Bont) oK.
(ii) The Galois action gives

o (dy(T)) = afz (1+T)u = L A+ %y =, (1+T)¥O —1), (2.14)
4 4

hence o, (T) € E[[T]]*.

The second statement can be found in [1].

(iii) Assume p has order 7, hence s, (T) has order 7 by (ii).

CASE 1. Assume 7 € N, then there exists a constant C > 0 such that |ax| < Ck", that
is, —vp(ax) < (logC +rlogk)/logp (here the log is the logarithmic function on real
variable). The real function f(x,a,r) = ax —v(logx/logp) has a minimum g(a,r) at
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x =vr/alogp. For x € R.o, we have

k s k _Tlogk_logC
(p-Dpn-t (p-1)pn-t logp logp

vp(ay) +rn+

_ [k P ) logC
- <P”’P " logp (2.15)
p )_ logC
29(10 1" logp
Take m < -1+g(p/(p—1),7)—logC/logp and recall that
n n k
Fn=JQ [ ™ u =Y ar([ex"]-1) ",
' o L (216)
HFT’L” - supp—(vp(ak)+kvp([en 1-1) _ supkp_(vp(ak)+k/(p_1)pn— );
k
we get
||pm’FnH - Suppf(nr+vp(ak)+k/(n—l)p"*1) <pm, 2.17)
k

hence Fcont () is v-bounded.
CASE 2. For v € R*\R™*, then we have lim,,_.,.n " |a,| = 0. Hence, we can choose a
sequence cx — 0 such that |ag| < cxk”, then the above proof shows that we can take

p logck]
me=|-1+g(—Ft—=r)-2=% 2.1
« [ +g<p_1,r> logp I’ (2.18)

then ||p"1F, || < p~™» hence tends to zero.

(iv) Assume dj,...,dk are a base of D(V) and p € @(Q,,E®D(V))¥, then Feont (1) =
> b; ®d; for some b; € Bl with order r, p=™ |~ (b;)|| < ¢, for some ¢, (cy, is
bounded if » € R, otherwise ¢, — 0), so p """ V) |p="(b; ® d;)| < cu|d;|, hence
Feont (M) is (¥ + 7 (v))-bounded. O

REMARK 2.5. Properties (iii) and (iv) are even true for p has supportin Q. To prove
this we only need to extend (ii) to this case.

LEMMA 2.6. (i) Form=>=n=>1,

m-Ne(x), ifxep"Z,,
> s(k(o)x) = P 0, p g (2.19)
o eGal(Km /Kn) 0, otherwise.
(ii) For m > 0,
> e(k(0)x) =p™1z, —p" 11z, (2.20)

oeGal(Km /Ko)
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PROOF. (i) If x € p~"Z,, then

> e(klo)x) = Z ((1+a-p™)x) = p™ "e(x). (2.21)
0eG(Km/Kn) a=0
Otherwise,
pmn_1
> e(k(o)x) =¢e(x) > e(%) =0, (2.22)
, p
0€G(Km /Kn) a=0
with some b + 0 a p-unit, k > 1.
(ii) If x € Z,,, then

> g(k(o)x)=pm-pm L. (2.23)

0€G(Km /Ko)

If x e p~tZ,\Z,, then

S e(k(o)x) = p™ 12 ( )= D= prtl 24

oeG(Km/Ko)

And it is easy to see that if x ¢ p~'Z,, then

> e(k(o)x) =0. (2.25)
0€G(Km/Kp)
So the sum equals 1z, - (p™ —p™ ") = 1,-17,7,P™ ' = p" 1z, = P" 112, |

PROPOSITION 2.7. If i € Deont(Qp,E)Y, then

k xk
T (Feont (M) = Zt ( J g E(X)FU), ifn>1,
v !

(2.26)
To(F (u))—zt" J x—u— ! x—ku
0{Fcont & 2, k! p b1z, Kl .
PROOF. The Fourier transformation gives
Feont (U) = J [e¥]u = J s(x)exp(tx)u
Qp Qp
(2.27)

(tx

e

u-y L e X
=>t £(x)=———u
k:0" Qp Qk . k!
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To prove the first identity, we need to show that

xk n xk
Tn(ﬁ% E(X)Qk—_k!u) =p o s(x)Qk k' (2.28)

(note that the right-hand side is indeed in Kj).
Now, assume p has compact support p~™Z, for some m, then

Tn(L‘mZpE(X)g_iu) B pimaec(z Cr(L‘mZnE(X)Qku)

Km /Kn)
xk 2.29
ZJ -mz,, K(G)X)Qku (2:29)
k
X
=p " e(x)=—u.
p - ( )Qku
The same proof works for the second formula. |

The Galois action on B4r has the following property.

LEMMA 2.8. Suppose V is a p-adic representation of Gk, then (Bag ® V)= is a
finite-dimensional vector space over By~ with dimension dimg, V and can have a base
consisting of elements in (Bl ®V)Cke .

