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In this paper, we examine the Radon-Nikodym property and its relation to the Bishop-Phelps
theorem for complex Banach spaces. We also show that the Radon-Nikodym property implies
the Bishop-Phelps property in the complex case.
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1. Introduction. Let X be a complex Banach space and let C be a closed convex

subset of X. The set of support points of C , written as suppC , is the collection of all

points z ∈ C for which there exists nontrivial f ∈X∗ such that supx∈C |f(x)| = |f(z)|.
Such an f is called support functional. The point z ∈ suppC is called a strongly exposed

point of C if for all sequences {zn} ⊂ C , limn→∞(Ref(zn)) = supC Re(f ) implies that

zn→ z, where Re denotes the real part.

In this paper, we will show that the unit ball of an infinite-dimensional function

algebra has no strongly exposed points. Lomonosov [4] constructed a closed, bounded,

and convex subset C of a complex Banach space such that the set of support points

of C is empty. This means that the Bishop-Phelps theorem fails to hold in the complex

case. We show below that for Hardy spaces, the Bishop-Phelps theorem does hold.

Bourgain [1] proved that ifX is a real Banach space, then the Radon-Nikodym property

(RNP) and the Bishop-Phelps property (BPP) are equivalent. The precise definitions are

given below.

It is natural to ask whether this equivalence remains true in the complex case. In this

paper, we show that, appropriately defined, it does indeed hold for complex Banach

spaces. Recall that a Banach space X is said to have the RNP, provided that for every

measure space (Ω,Σ,µ) with µ(Ω) <∞, and every µ-continuous measure T : Σ→ X of

finite variation, there exists a Bochner integrable function f : Ω→ X such that T(E) =∫
E fdµ for every E ∈ Σ.

Let X and Y be Banach spaces and let L(X,Y) be the Banach space of all bounded

linear operators from X into Y . Suppose that T ∈ L(X,Y) and C is a nonempty and

bounded subset of X, then we define ‖T‖(C) := sup{‖Tx‖ : x ∈ C}. A Banach space

X is said to have the BPP if for any nonempty, bounded, and closed subset C of X,

any Banach space Y , and any T ∈ L(X,Y), there is an approximating sequence (Tn) in

L(X,Y) for which each (Tn) achieves its max norm ‖(Tn)‖(C) on C .

A subset C of a Banach space is called dentable if for every ε > 0, there exists an x ∈ C
such that x �∈ co(C−N(x,ε)), where co denotes “closed convex hull” and N(x,ε) is the

http://dx.doi.org/10.1155/S0161171204205191
http://dx.doi.org/10.1155/S0161171204205191
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


828 I. SADEQI

open ε-neighborhood of x. In the final part of this paper, we discuss uncountability of

the set of normalized support functionals, a question posed by L. Zajicek in 1999.

2. The RNP for complex Banach spaces. Bourgain proved in [1] that if the real Ba-

nach space X has the RNP and if C is a closed, convex, and bounded subset of X, then

the set of support functionals that strongly expose some point of C is dense in X∗.

Suppose that the complex Banach space X has the RNP and that C is a bounded, closed,

and convex subset of X. Put

H := {eiθx : 0≤ θ < 2π, x ∈ C}. (2.1)

Let B denote the closed convex hull of H. Then, as cited above, the set of real parts

of linear functionals which strongly expose some point of B forms a dense subset of

X∗r . Here Xr is the underlying real Banach space. By the standard isometry f → Ref
between X∗ and X∗r , these are the real parts of a dense subset of X∗. The strongly

exposed points of B are contained in H since H is closed, so by the theorem of Phelps,

sup|f |(C)= supRef(H) (2.2)

and the support functionals are dense in the complex case. Therefore, using the two

theorems of Phelps and Bourgain, the RNP implies the Bishop-Phelps theorem in the

complex case. If we show that the RNP implies the BPP in the complex case, the Bishop-

Phelps theorem clearly holds for complex Banach spaces with the RNP without recourse

to the theorems of Bourgain [1] and Phelps [6].

