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Lamé’s formulas for the eigenvalues and eigenfunctions of the Laplacian on an equilateral
triangle under Dirichlet and Neumann boundary conditions are herein extended to the Robin
boundary condition. They are shown to form a complete orthonormal system. Various prop-
erties of the spectrum and modal functions are explored.
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1. Introduction. The eigenstructure of the Laplacian on an equilateral triangle under

either Dirichlet or Neumann boundary conditions was explicitly determined by Lamé

[6, 7] in the context of his studies of heat transfer in polyhedral bodies and then further

explored by Pockels [12]. However, Lamé and subsequent researchers such as Pockels

did not provide a complete derivation of these formulas but rather simply stated them

and then proceeded to show that they satisfied the relevant equation and associated

boundary conditions. Such a complete, direct, and elementary derivation of Lamé’s

formulas has only recently been provided for the Dirichlet problem [11] as well as the

Neumann problem [9].

It is the express purpose of the present work to extend this recent work to the much

more difficult case of the Robin boundary condition. Lamé [6, 7] presented a partial

treatment of this problem when he considered eigenfunctions possessing 120◦ rota-

tional symmetry. In all likelihood, Lamé avoided consideration of the complete set of

eigenfunctions with Robin boundary conditions because of the attendant complexity of

the transcendental equations which so arise. However, armed with the numerical and

graphical capabilities of Matlab, we herein study the complete family of Robin eigen-

functions of the Laplacian on an equilateral triangle.

We commence by employing separation of variables in Lamé’s natural triangular co-

ordinate system to derive the eigenvalues and eigenfunctions of the Robin problem.

An important feature of this derivation is the decomposition into symmetric and an-

tisymmetric modes (eigenfunctions). The problem is then reduced to the solution of a

system of transcendental equations which we treat numerically. Surprisingly, all of the

modes so determined are expressible as combinations of sines and cosines.

A natural homotopy between Lamé’s Neumann and Dirichlet modes is not only ex-

ploited in the derivation of the modes but also employed to shed light on the properties

of these newly derived modes. Prominent among these considerations are rotational

symmetry and modal degeneracy [10]. We resort to a continuity argument in order to
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Figure 2.1. Equilateral triangle with incircle.

demonstrate orthogonality of these modes. Completeness is then established via an

analytic continuation argument relying on the previously published completeness of

the Neumann modes [13]. Lastly, knowing the eigenstructure permits us to construct

the Robin function [1], and we so do.

2. The Robin eigenproblem for the equilateral triangle. During his investigations

into the cooling of a right prism with equilateral triangular base [6, 7], Lamé was led to

consider the eigenvalue problem

∆T(x,y)+k2T(x,y)= 0, (x,y)∈ τ,
∂T
∂ν
(x,y)+σT(x,y)= 0, (x,y)∈ ∂τ,

(2.1)

where ∆ is the two-dimensional Laplacian ∂2/∂x2+∂2/∂y2, τ is the equilateral triangle

shown in Figure 2.1, ν is its outward pointing normal, and 0 ≤ σ < +∞ is a material

parameter. However, he was only able to show that an eigenfunction satisfying (2.1)

could be expressed in terms of combinations of sines and cosines when it possesses

120◦ rotational symmetry. We will find through the ensuing analysis that all of the

eigenfunctions (modes) of this problem are so expressible.

The boundary condition in (2.1) with σ > 0 arises when heat dissipates from a body

into a surrounding medium by a combination of convection, radiation, and conduction.

It also appears in the study of the vibrational modes of an elastic membrane. If σ is

allowed to be complex (which is prohibited herein), then the identical problem occurs

also in wave propagation in acoustic ducts and electromagnetic waveguides. This is

sometimes referred to as a boundary condition of the third kind. However, we will

adhere to the more common name of Robin boundary condition even though recent

researches [4, 5] indicate that this appellation is not historically justified.
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Figure 3.1. Triangular coordinate system.

Observe that in (2.1) when σ = 0, we have the Neumann problem [9] while σ →+∞
yields the Dirichlet problem [11]. Thus, we may profitably view σ as a continuation

parameter which provides a homotopy between these two well-understood problems.