PROOF. By an argument similar to [2, Corollary B.14], we can see that (B, ®V)CKe is
a finite-dimensional vector space over (B;R)ka and we can have a base vq,...,v4 such
thatvy,...,vqg € (W(R)® V)~ Assume ej,...,e, are a base of V/Qp,and (vy,...,v4) =
(e1,...,eq)A with A € GL4((Bj ®V)Ckx ), then 0(det(A)) = 0.
Fork>1,1<i<d,let viy = >z ¥@™ 1(n([e] -1)*"1v;), then this is a con-
vergence sum and it converges to an element in (BCryg ® V)CGke . Consider that Vik/
@ '(n([e]-1))**! tends to @' (v;) when k — o, hence when k > 1, vix/@ ' (n([£]
- 1))"“,...,vd,k/(pfl(n([f] —1))k1 are linearly independent, hence viy,...,v4x are
linearly independent.
From @ (t;%v;;) = (t;%v;x) we see that t *vig,...,t-5vax € (BExl ® V)Gko are a
base of (Bggr ® V)CGk= over BgR‘”. O

LEMMA 2.9. H'(Kw,Bsr®V) =0 and H' (K, %, (2}, BYleV)) =

PROOF. Assume T — ¢ is a cocycle from Gk, — V. From [2] we know that H! (K,
W(mg)®T) =0, where T C V is a Galois invariant lattice. Let w = (wg, w1, w>2,...) € R,
then [w]cr € H (Ko, W(mg)®T) =0, sowe can find a c € W(®R) ® V such that [w]cy =
(1 —7)c. From the ramification property, we can show that [w]?~! =0(modp) in Acrys,
hence a =>,,c; (@™ ([w])/p™) is convergent in AC s and @ (a) = pa. Let

- Z ®" plwl)e), (2.30)

then itis easy to see that (1—T)c’ = c+.Sincec’ € (Bmax ®V), this shows that the inclu-
sionmap h' (Kw,V) — H' (Kw,Fil " (B&a ®V)) is the zero map. By similar arguments as
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in[2, Lemmas B.18 and B.19] we conclude that H' (K«,Bar®V) =0, H' (K«, %, (Z};, BY®
V))=0. O

LEMMA 2.10. For a p-adic representation V of Gq,,, as a 9o (Z,,Qp)-module the fol-
lowing sequence is exact:

0 — H'(I,90(Z5,V) ) — H'(Qp, D0 (2},V)) — H' (K, D0(Z}5,V))T — 0.
(2.31)

PROOF. The proof can be found in [2]. O

3. Perrin-Riou exponential map. For I C Z, we have defined LP/, Qbalg(Qn,A), d,
and Fag in [8, Section 4]. For a Galois module A, in this section, the Galois action on

Dag(Qp,A) is defined by
[ oo =o( [ ristomn), o

where u € @alg(Qp,A) and o € Gaq,- Recall that we have the following formulas:

k!
Faig (x¥Laipnz,) () = " CryyRE@lymnz, ), (3.2)
1 1
%alg(xkll;) = m-lzp—p_lmlp—lzp. (33)

PROPOSITION 3.1. For a de Rham representation 'V, if u € @;lgw h-1] (Qp,E®D(V))Y,
then F1) (1) € DL, ™" (Qp, Bar ® V) is fixed by G, .

PROOF. For g € Gq,,

G‘(h) ko= (h)
Lﬂ,nznx 0 (Fayg (1)) = (L(U)flwwp(x(a)x) alg(u))

=p ™k+h-1k(o)k

X("(L—nzpE(K(Url“")(_“‘rk“)) (3.4)

=p’”(k+h—1)!<J

s(ax)(—tx)’ku)
p"Zp

(h)
= J ko‘alg (IJ)
a+pnZp

hence we have o-(dfalg (k) = O*;ﬁ; (). O

Let exp denote the connecting map of the following exact sequence:

0 — D3 (Z5,V) — B, (Z5, B ®V) — D, (Z35,Bar/Bjp®V) — 0. (3.5)
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PROPOSITION 3.2. The following diagram is commutative:

exp
4625, Bar Bl @ V) % ——= H'(Qp,%.,(Z;,V))

\Lhﬂo”lv xku \Lflﬂnnlp xky (36)

exp

D, (V(k¥)) ————H"(K,V(x")).

PROOF. For p € 9},(Z5,Bar/Bjp ® V)%, it is easy to see that [14pmz, X*u €
Dk, (V(k%)) and for & € H'(Qp, D34 (Z5,V)), [11pnz, X*E € H' (Ky,V(kX)), then the

proposition follows from the following commutative diagram:

0 % BY @V — > Bar/Bjr®V ——— 0

Tfupnzn xk Tfnpnzp xk Tfnpnzr, xk 3.7)
0 — Do, (Z5,V) — D (25, BYL ®V) —> D,(Z;,Bar/Bjr ®V) —= 0.
|

Now we define the Perrin-Riou exponential map E = Ej,y as the composition of the
following ones:

1y %a
D (Qp,E@D(V))* ™ . G4 (@, Bar V) “°

Fil<0

—— D}, (25, Bar /B ® V) 7% (3.8)

e

H' (Qlﬂ! alg(Z>< V))

The invariance of ®u = u gives the following identity:

Lo () ) o

forallm € Z, k =0, and f alocal constant function with compact support p—"Z,,.

THEOREM 3.3. The integrals of the exponential map give

k _ _ o)1 —plapl H
sz Eny(p) = (k+h 1)!expv<Kk><(1 @) '(1-ple )L; (—tx)k>’

L+pnzp XFEpy (1) = (k+h—1)!expy (%(J’ZP g(c;_);) _ (_:,x)k)) (3.10)




620 SHAOWEI ZHANG

PROOF. By formulas (3.2) and (3.3), we have
| g = | F Kz
Zp Qp
—I (k+h—1)|(#1 P T )
“Ja, Nk P Tk ez JH

- (k+h—1)!(1—09)71(1_”71@71)([1* (—fx)k>’
14

(3.11)
kg J G (oky
Ja+p"ln alg W= Qp e ( “r Zn)u

:j (k+h-1)p™"- e(ax)1ynz,
Qp

(—tx)k
_ (k+h—1)!q;;n (Lp s(ap—’,f) (_t”x)k)-

Hence, by Proposition 1.2, we have

sz k[Ehv(Ll)—EXpV(Kk) J J"alg '12;)H)

p

(k+h-DI1-@)'(1-p e I)szﬁ»
P

<

( (3.12)
( |

<

J J"alg X 1a+p"lpu)>

o (U o) i)

LEMMA 3.4. For a de Rham representation V such that Fil''D(V) = D(V), u e

@gfgw’o](Qp,:®D(V))q’:1"”, aceZy,n=1,andj=0, fa+pn1p (x —a)Epy (u) restricted

to H! (Koo,ﬁii)g?g” (Z%,V)) is represented by the cocycle

J X [Ehv(lJ) = €XPy/ (xk)
a+pnZy

(k+h-1)!