Definition 2.1. Let B be a nonempty, bounded, closed, and convex subset of the

complex Banach space X. Let Y be a Banach space and T ∈ L(X,Y). Say that T is an

F -strongly exposing operator for the set B if there exists some point x ∈ B depending

on T such that every sequence (xn)⊂ B satisfying

sup‖T‖(B)= lim
n→∞

∥∥T(xn)∥∥ (2.3)

has a subsequence converging to αx for some complex number α with |α| = 1.

If X is a real Banach space, then the definition of an F -strongly exposing operator

becomes Bourgain’s definition of an R-strongly exposing operator, as follows.

Let B be a nonempty, bounded, closed, and convex subset of the complex Banach

space X. Let Y be a Banach space and T ∈ L(X,Y). T is called an R-strongly exposing

operator for the set B if there exists some point x ∈ B depending on T such that every

sequence (xn)⊂ B satisfying (2.3) has a subsequence converging to x or −x [1].

Theorem 2.2 (Bourgain). Let B be a nonempty, bounded, closed, and convex subset

of the real Banach space X. Assume that every nonempty subset of B is dentable. Then

for any Banach space Y , the set of all R-strongly exposing operators T ∈ L(X,Y) for the

set B is a dense subset of L(X,Y).

In the following discussion, we show why we need the definition of an F -strongly

exposing operator to prove Bourgain’s theorem in the complex case. Let X be a complex
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Banach space and let C be a circled, bounded, closed, and convex subset of X (i.e.,

αC ⊆ C if |α| = 1). Suppose that T achieves its max norm ‖T‖(C) on C . Then there

exists x0 in C such that

sup‖T‖(C)= ∥∥T(x0
)∥∥. (2.4)

Choose αn = i; it is clear that

lim
n→∞

∥∥T(αnx0
)∥∥= sup‖T‖(C), (2.5)

and (αnx0) has no subsequence converging to x0 or −x0. So the circled subsets of X
have no R-strongly exposing operator. Also let Xr and Yr be the underlying real part

of the complex Banach spaces X and Y , respectively. Since L(Xr ,Yr ) is not isomorphic

to L(X,Y) in general, we cannot directly use Bourgain’s definition in the complex case.

Theorem 2.3. Let X be a complex Banach space with the RNP. Then X possesses the

BPP.

Proof. Let C be a nonempty, closed, convex, and bounded subset of X. Let Y be a

complex Banach space. We must show that for T ∈ L(X,Y), there is an approximating

sequence (Tn) for which each (Tn) achieves its max norm on C . For n∈N, define

Kn :=
{
T ∈ L(X,Y) : ∃ξ ≥ 0,∃t ∈X,S(T ,ξ)⊂

⋃
|α|=1

N
(
αt,n−1)}, (2.6)

where S(T ,ξ) := {x ∈ C : ‖Tx‖ ≥ ‖T‖(C)−ξ}. Since X has the RNP, every nonempty

and bounded subset of X is dentable, so Kn is dense in L(x,y) (see [1]). If T ∈ Kn for

each n∈N, then there exists a sequence (xn) in C such that limn→∞‖Txn‖ = ‖T‖(C).
There exists also t ∈ X such that (xn) is contained in F := {αt : |α| = 1}. It follows

that xn =αnt, and there is a subsequence of (xn) converging to α0t for some α0 with

|α0| = 1. Therefore, T is an F -strongly exposing operator and achieves its max norm

on C at α0t. It follows that T is an F -strongly exposing operator if and only if T ∈ Kn
for every n ∈ N. Put K := ⋂∞n=1Kn. Since any Kn is dense in L(X,Y) if we show that

any Kn is open, we conclude that K is dense in L(X,Y). Let T ∈ Kn and suppose that

F ∈ L(X,Y) with ‖F −T‖ ≤ ξ/3. It is easy to see that S(F,ξ/3) ⊆ S(T ,ξ/3), so F ∈ Kn
and Kn is open in L(X,Y). The fact that each T ∈K is an F -strongly exposing operator

and achieves its max norm on C completes the proof.