Throughout the ensuing development, we will avail ourselves of this important obser-

vation.

3. Triangular coordinate system. Reconsider the equilateral triangle of side h in

standard position in Cartesian coordinates (x,y) (Figure 2.1) and define the triangular

coordinates (u,v,w) of a point P (Figure 3.1) by

u= r −y,

v =
√

3
2
·
(
x− h

2

)
+ 1

2
·(y−r),

w =
√

3
2
·
(
h
2
−x

)
+ 1

2
·(y−r),

(3.1)

where r = h/(2√3) is the inradius of the triangle. The coordinates u, v , and w may be

described as the distances of the triangle center to the projections of the point onto

the altitudes, measured positively toward a side and negatively toward a vertex.

Note that Lamé’s triangular coordinates satisfy the relation

u+v+w = 0. (3.2)

Moreover, the center of the triangle has coordinates (0,0,0) and the three sides of

the triangle are given by u = r , v = r , and w = r , thus simplifying the application of

boundary conditions. They are closely related to the barycentric coordinates (U,V ,W)
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introduced by Lamé’s contemporary Möbius in 1827 (see [3]):

U = r −u
3r

, V = r −v
3r

, W = r −w
3r

, (3.3)

satisfying U+V +W = 1. These were destined to become the darling of finite element

practitioners in the twentieth century.

4. Separation of variables. We now commence with our original, complete, and ele-

mentary derivation by introducing the orthogonal coordinates (ξ,η) given by

ξ =u, η= v−w. (4.1)

Equation (2.1) becomes

∂2T
∂ξ2

+3
∂2T
∂η2

+k2T = 0. (4.2)

Hence, if we seek a separated solution of the form

f(ξ)·g(η), (4.3)

we arrive at

f ′′ +α2f = 0, g′′ +β2g = 0, α2+3β2 = k2. (4.4)

Thus, there exist separated solutions of the form

f(u)·g(v−w), (4.5)

where f and g are trigonometric functions.

Before proceeding any further, we will decompose the sought-after eigenfunction

into parts symmetric and antisymmetric about the altitude v =w (see Figure 4.1):

T(u,v,w)= Ts(u,v,w)+Ta(u,v,w), (4.6)

where

Ts(u,v,w)= T(u,v,w)+T(u,w,v)
2

,

Ta(u,v,w)= T(u,v,w)−T(u,w,v)
2

,
(4.7)

henceforth to be dubbed a symmetric/antisymmetric mode, respectively. We next take

up the determination of Ts and Ta separately.

5. Construction of a symmetric mode. As shown elsewhere, a sum of three terms of

the form of (4.5) is required to solve either the Neumann [9] or Dirichlet [11] problem.
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Figure 4.1. Modal line of symmetry/antisymmetry.

Hence, we make the ansatz

Ts = cos
[
πλ
3r
(u+2r)−δ1

]
·cos

[
π(µ−ν)

9r
(v−w)

]

+cos
[
πµ
3r
(u+2r)−δ2

]
·cos

[
π(ν−λ)

9r
(v−w)

]

+cos
[
πν
3r
(u+2r)−δ3

]
·cos

[
π(λ−µ)

9r
(v−w)

]
,

(5.1)

with

λ+ν+µ = 0, (5.2)

and eigenvalue

k2 = 2
27

(
π
r

)2[
λ2+µ2+ν2]= 4

27

(
π
r

)2[
µ2+µν+ν2]. (5.3)

As we will see, this symmetric mode never vanishes identically.

Careful perusal of (5.1) now reveals that for δ1 = δ2 = δ3 = 0, it reduces to a symmet-

ric mode of the Neumann problem [9], while for δ1 =−3π/2, δ2 =π/2, and δ3 =π/2,

it reduces to a symmetric mode of the Dirichlet problem [11]. Thus, our task amounts

to finding values of λ, µ, ν , δ1, δ2, and δ3 so that the Robin boundary condition is

satisfied along the periphery of the equilateral triangle. These values are to satisfy the

constraints −3π/2 < δ1 ≤ 0, 0 ≤ δ2 < π/2, 0 ≤ δ3 < π/2, 0 ≤ µ, and 0 ≤ ν , as well as

(5.2).

