
IJMMS 2004:15, 755–762
PII. S0161171204310392

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

QUATERNIONIC REPRESENTATION OF THE MOVING FRAME
FOR SURFACES IN EUCLIDEAN THREE-SPACE

AND LAX PAIR

PAUL BRACKEN

Received 5 October 2003 and in revised form 20 October 2003

The moving frame and associated Gauss-Codazzi equations for surfaces in three-space are
introduced. A quaternionic representation is used to identify the Gauss-Weingarten equation
with a particular Lax representation. Several examples are given, such as the case of constant
mean curvature.
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The study of surfaces in three- and higher-dimensional spaces has seen a resurgence

of interest recently due to various applications of these surfaces to various areas of

mathematical physics, especially to the area of integrable systems [1, 6, 8]. The par-

ticular class of surfaces known as minimal surfaces with constant mean curvature has

many applications to various physical problems. It is the intention here to review and

establish the Gauss-Codazzi equations for surfaces in Euclidean three-space. Next, a

quaternionic representation is introduced for the moving frame of the conformally

parametrized surface. It will be shown how the frame equations can be written using

quaternions by means of an SU(2) matrix. The main new element here is a straightfor-

ward derivation of a Lax pair based on the use of quaternions, and an application of

this result to the generalized Weierstrass representation [2]. Some specific examples

of solutions for the resulting equations are given, and a particular application to the

case of constant mean curvature surfaces under Konopelchenko’s generalization of the

Weierstrass representation is presented [7].

We begin by establishing some general notions with regard to orientable surfaces

in three-dimensional Euclidean space. Under such a parametrization, which is called

conformal, the surface S can be given by a vector-valued function

F = (F1,F2,F3
)

: � �→R3. (1)

The metric is conformal so that g = euidzidz̄i, where zi is the local coordinate on the

Riemann surface.

The vectors Fz, Fz̄ as well as the normalN such that (Fz,N)= (Fz̄,N)= 0 and (N,N)=
1 define a moving frame on the surface. The bracket represents the Euclidean inner

product (a,b)= a1b1+a2b2+a3b3. The moving frame satisfies the Gauss-Weingarten

equations

σz =�σ, σz̄ =�σ, σ = (Fz,Fz̄,N)T , (2)
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and the matrices � and � are defined by

�=



uz 0 Q

0 0
1
2
Heu

−H −2Qe−u 0


 , �=




0 0
1
2
Heu

0 uz̄ Q
−2Q̄e−u 0 0


 . (3)

Moreover, we have the relations

Q= (Fzz,N), 1
2
Heu = (Fzz̄,N). (4)

The first and second fundamental forms are given by the matrices

MI = eu
(

1 0

0 1

)
, MII =


Q+Q̄+Heu i

(
Q−Q̄)

i
(
Q−Q̄) −(Q+Q̄)+Heu


 . (5)

The principal curvatures k1 and k2 are the eigenvalues of the matrix MII ·M−1
I . The

characteristic polynomial of this matrix is given by

λ2−2Heuλ−4|Q|2+H2e2u = 0. (6)

This polynomial has the two roots λ=Heu±2|Q|, and so the principle curvatures are

given by k1,2 = H±2e−u|Q|. Then the mean curvature is given by the average of k1,2

and the Gaussian curvature is given by their product

K = k1k2 =H2−4e−2u|Q|2. (7)

The Gauss-Codazzi equations, which are the compatibility conditions for (2), are ob-

tained by calculating

�z̄−�z+[�,�]= 0. (8)

Using �,� given in (3), the expression in (8) reduces to the following matrix:




uzz̄−2|Q|2e−u+ 1
2
H2eu 0 Qz̄− 1

2
Hzeu

0 −uzz̄− 1
2
H2eu+2|Q|2e−u 1

2
Hz̄eu−Q̄z

−Hz̄+2e−uQ̄z −2Qz̄e−u+Hz 0



. (9)

Requiring that all of the elements in the matrix given in (9) vanish as required by (8)

gives rise to the following set of equations:

uzz̄+ 1
2
H2eu−2|Q|2e−u = 0, Qz̄ = 1

2
Hzeu, Q̄z = 1

2
Hz̄eu. (10)

The first equation in (10) is referred to as the Gauss equation and the last pair as the

Codazzi equations.