Corollary 2.4. The RNP implies the Bishop-Phelps theorem in the complex case.

Proof. Since the RNP implies the BPP in the complex case, the proof is clear.

That the BPP implies the RNP can be easily checked through Bourgain’s proof in [1],

so we have the following result.

Theorem 2.5. The RNP and the BPP are equivalent for complex Banach spaces.

We are ready to examine the RNP for some complex Banach spaces. Let τ := {eiθ :

0≤ θ ≤π} and L1(τ) denote the summable complex functions on τ . The following dis-

cussion shows that some subspaces of L1(τ) have the RNP so that the Bishop-Phelps
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theorem is true for them. The complex Bishop-Phelps theorem is still open for L1; how-

ever, we can verify this theorem for some subspaces of L1. Let C(τ) be the set of all

continuous functions on τ and let C0 denote the functions in C(τ) which are analytic

with mean value zero. It is well known that

(
C(τ)/C0)∗ ≈H1(τ). (2.7)

Since H1(τ) is a separable space with a predual, it has the RNP and, hence, the Bishop-

Phelps theorem is true for H1(τ) ⊂ L1(τ). Also, all Hp (1 ≤ p <∞) are separable and

have a predual. The following theorem is an immediate consequence of this discussion.

Theorem 2.6. The Bishop-Phelps theorem is satisfied for the Hardy spaces Hp (1 ≤
p <∞) in the complex case.

As mentioned above, a separable dual Banach space has the RNP. Since H∞ is not

separable, it is still unknown whether the Bishop-Phelps theorem is true for H∞. Hens-

gen (see [3]) proved that the unit ball of H∞ has no strongly exposed points. Therefore,

H∞ is guaranteed to lack both the RNP and the BPP. In the following, we will show

that the unit ball of an infinite-dimensional uniform algebra has no strongly exposed

point. As a result, such spaces do not have the RNP. So it is natural to ask whether the

Bishop-Phelps theorem holds for infinite-dimensional uniform algebras.

Let X be a nonempty set and let K be a normed linear algebra. We denote by �∞(X,K)
the normed linear algebra of all bounded mappings of X into K with pointwise addition

and scalar multiplication and with the uniform norm. For a bounded mapping f , the

uniform norm is defined by

‖f‖∞ = sup
{∥∥f(x)∥∥ : x ∈X}. (2.8)

A uniform algebra of functions on X is a subalgebra of the Banach algebra �∞(X,F),
where F is either the real or complex numbers. Given a nonempty topological space

X,C(X,K) denotes the linear space of all continuous mappings of X into K with point-

wise addition and scalar multiplication. When X is compact, C(X,K) is a closed linear

subspace of �∞(X,K), and in particular, C(X,F) is a uniform algebra of functions. The

notation C(X,F) is abbreviated to C(X).

Lemma 2.7. Let X be a compact Hausdorff space such that C(X) is infinite-dimen-

sional. Then the unit ball of C(X) has no strongly exposed point.

Proof. If X admits no Baire diffuse measure (a nonnegative measure µ on X is said

to be diffuse if µ(V) > 0 for every nonempty open subset V of X), then the unit ball of

C(X) contains no exposed point (see [5]). So the proof is clear in this case. Let X admit a

diffuse measure and suppose that λ∈ C(X)∗ exposes f ∈U , where U is the unit ball of

C(X). Then |f(t)| = 1 (t ∈ X). Since X admits a diffuse measure and ‖f‖ = 1, a result

of Eberlein’s guarantees that accumulation points can be approximated by sequences

(see [7]). We can assume that there exists a sequence (tn) ⊂ X such that f(tn) → 1.