= eXpV(Kk)

T — (T=1)Eulg (Ban, (1), (3.13)
where
g nj i ax H
Ban,j(u) = jlp™ (=) s L;[s] TR (3.14)

PROOF. We first consider

"
Lw% Erv(h) = expygen (K12 L,f(pn ) (3.15)



ON EXPLICIT RECIPROCITY LAW OVER FORMAL GROUPS

Put

-n ax u
= | =
Yo =12 Lpe(pn)(_tx)k,

k .
~ " ax (—atx)'
Yank(H) = k! P JZ,, [e4¥] Z T

By the formula £(1/p™) = [, ]exp(—t/p™), we have

)03 3G ) o (103 S s

=0 i=0
Let
6ank(X)—f(ax)— n([zux]z( alt"X) GFllkJrle
i=0 !
n ax ax (—atx)*
—o (o) -l X 4,

then

yank(”)‘)’ank(“):k!(pin‘[ (pn(éank)L

o o p" Jz, R (—tx)k

€Blr®D(V) CBLr® (Bjp®V) CBr®V.

621

(3.16)

(3.17)

(3.18)

(3.19)

Hence, Yank(H) € Bmax ® V is a lifting of y,,x under the projection map Bmax —
Bar /Bjr-By[2,Lemma 0.5.1], we see that the above cohomology class eXPy (k) (Yank (1))

is represented by the cocycle T — (1 —T)Eulg((1 — @) Yank(1)). Moreover,

n ko, .
(1_(p)?u,n,k(11)=(1—q,’))k!q;—n(J [SaX]Zﬂ u )

7, o i (—tx)k
k .

9" ax1 e (matx)t

BT <Jz,, Le ]i—%:) i (—tx)k>

since

k ; K ;
ax (—atx)' u _ ax —atx)" 1
q’(sz[E 12— (—tx)i>_sz[E D s

i=0 i=0

and ®(p-1z,) = 1pz, - Y.
Hence, for a € Z;, nx>1, fa+pnzp xk[El,v(u) is represented by

T — (T-1D)Eulg (¥} ., (1)),

(3.20)

(3.21)

(3.22)
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where

. " (—atx)! v
YankH) =k! e <LG x> . tx)k). (3.23)

i=0

Therefore,

J
| x—aiEew - b ( )( @)1 xKE, y (1)
a+pnZy

k=0 Jﬂo”l,.
i (3.24)
=> ( )( a)’~ k x*Eyy (1)
k=0 a+p”Z
is represented by
i(j _
T—(T-1) Z (k> (—a)’ ¥ Eulg (Vo nx (1))
k=0
J . _ k i
— _ I\ ik ﬂ ax ML
=T DEulE(%(k)( a)’~ k! pn )z e ]go il (—tx)k)
711 J k i
=(T— 1)EL113( J ( atx Z( ( )(atx)_] k(z (— atX) ))) (3.25)
pr k=0 k=0
u
X(—tx)f)
" AT ax H
=(T- l)EuIB( " JZE (J'[e ])(tx)j),
and fa+pnzp (x —a)E; v () is represented by
T — (T-1)Eulg (J'P"J( 0¥ p sz [S“"]%>, (3.26)
14
and the lemma follows. |

LEMMA 3.5. The following diagram is commutative:

—o — = H—=(=tx)p —ooh— — =1,
Dg "N (Qp,E@D(V(K))) " a2 (@, EeD (V)T (3.27)

\L[EPHLV(K) J/[Eh,v

H' (K, 95" (23, V () e e H (K9 (z5,V)).
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PROOF. First note that all the maps are well defined. For u @(_w’h](Qp,E ®

alg
DV, (—tx)u € 25" (@, 2o D(V),

sz X*Eny ((~tx)H)

p

= (k+h_1)'expv(Kk) ((1—()9)1(1—}91()91) JZ u)y

5 (=tx)k-1
(3.28)
J XK X B,y ()
7
_ -1 “1,.,-1 H
= (k+h—1)!lexpy ((1—09) 1-p'e )Jz; W)
hence the lemma follows. O

THEOREM 3.6. AssumeV is a crystalline representation and h € Z such thatFil "D (V)
=D(V).Forue Qthemp(Qp,E@aD(V))q’:l"”, under the map
D" (QpEO D)) — HY (@9, (25,V) (3.29)

T
= HY (K, kg (25, V))

the image is in H' (Koo, Dremp (Z3, V)T withT = Gal(Kw/Qp).