Imposition of the Robin boundary condition along u= r yields

tan
(
λ−δ1

)= 3σr
πλ

, tan
(
µ−δ2

)= 3σr
πµ

, tan
(
ν−δ3

)= 3σr
πν

, (5.4)
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while the imposition along v = r yields

tan
(
− δ2+δ3

2

)
= 3σr
πλ

, tan
(
− δ3+δ1

2

)
= 3σr
πµ

, tan
(
− δ1+δ2

2

)
= 3σr
πν

.

(5.5)

By symmetry, the boundary condition along w = r will thereby be automatically satis-

fied.

Introducing the auxiliary variables L, M , and N while collecting together these equa-

tions produces

tan
(
λ−δ1

)= tan
(
− δ2+δ3

2

)
= 3σr
πλ

= tanL, −π
2
< L≤ 0,

tan
(
µ−δ2

)= tan
(
− δ3+δ1

2

)
= 3σr
πµ

= tanM, 0≤M <
π
2
,

tan
(
ν−δ3

)= tan
(
− δ1+δ2

2

)
= 3σr
πν

= tanN, 0≤N < π
2
,

(5.6)

and these six equations may in turn be reduced to the solution of the system of three

transcendental equations for L, M , and N:
[
2L−M−N−(m+n)π]·tanL= 3σr,

[2M−N−L+mπ]·tanM = 3σr,

[2N−L−M+nπ]·tanN = 3σr,

(5.7)

where m= 0,1,2, . . . and n=m, m+1, . . . .
Once L, M , and N have been numerically approximated, for example, using Matlab,

the parameters of primary interest may then be determined as

δ1 = L−M−N, δ2 =−L+M−N, δ3 =−L−M+N,

λ= 2L−M−N
π

−m−n, µ = 2M−N−L
π

+m, ν = 2N−L−M
π

+n.
(5.8)

For future reference, when m = n, we have M = N, δ2 = δ3, µ = ν , and 2πµ =
δ2−δ1+2mπ .

Of particular interest are the following limits. As σ → 0+, we find that L, M , and N
each approaches 0, as do δ1, δ2, and δ3, and, most significantly, λ→−(m+n), µ→m,

and ν →n. In other words, we recover in this limit the Neumann modes. Furthermore,

as σ → +∞, we find that L → −π/2, M → π/2, N → π/2, δ1 → −3π/2, δ2 → π/2,

and δ3 → π/2, and, most significantly, λ → −2− (m+n), µ →m+1, and ν → n+1.

In other words, we recover in this limit the Dirichlet modes. Thus, we have success-

fully fulfilled our original ansatz and thereby constructed a homotopy leading from

the symmetric Neumann modes to the symmetric Dirichlet modes. Moreover, we have

indexed our symmetric Robin modes Tm,ns , which are given by (5.1) in correspondence

to the symmetric Neumann modes with the result that as σ ranges from 0 to +∞, the

(m,n) symmetric Neumann mode “morphs” continuously (in fact, analytically) into the

(m+1,n+1) symmetric Dirichlet mode.

Figure 5.1 shows the plane wave (0,0) mode morphing into the fundamental (1,1)
Dirichlet mode. Figure 5.2 displays the (0,1) symmetric mode.
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Figure 5.1. The (0,0) symmetric mode.
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Figure 5.2. The (0,1) symmetric mode.
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Figure 6.1. The (0,1) antisymmetric mode.

6. Construction of an antisymmetric mode. A parallel development is possible for

the determination of an antisymmetric mode. In light of the oddness of Ta as a function

of v−w, we commence with an ansatz of the form

Ta = cos
[
πλ
3r
(u+2r)−δ1

]
·sin

[
π(µ−ν)

9r
(v−w)

]

+cos
[
πµ
3r
(u+2r)−δ2

]
·sin

[
π(ν−λ)

9r
(v−w)

]

+cos
[
πν
3r
(u+2r)−δ3

]
·sin

[
π(λ−µ)

9r
(v−w)

]
.