There exists a connection between quaternions and surfaces in R3, that is, there

is a quaternionic description of surfaces in R3, which we introduce now. The matrix
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Φ ∈ SU(2) transforms the quaternionic basis î, ĵ, k̂ into the moving frame Fx , Fy , N.

Equations (2) for the moving frame are rewritten using the Lie algebra isomorphism

between so(3) and so(2) in terms of 2×2 matrices. The quaternionic representation of

surfaces permits the identification of the Gauss-Weingarten equations of certain sur-

faces with the Lax representations for Painlevé equations. This quaternionic description

will be useful for analytic studies of curves and surfaces in three- and four-dimensional

spaces.

The algebra of quaternions is denoted by H and the multiplicative quaternion group

byH∗ =H\{0} such that the standard basis is written as {1, î, ĵ, k̂}, where the elements

in this set satisfy îĵ = k̂, ĵk̂ = î, and k̂î = ĵ. The Pauli matrices can be identified with

this basis under the following association: σ1 = iî, σ2 = iĵ, σ3 = ik̂, and I= 1. The mul-

tiplication in terms of Pauli matrices is simply matrix multiplication. Then the matrix

Φ ∈ SU(2) transforms the basis î, ĵ, k̂ into the frame Fx , Fy , N as follows:

Fx = eu/2Φ−1îΦ, Fy = eu/2Φ−1ĵΦ, N = Φ−1k̂Φ. (11)

These equations imply that by means of the identification

β= β01+β1î+β2ĵ+β3k̂←→
(
β0−β3 −β1+β2

β1+β2 β0+β3

)
, (12)

the moving frame (e−u/2Fx,e−u/2Fy,N) of the surface is described by the expression

Ad(Φ)
(
î, ĵ, k̂

)= (e−u/2Fx,e−u/2Fy,N). (13)

The complex representation for the first derivatives of F will be required to be used

with (2) and can be calculated as follows:

Fz = 1
2

(
Fx−iFy

)=−ieu/2Φ−1

(
0 0

1 0

)
Φ,

Fz̄ = 1
2

(
Fx+iFy

)=−ieu/2Φ−1

(
0 1

0 0

)
Φ.

(14)

The quaternion Φ satisfies linear differential equations. To obtain these equations, we

introduce the matrices U,V given by

U = ΦzΦ−1, V = Φz̄Φ−1. (15)

The quantities U , V must satisfy the compatibility condition

Uz̄−Vz+[U,V]= 0. (16)

Differentiating (14) and using the definition of V in (15), the following second-order

derivatives of F are obtained:

Fzz̄ =− i
2
uz̄eu/2Φ−1

(
0 0

1 0

)
Φ−ieu/2Φ−1

[(
0 0

1 0

)
,V
]
Φ, (17)
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and similarly for the mixed derivative,

Fz̄z =− i
2
uzeu/2Φ−1

(
0 1

0 0

)
Φ−ieu/2Φ−1

[(
0 1

0 0

)
,U
]
Φ. (18)

By differentiating ΦΦ−1 = I with respect to z̄, we obtain an expression for the derivative

of Φ−1, namely, Φ−1
z̄ = −Φ−1Φz̄Φ−1. This is used to obtain the results in (17) and (18).

The second derivatives of F can also be obtained in terms of other quantities from the

equations for σz in (2) using the matrices in (3). The following results will be required

in due course:

Fzz =uzFz+QN, Fz̄z = 1
2
euHN, Nz =−HFz−2e−uQFz̄. (19)

Moreover, let the matrices U and V defined in (15) above have matrix elements:

U =
(
U11 U12

U21 U22

)
, V =

(
V11 V12

V21 V22

)
, (20)

where U and V are traceless matrices such that U11+U22 = 0 and V11+V22 = 0. The en-

tries of the matrices in (20) can be determined by using the Gauss-Weingarten equations

(2) and the compatibility conditions.