PROOF. Since x'""E, ya-n) ((=tx)""1u) = Ep,y (), by Lemma 3.5, replacing V by
V(1—-h) and u by (—tx)" 'y, we can assume h = 1. From Lemma 3.5 for a € Z;, nx>1,
and j = 0, pr% (x —a)E; v (u) is represented by the cocycle

T — (T-1)Eulg j!p"f(—t)’j(p_n [e“]i ) (3.30)
pn 7y xJ
From [8, Lemma 14], we know that if u is of order r, then u/x/ is also of order 7. From
Proposition 2.4, we know that fz; [e9X](u/x7) has order ¥ +7(V), that is,

[n(r+r(V)+1)] gy -n [gax]i (3.31)

p 2

is r-bounded. Hence, p!""+7 VsVl [ ., (x —a)/E1,v (1) represented by

T — (T—1)Eulg (j!(ft)’j(p["(”r(v)“”(p’" [5‘“‘]%)) (3.32)
75 E
is (¥ +7(V))-bounded. Hence, the image is in H' (Ke, Dy 4y (v)+1(Zy;,V))". O

4. The logarithmic map. The proof of Theorem 3.6 suggests that Fcont () has some
deep arithmetic meaning for the distribution u. In this section, we construct a logarith-
mic map on the cohomology side, which is related to Fcont (H)-

Suppose V is a de Rham representation. The Q,-space Unen (Bhax ® V(k~1))5kn C
Unen (Bmax ® V)%kn has dimension dimg, V, so UneN(Br?:xl ® V(k~1))%n is a closed
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subspace of BY ® V. Let Wi be one supplement. Suppose h € Z, h > 1, u € H (Qy,
Dp-(2%,V)), and T — p; is a 1-cocycle representation of u. Suppose u has the prop-
erty [14pnz, X ' € Hy (Kn,V (k™)) = ker{H" (Kn,V (k™)) = H'(Kn,Bhax "o V(k)).
For such a y, thereis a ¢, ; € Brfale ®V (k1) such that

(1—K(0)‘i0)cn,i=Jl , X o (4.1)
+p"Zp

The choice of W; makes it possible to choose ¢,,; € W; uniquely for n > 1.

THEOREM 4.1. SupposeV is a de Rham representation of Gq,,, h > 1 is an integer, and
u e H' (Qp,Dp-(Z%,V)) such thatprnZn x7ue H Ky, V(k ) forn>1,0<i<h-1.
Choose cy,i € Wi such that

(1-K(0) 1) eni = LW xip, 4.2)
p

then the sequence (1/(h—1))p" " o (") en,i converges to an element in (B ®
V)Ck~ which is denoted by Ly y ().

PROOF. By Lemma 2.9, H! (K«, 9~ (ZX,BmaX ®V)) = 0, the inflation-restriction se-
quence gives the following isomorphism:

HY(Qp, D (23, BYax ®V)) — H' (I, 90 (Z5, (B @V)) 5 ). 4.3)

Let u’ € H' (T, 9- (z, (BmaX ® V)Ckx)) Correspond to the image of u under the map
HY(Qp, 90 (73%,V ))—»HI(QI,,QBh (Z%,BE ®V)). Then u—pu "is a coboundaryin H' (Q,,
Dy, - (ZX,Bm;JIX ®V)), that is, there exists v € @, - (ZX,BmaX ®V) such that py —pu; = (1—
o)v.Letuy; = cn,i—fhpnsz ty,thenu,; € (BZal ®V(k~1))6k= and (1-k(0)7to)un,;
= f14pnz, X 'Hg for o € G, and we have

= h-1 - h-1
hm(p > (- 1)1< . )cm p" Z( 1)( . )un,i>
i=0 i=0 (4.4)

71)’171‘/ =0.

= lim p" (1-x

n—eo 1+p"Zyp

Here, again, we use [8, Lemma 14]. Note that there exists a k such that u, ;€ (t *B,)®~!
®V (k1) (which does not depend on n, i) [2]. The theorem will follow from the following
lemma.

LEMMA 4.2. Suppose y € H' (T, % (Z;; (B3 ® V)G )) and k € N such that for
n=>=1and0 <i<h-1, the image fl+pnz x~iy is zero in H' (T, (Fil ¥ By ® V)Cke).
Suppose

— G n ’
(Fil * B! @ V)% = Us, (Fil * Bl oV (k7)) ™" @ W] (4.5)

13
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is a direct summand decomposition (since the first component is closed). Suppose o —
Ue is a cocycle representation of , take wun; € W] such that flwnsz*ia, = (1-

KN o) 0 ) Ui forall o € Gg,,, then the sequence vy, = p™ Z?;Ol(—l)"(hlfl YUn,i converges

to an element in (Fil % BZat @ V) Gk ,

PROOF. The cocycles satisfy i, -1:= ty-1 +0 s = Uy + T,-1, and this means that

O e = e+ (T= D1,

o . ) » (4.6)
J x ‘o lur =0 (J K'(o)x ‘uT>.
IT+phzp K(0)+p"Zp
This gives
J x "l = K(U)’iU(J x 7t U’luT)
k(o)+pnip L+pnZp
=t U(J (tmx) " U’%) (4.7)
1+pnZp
= t,"T(l—T)a(t;riun,i—J (tnx)"iug_1>
1+p"Z,
by
(1 =T)Up_1,; =t J X"y
€Ty [Tp * K(O)+P""Lp
(4.8)

—a-n Y (U(t;iun,i)—a(J

TET_1 /Ty +phzy

(tnxriua-l)).

From the choice of W/, we can cancel (1 -T) and get

h-1 -1\ . A
Up—Vp1 =p"! Z(—1)1< . )t;( > (0= Dig'un
i=0 l o€ly_1/Tn (4 9)

- O-(Lw"zp (tnx)iug1>>.