(6.1)

Once again,

λ+µ+ν = 0,

k2 = 2
27

(
π
r

)2[
λ2+µ2+ν2]= 4

27

(
π
r

)2[
µ2+µν+ν2]. (6.2)

However, this antisymmetric mode may vanish identically.

Equations (5.4), (5.5), (5.6), (5.7), and (5.8) still hold so that, for a given m and n,

{λ,µ,ν,δ1,δ2,δ3} are the same for the symmetric, Tm,ns , and antisymmetric, Tm,na ,

modes which are given by (6.1). In particular, the comments made above concerning

indexing modes and “mode-morphing” also apply here. Figure 6.1 displays the (0,1)
antisymmetric mode.
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7. Modal properties. In what follows, it will be convenient to have the following

alternative representations of our Robin modes:

Tm,ns = 1
2

{
cos

[
2π
9r
(λu+µv+νw+3λr)−δ1

]

+cos
[

2π
9r
(νu+µv+λw+3νr)−δ3

]

+cos
[

2π
9r
(µu+νv+λw+3µr)−δ2

]

+cos
[

2π
9r
(µu+λv+νw+3µr)−δ2

]

+cos
[

2π
9r
(νu+λv+µw+3νr)−δ3

]

+cos
[

2π
9r
(λu+νv+µw+3λr)−δ1

]}
,

(7.1)

Tm,na = 1
2

{
sin
[

2π
9r
(λu+µv+νw+3λr)−δ1

]

−sin
[

2π
9r
(νu+µv+λw+3νr)−δ3

]

+sin
[

2π
9r
(µu+νv+λw+3µr)−δ2

]

−sin
[

2π
9r
(µu+λv+νw+3µr)−δ2

]

+sin
[

2π
9r
(νu+λv+µw+3νr)−δ3

]

−sin
[

2π
9r
(λu+νv+µw+3λr)−δ1

]}
,

(7.2)

obtained from (5.1) and (6.1), respectively, by the application of appropriate trigono-

metric identities.

We may reduce the collection of antisymmetric Robin modes through the following

observation.

Theorem 7.1. (i) The mode Tm,ns never vanishes identically.

(ii) The mode Tm,na vanishes identically if and only if m=n.

Proof. (i) Note that a symmetric mode is identically zero if and only if it vanishes

along the line of symmetry v = w since the only function, both symmetric and anti-

symmetric, is the zero function. Along v =w,

Tm,ns = cos
[
π(µ+ν)

3r
(u+2r)−δ1

]
+cos

[
πµ
3r
(u+2r)−δ2

]

+cos
[
πν
3r
(u+2r)−δ3

]
,

(7.3)

which cannot vanish identically for −2r ≤u≤ r .
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Figure 7.1. The (1,1) symmetric mode.

(ii) Note that an antisymmetric mode is identically zero if and only if its normal

derivative vanishes along the line of symmetry v = w since the only function, both

antisymmetric and symmetric, is the zero function. Along v =w,

∂Tm,na

∂(v−w) =
π(µ−ν)

9r
cos

[
π(µ+ν)

3r
(u+2r)+δ1

]

+ π(µ+2ν)
9r

cos
[
πµ
3r
(u+2r)−δ2

]

− π(2µ+ν)
9r

cos
[
πν
3r
(u+2r)−δ3

]
.

(7.4)

This equals zero if and only if m=n.

Hence, our system of eigenfunctions is {Tm,ns (n ≥m); Tm,na (n > m)}. Figure 7.1

shows the (1,1) mode whereas the symmetric and antisymmetric (0,2) modes are dis-

played in Figures 7.2 and 7.3, respectively, while the symmetric and antisymmetric

(1,2) modes are displayed in Figures 7.4 and 7.5, respectively.
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Figure 7.2. The (0,2) symmetric mode.
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Figure 7.3. The (0,2) antisymmetric mode.