In fact, we can work out Fzz̄ in terms of the Vij which appear in V in (20) and then

equate the result to the quantity (eu/2)HN as dictated by (19) to give the elements of

the matrix V explicitly:

(
0 0

uz̄ 0

)
+2

[(
0 0

V11 V12

)
−
(
V12 0

V22 0

)]
= eu/2H

(
1 0

0 −1

)
. (21)

Equating the corresponding elements of the resulting matrices on both sides of this

equation, we obtain that

−uz̄ = 2V11−2V22, −V12 = 1
2
eu/2H, V12 =−1

2
eu/2H. (22)

When the matrix V is traceless, we must have V11 =−uz̄/4=−V22. Using the compati-

bility condition Fz̄z = Fzz̄, we also have

(
0 uz
0 0

)
+2

[(
U21 U22

0 0

)
−
(

0 U11

0 U21

)]
= euH

(
1 0

0 −1

)
. (23)

This result produces the following set of conditions which give Uij to be 2U21 = euH,

uz+2U22−2U11 = 0, and −2U21 =−euH. These results imply that

U11 = 1
4
uz, U21 = 1

2
euH. (24)

To obtain an equation which contains Fzz, we begin by differentiating the expression

for Fz in (14) with respect to z to obtain

Fzz =− i
2
eu/2uzΦ−1

(
0 0

1 0

)
Φ−ieu/2Φ−1

z

(
0 0

1 0

)
Φ−ieu/2Φ−1

(
0 0

1 0

)
Φz. (25)
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From the Gauss-Weingarten equations (19), the equation for Fzz yields

uz
2
Φ−1

(
0 0

1 0

)
Φ−Φ−1U

(
0 0

1 0

)
Φ+Φ−1

(
0 0

1 0

)
UΦ

=uzΦ−1

(
0 0

1 0

)
Φ+e−u/2QΦ−1

(
1 0

0 −1

)
Φ.

(26)

In terms of the required unknown matrix elements, (26) implies that

U12 =−e−u/2Q, U11−U22+ 1
2
uz =uz, (27)

and therefore,

U12 =−e−u/2Q, U22 =−U11 =−1
4
uz. (28)

The results which have been obtained here in the form of (22), (24), and (28) can be

summarized in the form of the following theorem.

Theorem 1. Under the isomorphism Y = −i∑3
α=1Xασα → (X1,X2,X3) in Euclidean

three-space, the moving frame Fz, Fz̄, N of the conformally parametrized surface is

described by Fz, Fz̄ given by (14), where Φ ∈ SU(2) satisfies (15) and the matrices U and

V are given in the form

U =




1
4
uz −e−u/2Q

1
2
eu/2H −1

4
uz


 , V =



−1

4
uz̄ −1

2
eu/2H

e−u/2Q̄
1
4
uz̄


 . (29)

The quantity Φ, which can be considered to be H-valued, satisfies the pair of equations

Φz =UΦ, Φz̄ = VΦ, (30)

which are an equivalent form of the equations in (15).

As an example, it is possible to exhibit solutions to the set of equations in (30). We

consider the choice H = 1/2,Q=−λ/4, and Q̄=−1/4λ. Then u= 0 is a global solution

of the Gauss-Codazzi equations when |λ|2 = 1, defined on the whole plane and referred

to as the vacuum solution. The deformed equations corresponding to (30) for this state

are

Φλ,z =




0
λ
4

1
4

0


Φλ, Φλ,z̄ =




0 −1
4

− 1
4λ

0


Φλ. (31)

Under the initial condition Φλ(0,0)= 1, these equations can be solved explicitly.
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Theorem 2. The following Φλ satisfies (31) when λ= µ2:

Φλ =




cosh
(

1
4

(
µz−µ−1z̄

))
µ sinh

(
1
4

(
µz−µ−1z̄

))

µ−1 sinh
(

1
4

(
µz−µ−1z̄

))
cosh

(
1
4

(
µz−µ−1z̄

))

 . (32)

Theorem 3. The following Φλ satisfies (31) when λ=−µ2:

Φλ =




cos
(

1
4

(
µz+µ−1z̄

)) −µ sin
(

1
4

(
µz+µ−1z̄

))

µ−1 sin
(

1
4

(
µz+µ−1z̄

))
cos

(
1
4

(
µz+µ−1z̄

))

 . (33)

As another important example, consider the case of constant mean curvature sur-

faces which can be generated by means of solutions of the generalized Weierstrass

representation. It has been shown recently in [3, 5] that surfaces with constant mean

curvature can be generated by calculating explicit solutions for the following system

of nonlinear Dirac type equations:

∂ψ1 = pψ2, ∂̄ψ2 =−pψ1,

∂̄ψ̄1 = pψ̄2, ∂ψ̄2 =−pψ̄1,
(34)

wherep = |ψ1|2+|ψ2|2 and the equations in (34) have been normalized so thatH = 1/2.