The sum
h-1
(h-1)\ . i
v”Z(—l)l( . )t;ff(f (tmx) l“a‘l)
iz0 12 1+p"Zp

:p"o(J (1—;<((7)’1x)h_1 ) —0
Ho-1
1+pnZyp

as k(o) e 1+ p"‘lzp, Us-1 — M1 which is of order 1~. Hence, to show that v, is a
Cauchy sequence, we only need to show that for 0y, € I,_; the sequence

(4.10)

h-1 h-1 .
an(_l)l( : )(K(O‘n) Un—l)un,i 4.11)
i=0

tends to zero.
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CASE 1 (h =1). This is equivalent to showing that

nlirflm p"(on—1)un,; =0. (4.12)
Put T, = 25:01 o/, then
Ton (0 =1)Uno = (09 —1)Un,o = ,J Hop- (4.13)
1+p"Zp
Since Hyp has order 1-, we have
lim ”J =0, 4.14
lim p — Hgp (4.14)
hence
lim p" Ty, (0n —1) (Un) = 0. (4.15)

n—oo
The theorem follows from the following proposition.

PROPOSITION 4.3. There exists a constant C > 0 such that, for all n € N, o € I,
F € (Fil % Bpay ® V) Ckn

|| To (F)|| = CIIFI, (4.16)

where || - || is the norm on Bmax.
In the following we will develop several lemmas to prove the above proposition.

LEMMA 4.4. There exista C € Z; and a Bmax-morphism g : Bpax ® V — Br%ax such that
g(BL:l @ V) ks is contained in ((BEae ) k=4, where d = dimg, V.

PROOF. Suppose ei,...,e4 € (B%S} ® V)% such that they are a base of Bz ® V over
Bar by Lemma 2.8. Assume v1,...,v4 are a base of V/Q, and assume e; = szl aijvj,
then a;; € ngfxl, the o action gives det(o) - det(o (a;j)) = det(a;;). Consider the one-
dimensional representation detQp (V) which has abase e = v1 A - - - Avy, then the above
formula gives ey A - - - Aeg = (det(aj) Vi A - - - Avg, hence o (e) = (det(a;;) / det(o (aij)))e.
But detQp (V) is a one-dimensional representation, so it must be of the form ¢pk¥,
where ¢ is a finite-order N of character, ¢ is an unramified character such that
¢ (Frob,) = u for some u € Z;. Take w € ([/)2’,? such that Frob, (@) = uw, then the
above identity means thatdet(a;j) /o (det(a;j))=¢o(0) - Pp(0)- k*(o). Assume o € Gy,
and raise Nth power, we get (det(a;;)/o (det(ai;)))N = pN(0). Take A = (det(ai;)@)N,
then this gives 0 (A) = A for all o € Gk,,. On the other hand, ¢ (A) = @ (det(a;;) -@)N =
det(a;))N - @V - uN = u¥ - A. Now, taking € = uV, g : x — Ax, then g(e;) = Ae; and
@ (Ae;) =uyde; = CAe;, and the lemma follows. |

COROLLARY 4.5. For k € N, there exist o« € Z,, and g : t;*Bj ® V — (B )9 such
that gx, maps (Fil *B2% ® V) k= o ((Bjhax) P~ %Ok )4,
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PROOE. Use the g in Lemma 4.4, assume t5, - g(B;.x ® V) = (B;i)%, and let gy =
t_{_<r+sg’ oy = 7Tk+s€_ 0

LEMMA 4.6. For k € N, € > 0, there exists n € N such that for o € I, and F €
(Fil * BSa ® V) Ckes |

llgk (o (F)) — o (gk(F))|| < €llFIl. 4.17)

PROOF. Let y; be a topology generator of I and y, € Gq, a lifting of y;; we can
choose y; in the p-Sylow subgroup of Ga,- y1 induces a continuous map from I} — Ga,

by sending x to y1 logy, .So, for o €T}, we can get & € Gq, under such a map The map
GroG —0ogk:Bmax®V — (Bmax)? and the map gy oo — 0 o gy : (Fil~ k(B ®V))G'<oo —
(B&_.) are the same if we restrict to (B ® V)%=, and

k(T (t75v:)) =0 gi (t:5v0) = gr ((F - 1) (15 vi)) + (1 - F) gi (£ v0) (4.18)
since t;*vq,...,t;*v, are a base of t;%B;.. ®V over B}, and when o — 1 the above
goes to zero, hence the lemma follows. O

LEMMA 4.7 (Coleman-Colmez exact sequence). For x € Z,, x# 0,7 = vy (),
(i) if x ¢ pN, then (Ba) P~ %0k — %, (Z5,E0Q),)Y,
(ii) if o« = p", then the following sequence is exact:

0 — Qupt" — (Biha)? ™"~ — 9, (2,E0Q,)" — Q, — 0. (4.19)

PROOF. See [2, Appendix Al. O

LEMMA 4.8. Forv € R¥, there exists C, > 0 such that for y € %, (Z,,2®D(V))¥ and
a € Zy,

p-1
z 61’& * U

i=0

= Crllull. (4.20)

PROOF. This is the same as [2, Lemma III.2.6]. Note the * above is induced by the
addition in Z,. |

COROLLARY 4.9. For v € R*, there exists C, > 0 such that for y € 9,(Z,,EeD(V))?
anda € 1+pZ,,

p-1
Z Oqi kU

i=0

> Cyllull. (4.21)

Here the % is induced by the multiplication in Zj;.