818 BRIAN J. MCCARTIN

σ = 0.001

−2

0

2

1

0.5

0 0
0.5

1

y x

Ts

σ = 1

−2

0

2

1

0.5

0 0
0.5

1

y x

Ts

σ = 10

−2

0

2

1

0.5

0 0
0.5

1

y x

Ts

σ = 1000

−2

0

2

1

0.5

0 0
0.5

1

y x

Ts

Figure 7.4. The (1,2) symmetric mode.
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Figure 7.5. The (1,2) antisymmetric mode.
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We next give the case m = n further consideration. Recall that we have just deter-

mined that Tm,ma ≡ 0. Furthermore, in this case, we may combine the terms of (7.1) to

yield

Tm,ms = cos
[

2πµ
3r

(r −u)−δ2

]

+cos
[

2πµ
3r

(r −v)−δ2

]

+cos
[

2πµ
3r

(r −w)−δ2

]
,

(7.5)

which clearly illustrates that any permutation of (u,v,w) leaves Tm,ms invariant. This

is manifested geometrically in the invariance of Tm,ms under a 120◦ rotation about the

triangle center (see Figure 7.1). This invariance will henceforth be termed rotational

symmetry.

Moreover, the modes Tm,ms are not the only ones that are rotationally symmetric.

Theorem 7.2. (i) The mode Tm,ns is rotationally symmetric if and only if

m≡n(≡ l)(mod3). (7.6)

(ii) The mode Tm,na is rotationally symmetric if and only if m≡n(≡ l)(mod3).

Proof. (i) The mode Tm,ns is rotationally symmetric if and only if it is symmetric

about the line v = u. This can occur if and only if the normal derivative ∂Tm,ns /∂ν
vanishes there. Thus, we require that

∂Tm,ns

∂(v−u)
∣∣∣∣
v=u

=−1
4

{
(2µ+ν)sin

[
2π
3r
(−νu−(µ+ν)r)−δ1

]

+(µ−ν)sin
[

2π
3r
(
(µ+ν)u+νr)−δ3

]

−(µ−ν)sin
[

2π
3r
(
(µ+ν)u+µr)−δ2

]

−(2µ+ν)sin
[

2π
3r
(−νu+µr)−δ2

]

−(µ+2ν)sin
[

2π
3r
(−µu+νr)−δ3

]

+(µ+2ν)sin
[

2π
3r
(−µu−(µ+ν)r)−δ1

]}
= 0,

(7.7)

derived from (7.1). These terms cancel pairwise if and only if (7.6) holds.
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Figure 7.6. The (0,3) symmetric mode.

(ii) The mode Tm,na is rotationally symmetric if and only if it is antisymmetric about

the line v =u. This can occur if and only if Tm,na vanishes there. Thus, we require that

Tm,na
∣∣
v=u =

1
2

{
sin
[

2π
3r
(−νu−(µ+ν)r)−δ1

]

−sin
[

2π
3r
(
(µ+ν)u+νr)−δ3

]

+sin
[

2π
3r
(
(µ+ν)u+µr)−δ2

]

−sin
[

2π
3r
(−νu+µr)−δ2

]

+sin
[

2π
3r
(−µu+νr)−δ3

]

−sin
[

2π
3r
(−µu−(µ+ν)r)−δ1

]}
= 0,

(7.8)

derived from (7.2). These terms cancel pairwise if and only if (7.6) holds.

This is illustrated in Figures 7.6 and 7.7 which display the symmetric and antisym-

metric (0,3) modes, respectively.
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Figure 7.7. The (0,3) antisymmetric mode.

8. Spectral properties. The modal frequencies fm,n are proportional to the square

root of the eigenvalues given by (5.3). Hence, we have

fm,n∝ 4π
3h
χ, χ2 := µ2+µν+ν2. (8.1)

Thus, the spectral structure of the equilateral triangle hinges upon the properties of

the spectral parameter χ2.