There exists a conserved current for system (34) which is given by

J =ψ2∂ψ̄1−ψ̄1∂ψ2. (35)

Using the generalized system (34), it is easy to show that

∂̄J = ∂J̄ = 0. (36)

The Gaussian curvature K of the surface can be calculated from

K =− 1
p2
∂∂̄(lnp). (37)

The coordinate functions of the surface are found by substituting explicit solutions of

(34) and evaluating the following integrals:

X1+iX2 = 2i
∫
γ

(
ψ̄2

1dz
′ −ψ̄2

2dz̄
′),

X1−iX2 = 2i
∫
γ

(
ψ2

2dz
′ −ψ2

1dz̄
)
,

(38)

X3 =−2
∫
γ

(
ψ̄1ψ2dz′ +ψ1ψ̄2dz̄′

)
.

The integrals are then evaluated and on account of system (34), the right-hand sides

of (38) do not depend on the choice of contour γ in C. The functions Xi(z, z̄) are then

treated as the coordinates of a surface immersed into R3.
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Moreover, it is straightforward to show that system (34) is equivalent to the system

of equations

∂∂̄ lnp = |J|
2

p2
−p2, ∂̄J = ∂J̄ = 0. (39)

The equations in (39) are the corresponding Gauss-Codazzi equations, which essentially

correspond to the compatibility conditions for (3) if we identify u = lnp2 and make

some other reparametrizations [4].

With respect to the generalized Weierstrass system (34), the linear problem (3) can

be rewritten in terms of ψ1 and ψ2 as follows. Differentiating p = |ψ1|2+ |ψ2|2, we

have modulo (34),

∂p =ψ1∂ψ̄1+ψ̄2∂ψ2. (40)

Using the definition of the current J in (35), we can solve for the derivatives ∂ψ̄1 and

∂ψ2. Using these with (34), we obtain that the set of derivatives satisfies

∂
(
ψ̄1

ψ̄2

)
=

∂ lnp

J
p

−p 0



(
ψ̄1

ψ̄2

)
, ∂

(
ψ1

ψ2

)
=



0 p

− J
p

∂ lnp



(
ψ1

ψ2

)
. (41)

The compatibility conditions for (41) should coincide with (39). Theorem 1 can be ap-

plied to this case by taking H = 1/2,Q= J and identifying u= lnp2. Then the matrices

U and V are given by

U =



∂p
2p

− J
p

p
4

−∂p
2p


 , V =



− ∂̄p

2p
−p

4

J̄
p

∂̄p
2p


 . (42)

These are the matrices which would appear in (30) and which satisfy (16).

As a final point, we would like to show that the classic Enneper surface for which

H = 0 can be produced as a solution to system (34). In this instance, since the right-

hand side of system (34) is proportional to H, it reduces to the simple linear system

∂ψ1 = 0 and ∂̄ψ2 = 0, since H cannot be scaled out in this case. These equations have

the general solutions ψ1 = f(z̄) and ψ2 = g(z). Consider this specific case of system

(34) where the particular solution ψ1 = az̄ and ψ2 = b, with a, b ∈ R is taken. Using

these solutions in (38) and integrating, the coordinates of the following Enneper-type

surface is obtained:

X1 = 2a2u2v− 2
3
a2v3+ v

2a2
,

X2 = 2a2uv2− 2
3
a2u3+ u

2a2
,

X3 =u2−v2.

(43)

We have taken b = 1/(2a) and substituted z = u+ iv after integration to obtain the

equations in (43). By rescaling the coordinates (u,v) → (u/2a2,v/2a2) and then Xi,
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the standard classic form of Enneper’s surface is obtained. It is usually written in the

following form:

�X=
(
v− v

3

3
+u2v, u− u

3

3
+uv2, u2−v2

)
. (44)

It is known that a surface has constant mean curvature of zero in R3 if and only if its

parametrized coordinate functions satisfy Laplace’s equation. In this case, it is easy

to verify that the results in both (43) and (44) do satisfy Laplace’s equation, namely,
�Xuu+�Xvv = 0 as required. By taking solutions of the formψ1 = āz̄+b̄,ψ2 = cz+d, with

a,b,c,d ∈ C in (38), the coordinate expressions of the more generalized Enneper-type

surfaces can be calculated.
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