COROLLARY 4.10. There exist C > 0 and an no € N such that for F € (Bf,,)?~%C0k=
and o €Ty,

|| T (F)|| = CIIF]. (4.22)
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PrOOF. Using Corollary 4.9, F corresponds to u, ||F|| = ||ull, and T (F) corresponds
to > 8,4 * H, hence

1 To (B)]| = || > 81  p|| = Clluall = CIIF. 4.23)
O

COROLLARY 4.11. ThereexistaC >0 and ann eN such that || Ty (gx(F))|| = Cligk (F) ||
for all F € (Fil *BZal ® V) Gk,

PROOF. The corollary follows since gy (F) € (B} ) ¥~ %0k, O
Now Proposition 4.3 follows since gy is just a multiple by p**SA.

CASE 2 (general h). In this case we need to show that

h-1 h-1 ,
P"(Z(—Ul( ; )(K(O'n)lo'n_l)un,i)—'o (4.24)
i=0

as n — oo,

LEMMA 4.12. ForleNando €T, put T;; = Zf;ol k(o)~YoJ, then the sequence

k hlp g »

p"l_[Tz,on(z ( ] )(K(O’n) Un—l)um') (4.25)
1=0 i=0 t

tends to zero as n — .

PROOF. Forl>0andl <k

Ti,0 (K(O-n)ii()'n—l) (Un,i) = (K(crff)fi ol - 1)un,i = —L , X e, (4.26)
+p"Zp

then (4.25) equals
h-1
(h-1
—P”Z(—Dt( . )
i=0 t

with R; € p" 107, [[T]] and p"R; - Y; € p" " D2, [[T1] [i1pnz, (X = D'uyp — 0. By
[2, Lemma III.3.3], the proof of the lemma follows. ]

h-1
X gp ==p" X Ri-Yi 4.27)
=0

h-1
1_[ Tl,O'n J

1=0,1+i L+phiy

LEMMA 4.13. There exist a C > 0 and an n € N such that

h-1

[[Tio(F)|| = CIF|" (4.28)
i=0

for all F € (Fil *BZ% ® V)Cke and o €T,
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PROOF. The lemma follows using Proposition 4.3 h times. O
This completes the proof of Lemma 4.2. |
So, this completes the proof of the existence of the logarithm. |

COROLLARY 4.14. For p € HY (K, 9y (Z%,V))%, if ur = 0 for all T € Gk, and
.[1+pnz x~iu € HE (Ky,V(k—1)), then Lyy (1) € (Bhax ®V)Cks.

PROOF. Since (1—k(T)7iT)cp,i = flﬂ,nzp x~iur for T € Gg,,, T(Cnyi) = Cpi and ¢y =
0 for n > 1, hence Ly (u) € (BE: ® V) 0k, O

5. The relationship between the exponential map and the logarithmic map. For a
crystalline representation V, assume h € Z such that Fil‘hD(V) =D(V).

LEMMA 5.1. For u € Qthemp(Qp,E®D(V))d’:1'W, there exists i > 1 such that Feoni(1/
(—tx)t) exists.

PROOF. See [2, Section 11.2.3]. O
Let 2 = (U2 ((@jezt™ Bhax ) ®V(—1))Ckn).

THEOREM 5.2. For u € themp(Qp,E ®D(V))®=L¥ choose v as in Lemma 2.1 and as-
sume h > 1 such that Fil""D (V) = D(V), then

Lnsr v ([E(h+r),V(r) (ﬁ)) = JQn [£¥] (—t“x)V mod>3. (5.1)

PROOF. LetF= fQ [eX](u/(—tx)"), thenitis easy to see that F eFV (Bm1X QV (¥))Cke .
By the definition of Lj v, we only need to calculate, for 0 <i < h+7 —1, the integral

J x*"-XV[En,v(u):J X" Epy ()
1+p"Zyp 1+p"Zp

(h
= XPver) J,1+pnz X Uralg)(u))
1

( alg 11+p"1p xr_i)/»l)

= eva(Krfl)

(r—i+h-1)!
:eXpV(KV”)<J' p"1p-nz, Wﬂﬂu)
= eXPy(r-i) ((h+1—1 YN0y (r-iy o Tn (dﬂcom(( tx)7)>)

(5.2)
where we have used Proposition 2.7 to get 6y iy © Tn(Feont (u/ (—tx)")). Let dp; =
(—Di(h+7v =1 =)0y i-ry° Tn(Feont (H/ (—tx)")) and cp i = ep oFil*%(d,i). Thenc, ; €

B! ®V such that the above cohomology class is represented by the cocycle

T— (1-T)ocpi=(1-K"T)cp,. (5.3)
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By Theorem 4.1, Epr vy (U] (—tx)") is tempered in H' (Kew, D (hsr+r(vy)- (235, V)T, un-
der the inflation-restriction exact sequence

0 — HY (T, D(nereravn- (Z3,V)5) — HYQp, D sreravy- (Z3,V))

: . (5.4)
— H' (K, Dnsr+rvy- (2,,V)) — 0;

we can lift Ep 4y v cr) (u/ (—£x)") to an element in H! (Qp, D h+r+rvy- (Z3,V)), thelifting
is not unique. By Corollary 4.14, modulo (B ® V)Gk= the left-hand side of (5.1) is
equal to

h+r-1
1 . (h+r—1
e A H)“( i )'Cm‘
: i=0

1 LS (hr -1
= her-if % (‘1)( i )

-ep oFil<* <(—1)i(h+r— 1= D)lil6y (xi-r) Tn (%m(ﬁ)))

h+r+1
=p" > epoFil™ o8y ir) (Tu(F)) (5.5)
i=0
h+r-1
=pTegoFil" > Sy ir)Ta(F)
i=0

= p"ep oFil™ (T, (F))