This spectral parameter is shown for the first 29 modes in Figure 8.1 as σ ranges

from 0 to +∞. The left side corresponds to the Neumann modes (σ = 0) and the right

side corresponds to the Dirichlet modes (σ =+∞). Thus, this figure graphically displays

the homotopy relating these two well-understood eigenvalue problems.

The monotonicity of these curves is apparent and easily established from the identity

dχ2

dσ
= (2µ+ν) dµ

dσ
+(µ+2ν)

dν
dσ

≥ 0 (8.2)

since (µ,ν) increase monotonically from (m,n) to (m+1,n+1) as σ varies from 0

to +∞.

Since Tm,ns and Tm,na both correspond to the same frequency fm,n given by (8.1),

it follows that all eigenvalues corresponding to m ≠ n have multiplicity equal to at

least two. However, this modal degeneracy, as it is known in the engineering literature,

extends also to the case m = n. Modal degeneracy is manifested in Figure 8.1 as an



822 BRIAN J. MCCARTIN

Modal spectrum

0

10

20

30

40

50

60

70

80

90

100

10310210110010−110−210−3

σ

χ2

Figure 8.1. Spectral parameter.

intersection of two modal curves. For the Dirichlet and Neumann problems, number-

theoretic techniques permit a comprehensive treatment of such spectral multiplicity

[10].

However, for the Robin problem, µ and ν are not integers and such techniques fail.

At the present time, no general results are available and one must resort to perusal of

Figure 8.1 in order to locate modal degeneracies for 0 < σ < +∞. All one can say with

certainty is that if (m1,n1) and (m2,n2) are modal indices satisfying the inequalities

0<
(
m2

2+m2n2+n2
2

)−(m2
1+m1n1+n2

1

)
< 3

[(
m1+n1

)−(m2+n2
)]
, (8.3)

then the corresponding modal curves must intersect for some value of σ which will

thereby generate a corresponding modal degeneracy.

9. Orthogonality. By Rellich’s theorem [8], eigenfunctions corresponding to distinct

eigenvalues are guaranteed to be orthogonal. Also, a symmetric mode and an anti-

symmetric mode are automatically orthogonal. However, as we discovered above, the

multiplicity of the eigenvalues given by (5.3) is quite a complicated matter. Thus, we

invoke the following continuity argument in order to confirm the orthogonality of our

collection of eigenfunctions {Tm,ns (n≥m); Tm,na (n >m)}.
Suppose that f andg are eigenfunctions of like parity that share an eigenvalue, k2, for

some fixed value of σ = σ̂ . This corresponds to an intersection of two spectral curves in

Figure 8.1. For σ in the neighborhood of σ̂ , Rellich’s theorem guarantees that 〈f ,g〉 =∫ ∫
τ fgdA = 0. Thus, by continuity, 〈f ,g〉 = 0 for σ = σ̂ and the orthogonality of our

full collection of Robin modes is assured. Note that this same continuity argument may

be employed to demonstrate the orthogonality of the Robin eigenfunctions for other

differential operators on other domains.
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10. Completeness. It is not a priori certain that the collection of eigenfunctions

{Tm,ns ,Tm,na } constructed above is complete. For domains which are the Cartesian prod-

uct of intervals in an orthogonal coordinate system, such as rectangles and annuli,

completeness of the eigenfunctions formed from products of one-dimensional coun-

terparts has been established [15]. Since the equilateral triangle is not such a domain,

we must employ other devices in order to establish completeness.

We will utilize an analytic continuation argument which hinges upon the previously

established completeness of the Neumann modes [13]. The homotopy between the Neu-

mann and Dirichlet modes that we have established above guarantees a unique branch

leading from each of the Neumann modes to its corresponding Dirichlet mode. Like-

wise, for any 0 < σ <∞, we may trace out a branch from any mode leading back to a

Neumann mode as σ → 0+.

Suppose, for the sake of argument, that the collection of Robin modes constructed

above is not complete for some 0 < σ = σ̂ <∞. Then, let u(x,y ; σ̂ ) be a mode that is

not contained in our collection. As we have a selfadjoint operator, there exist  analytic

branches emanating from this point in Hilbert space where  is the multiplicity of k2(σ̂ )
[2]. Denote any of these branches, analytically continued back to σ = 0 as u(x,y ;σ).
Since we know that the collection of Neumann modes is complete, this branch must at

some point, σ = σ∗, coalesce with a branch emanating from one of our Robin modes.