Choose pairwise disjoint open sets Un in X such that tn ∈ Un. Also choose hn ∈ C(X)
with 0 ≤ hn ≤ 1, hn(tn) = 1, and hn = 0 on K \Un. Put gn = 1−hn; clearly ‖gn‖ ≤ 1



SUPPORT FUNCTIONALS AND THEIR RELATION . . . 831

and gn(t)→ 1 for each t ∈ X. Hence gnf(t)→ f(t), t ∈ X. Also by the Hahn-Banach

theorem, it is easy to see that λ must be of the form

λ(g)=
∫
X
gf̄dµ. (2.9)

It is clear that λ(gnf)→ λ(f), but ‖gnf −f‖ = ‖hnf‖ ≥ 1. So f cannot be a strongly

exposed point. Also since any uniform algebra is a commutative B∗-algebra, by the

Gelfand-Naimark theorem, A is an isometric isomorphism of C(∆A), where ∆A is the

maximal ideal space of A. Therefore, as cited above, A has no strongly exposed point,

and we have the following result.

Theorem 2.8. The unit ball of an infinite-dimensional C∗-algebra has no strongly

exposed point.

It is well known that if X is a complex Banach space with the RNP, then the set of

support functionals that expose some points of the unit ball of X is norm dense in

X∗ [1].

Corollary 2.9. An infinite-dimensonal separable C∗-algebra possesses neither the

RNP nor the BPP; hence it has no predual.

3. The set of normalized support functionals

Problem 3.1. Suppose that X is a real Banach space with dimX > 1 and C ⊆ X is a

bounded, closed, and convex subset of X. Is the set of normalized support functionals

Σ(C) an uncountable subset of SX∗? (Due to L. Zajicek).

Phelps has made the following observations. Suppose that Σ(C) is countable; then it

has no interior point, so SX∗ \Σ(C) is a dense Gδ set in SX∗ . Since Σ(C) is dense in SX∗ ,

from the Bishop-Phelps theorem, we conclude that X∗ is separable. If X is reflexive,

then any linear functional of SX∗ supports C , which is a contradiction. Since Σ(C) is

countable, X must be a nonreflexive space with a separable dual space. Also C must

have an empty interior because otherwise we may assume that 0 ∈ intC , and since

dimX > 1, it is possible to have a two-dimensional subspaceM of X. So if f ∈ SM∗ , then

it supports M∩C . By the Hahn-Banach theorem, there is an extention f ′ of f in Σ(C).
That is, there is one-to-one map from the uncountable set Σ(M∩C) into Σ(C), which is

impossible.

Theorem 3.2. Let X be a weakly sequentially complete (w.s.c.) Banach space and let

C be a closed, convex, and bounded subset of X. Then Σ(C) is uncountable.

Proof. If Σ(C) is countable, since Σ(C) is dense in SX∗ , SX∗ is separable. By

Dounford-Pettis theorem (see [2]), X∗ possesses the RNP. Let (xn) be a bounded se-

quence in X. Then Y , the closed linear span of (xn), is a separable subspace of X. Since

X∗ has the RNP, Y∗ is separable. By a classical result of Banach, (xn) has a weak Cauchy

subsequence in Y (again denoted by (xn)), which is also a weak Cauchy sequence in X.

Since X is w.s.c., then (xn) is a weakly convergent sequence, therefore, any bounded

sequence (xn) is a weakly convergent sequence in X, and so X is a reflexive space. Thus

Σ(C)= SX∗ , an uncountable set.
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Remark 3.3. If any nonempty subset of a closed, convex, and bounded set C is

dentable, then by a result of Bourgain (see [6]), for such a set C , the set of support

functionals is Gσ dense in X∗. And by a classical theorem that the Banach space X has

no countable Gσ dense subset, we conclude that Σ(C) is uncountable.
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