= egoFil** (p"T,, (F))

— epoFil**(F) = Fil**(F) = F. -

THEOREM 5.3. Assume V is a de Rham representation, h > 1 an integer, and u €
HY(Qp, - (Z},V)) such thatpran x7tue H} (Ky,V(k™Y)) forn>=1and0<i<h-1,
then

(-1-! B
Rk=1) - (k=h+ 1) Jipmz, ™ W) 59

Sykk)© T (Lpy (1) = eXp\*;(Kk) (

PROOF. We will use the isomorphism k : T’ — Z;, I, = 1+ p"Zp, to transfer the

measure on Z, to the measures on I'. Assume y, is a topology generator of I' and

Yn = y([]K”:Q" Visa generator of T,. It follows that

5V(K’i) o Tm(p”un,l) = t1iT5V(K"’k) o Tm(p"t;iun,i), (57)
for y € Iy,

5V(Kf—’<)°Tm°Y = K(Y)k_iOTmy (5.8)
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hence

k—i
1-«k » »
7()::1) 6V(Ki*k) o Tm(pntn-lun,i) = 5V(Ki*k) o Tm((l - yn)tn-lun,i);
g (5.9)
(1= yn)tr'uni =tz L Kk () "ty -

n

The cocycle relation gives

[KniKml-1 ,
= > (] kOB ), (5.10)
1=0 YmIm

and we get

Syxiky© Tm (L (tnK(x>)‘iuyn)

. (KK -1 , ’ (5.11)
= '8y (k) on( > K(y)”k’”J . K(x)‘uym)
1=0 ymT

The element Sy (k) © Ty (Lp,v (1)) is the limit of

h-1 h-1 ) [Kn:Km]-1 Hk—i )
=7 Ovikk) ° Tm (2 < )(—1)1- Z Kk (Ym) e L’lr K(X)llv‘ym>.

1-xk(yn) o\ i 1=0 mIn
(5.12)
CASE 1 (h =1). The above formula becomes
n [Kn:Km]-1 . )
— ST | D K(ym)”k’”J LK)y,
1-x(yn) 1=0 ymIn
[Kn:Km]-1
p" Ik
= 6v< —k)OTm ( K(ym) J “)’m)
1-k(yn) " 1=0 v Tn (5.13)
p™ “k .
mév(K—k)on(erK(X) [Jym), ifm=>1,
"1 Ko (], 00 ~m0)
. Oy (—ky © T K(x .
p—1 klogk(yo) V& 7Oy (%) Hy
Hence, we come to the formula
1
Sy (k) Tm (L1 (p)) = m‘swrk) oTr Ky, (L K(X)*kuym)- (5.14)

Therefore, the theorem follows from the following lemma.

LEMMA 5.4 (Kato [5]). IfV is a de Rham representation of G, for any unramified
character @, the map which sends x € D(V) to the cocycle T — xlogy(t) € D(V) C
Bar ® V is the zero map, and the map which sends x to T — xlogx(t) (hence T —
xlog k(7)) gives an isomorphism of D(V) to H (K,B4r ® V'), and exp;s coincides with the
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map HY(K,V) — H' (K,Bar ® V) — D(V), where the last map is the inverse map of the
above isomorphism.

Forany K C K. and a de Rham representation V of Gk, we have the following diagram:

H'(K,V)
(5.15)

H'(I,Bga~ ®D(V)) = H'(T, (Bar ® V) ** ) = H' (K,Bag ® V) ——= D(V).

. . ’ GKeo
Ifc € HY(K,V) and T — ¢, is the cocycle representation, we can choose ¢’ € H! (F,Bd,’Q< ®

D(V)) such that ¢ and ¢” have the same images in H' (K,Bsr ® V). Let T — ¢, be a cocycle
representation of ¢’. The element oy o Tr/x (c;/ /logp k(y)) € D(V). Using Kato’s lemma,
we see that it is the same as expy; (c¢), hence

(5.16)

1
EXp‘i(C) = 5v0Tr/K(mCy).

Using this formula for K = K,,, V = V(k %) (hence y = yn), ¢ = Lﬂ,mzp xkue H (K,
V(k~%)), then

1
* k) =8y ey 0T (7 J -k ) 17
Py -k (.[H-pmzp x U) Vik=k) © 2L/ Km logk(y) Jr, KO G40
This completes the proof of the theorem for Case 1; the general case follows an argu-
ment similar to [2, Section 3.3]. |

6. Explicit reciprocity law. By constructing the logarithmic map, now we can eval-
uate the integral of the analytic cohomology class at “negative” power (< —h).

LEMMA 6.1. Assume V is a crystalline representation and h € Z, h > 1, such that
Fil"D(V) = D(V), F € 5 = 87 U;,% FY) (Bhax ®V (k™1))%%n, then 8y -ty © Tyn (F) = 0
for k > h.