However, as we now show, the analytic dependence of u(x,y ;σ) upon σ prohibits

such a bifurcation at σ = σ∗. To see this, let

∆u+k2u= 0, (x,y)∈ τ, ∂u
∂ν
+σu= 0, (x,y)∈ ∂τ. (10.1)

Then

u(x,y ;σ)=u(x,y ;σ∗
)+u′(x,y ;σ∗

)·(σ −σ∗)

+u′′(x,y ;σ∗
)·
(
σ −σ∗)2

2
+··· ,

(10.2)

where u′ := ∂u/∂σ and each of the correction terms in the Taylor series is orthogonal

to the eigenspace of k2(σ∗).
Each of the Taylor coefficients satisfies the boundary value problem

∆u(n)
(
x,y ;σ∗

)+k2(σ∗)u(n)(x,y ;σ∗
)= 0, (x,y)∈ τ,

∂u(n)

∂ν
(
x,y ;σ∗

)+σ∗u(n)(x,y ;σ∗
)=−nu(n−1)(x,y ;σ∗

)
, (x,y)∈ ∂τ,

(10.3)

which may be solved recursively and uniquely for u′,u′′, . . . ,u(n), . . . since they are each

orthogonal to the eigenspace of k2. Thus, u(x,y ;σ) is uniquely determined and bifur-

cation cannot transpire. Consequently, our collection of Robin modes is indeed com-

plete. Note that this same analytic continuation argument may be invoked to establish

the completeness of Robin eigenfunctions for other differential operators on other do-

mains once the completeness of the corresponding Neumann eigenfunctions has been

certified.
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11. Robin function. Using (6.1) and (7.1), we may define the orthonormal system of

eigenfunctions

φm,ns = Tm,ns∥∥Tm,ns
∥∥ (m= 0,1,2, . . . ; n=m,.. .),

φm,na = Tm,na∥∥Tm,na
∥∥ (m= 0,1,2, . . . ; n=m+1, . . .),

(11.1)

together with their corresponding eigenvalues

λm,n = 4π2

27r 2

(
µ2+µν+ν2) (m= 0,1,2, . . . ; n=m,.. .). (11.2)

Green’s function [14] for the Laplacian with Robin boundary conditions (the Robin

function [1]) on an equilateral triangle is then constructed as

G(x,y ;x′,y ′)

=
∞∑
m=1

φm,ms (x,y)φm,ms (x′,y ′)
λm,m

+
∞∑
m=0

∞∑
n=m+1

φm,ns (x,y)φm,ns (x′,y ′)+φm,na (x,y)φm,na (x′,y ′)
λm,n

.

(11.3)

This may be employed in the usual fashion to solve the corresponding nonhomoge-

neous boundary value problem [1].

12. Conclusion. In the foregoing, we have filled a prominent gap in the applied math-

ematical literature by providing a complete elementary derivation of the extension of

Lamé’s formulas for the eigenfunctions of the equilateral triangle to Robin boundary

conditions. In addition to its innate mathematical interest, this problem is of practical

interest as it relates to the calibration of numerical algorithms for approximating the

eigenvalues of the Laplacian upon triangulated domains.

In addition, we have established the orthonormality and completeness of this collec-

tion of eigenfunctions using the simplest of mathematical tools. Furthermore, we have

made an extensive investigation of the properties of the spectrum and modes. Lastly,

the Robin function has been specified.

We close with the observation that the above development is inherently dependent

upon the constancy of σ . If the eigenfunctions for variable σ were trigonometric, then

that would imply that the corresponding eigenfunctions for the problem with Dirich-

let/Neumann conditions along two sides of the triangle and a Neumann/Dirichlet con-

dition, respectively, along the third side were also trigonometric. This would violate

theorems to the contrary established in [9, 11].
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