PROOE. We can assume F € FO(BYxa' ® V(—i))“n0 for some 1y > 1 and some i.
Since X is a finite-dimensional Q,-vector space, F € BgR ®D(V), hence F = > b; ®d;.
For o € GKnO, o (F) = F, hence o(b;) = b;, and b; € (BSR)GK"O — Kp,; this shows that
T (F) € D(V). Hence, 8y (ko Tin(F) = 0 for k = 1. This proves the lemma. O

THEOREM 6.2. Assume V is a crystalline representation of Gq, and suppose h € 7
and p € Gemp(Qp,E@D(V))*=1¥, k = h, then

(tx)k )
s (k—mtH)

expl s, (Lwnsz*kmh,vw)) - (—D“c’% (L f(%) (sz);!“)'

eXPy -+, <JZ§ xfk[Eh,v(u)) = (-t (1_(,9)71(1_p—1(pf1)<JZ
(6.1)
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PROOF. First of all, assume h > 1 and Fil ™"D(V) = D(V). Assume r € N is suffi-
ciently large such that F, = Fcont(u/(—tx)") exists. Using Theorem 5.3, h + v for h,
V(k") for V, and Epy v r)(u/(—tx)") for u, we get

5V(ka) oTm (ﬂ-h+r,V(r) o [Eh+r,V(r) (ﬁ))

(6.2)
= exp* Fl)hwil(k_h)!(f x kT xTE (u)))
V(kk) (k+7)! 1+p™mZ, hv :
By Theorem 5.2 and Lemma 6.1, this gives
—k _ h+r—1 (k+1")| M
expé(x’”(mesz [E"'V(“))_(_l) v (k—h)!5V<K”‘>°Tm(%c°m((—tx)r)>'
(6.3)
CASE 1 (m = 0). By Proposition 2.7, it gives
nar_1 (k+7)! = o (tx)k
(DM S DT ) (1 p )L; ok
. (6.4)
_ _ - (tx)
=(-1 h-1 1-— 1 1-— 1 1 J .
D" A=)t (1-p e 2 k¥
CASE 2 (m =n > 1). By Proposition 2.7, the above formula gives
e (kD ,n_J (tx)kr g h,lj (i) (tx)k
-1 Gt P s, S et Coor ~ OV, o) Gt
(6.5)

This completes the proof of the theorem for this special case of h, the case for general
h follows from the relation Epy = lp—1Ep—1,v, where l_y = hd; +0]. ]

Define the pairing

d=1,p d=1,p

[';']D(V):@temp(quE‘@D(v)) Xg%temp(@pyg-@D(v*(l))) _’gbtemp(Z;;Qp)

(6.6)

by the formula

fo(x)[u,u']D(V>Z:J fix'y)uey' (6.7)
7} z

5xT5
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We must check that the integral really takes values in Q. From the definition of u and
', we know that [u, u’] will take values in E. For any Galois element o, we have

_ A ., ,
G(Jz;xz;f(x Y)ueu ) _Lgngf((wa)x) (W(U)y))u@)y o
:Lx ST ye

pXLp

so [u, '] takes values in Qp, and the above pairing is well defined.
Define the paring (u,u’)y to be

H'(Qp, Dremp (Z5,V)) X H (Qp, Dremp (Z5,V*(1)))
— H*(Qp, Dremp (Zpy X Z;,Qp (1))
— Dremp (Zpy, H* (Qp, Qp (1))
H@temp(z;?'@p)s

(6.9)

where for € € HZ(K,QZJtemp(Z; X Z;,Qp(l))), we associate a distribution u as
J fou= J L ey EG ). (6.10)
7y 3 %1y

We need to check that fz; f(x)u is a cocycle. This is equivalent to checking that
[zg f(xX)ou =0 ([ f(x)p) since

— -1 —
L,x,f(")"""“(L;Xz;f(“(‘”x(“(")y) )¢) 0<L;f(x)u)- 6.11)
LEMMA 6.3. (i) For 4t € Giemp(Qp, 58D (V)®='Y and ' € Byemp (Qp, E&D (V*(1)))*=1¥,

Jlxxi[u,u']mw = [J1XX’iu, Zxxiu’]D , (6.12)
» p P V)

where the last pairing is defined in [8, Section 2].
(i) For & € H'(Qp, Dremp(Z;,V)) and &' € H' (Qp, Dremp (Z5,V* (1)),

J X&)y :J xiguj x7tg, (6.13)
z p Zp
where the cup product is given by
H'(Qp, V(') UH (Qp, V* (xk 7)) — H*(Qp, Qp(1)) = Qp. (6.14)
(iii) If € or &' restricted to K, is zero, then (§,&") = 0.
(iv) The pairing [-,-1p(v) is sesquilinear for the first variable, linear for the second

variable, that is, for 6 € 9D (Z3;,Qp),

[0 % p, 1" I vy :6\/*[u:“,]D(V)’ [, 0% 1 | pyy = 6 [, 1 py)- (6.15)
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(V) The pairing (-, - )v is linear for the first variable, sesquilinear for the second variable,
that is, for 6 € 9¢(Z;;,Qy),

(6%E8)y=0%(EE)y, (§5%E)y=08"*(5¥)y. (6.16)

PROOF. The only thing we need to prove is (iii) and this follows from Lemma 2.10.
O

Hence, (-,-)y induces a pairing
(-, )t H (Koo, Dremp (23, V)" X H' (Koo, Dremp (25, V* (1)) — Dremp (Z3,Qp). (6.17)

THEOREM 6.4. Assumeh €7 andV is a crystalline representation. For u € QNDtemp (Qp,E
@D (V)* M and ' € Giemp(Qp,E@D(V*(1)))*=1Y,

(Eny (), Er—pysy (1) = (=DM skp,u']. (6.18)

PROOF. For i> 0, by Theorem 3.3, we have

i _ . ) PR S B | H
L;x Eno(p) =(h+i 1)!eva(K1)<(l ) '(1-plte )L; (—tx)i> (6.19)

and by Theorem 6.2, we have

(tx)t

expy iy | X Ernyry (W) = (DA -@) t(1-p o)
VKD )z z

Then the theorem follows from the definition of Bloch-Kato dual exponential map and
the duality between 1—@ and 1 —p '@ ~! in [2, Lemma IV.4.6]. O
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