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LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra
of all complex and bounded measures on G. For all integers n ≥ 1 and all µ ∈ M(G), we
consider the functional equations

∫
G f(xty)dµ(t) =

∑n
i=1gi(x)hi(y), x,y ∈ G, where the

functions f , {gi}, {hi}: G→ C to be determined are bounded and continuous functions on
G. We show how the solutions of these equations are closely related to the solutions of the
µ-spherical matrix functions. When G is a compact group and µ is a Gelfand measure, we
give the set of continuous solutions of these equations.

2000 Mathematics Subject Classification: 39B32, 39B42.

1. Introduction. Let G be a locally compact Hausdorff group, that is, a locally com-

pact group which satisfies the following separation axiom: every pair of distinct points

in G have disjoint neighborhoods. Let µ be a complex bounded measure on G. We con-

sider the functional equation

∫
G
f(xty)dµ(t)=

n∑
i=1

gi(x)hi(y), x,y ∈G. (1.1)

In the particular case where µ = δe (the Dirac complex measure concentrated at the

identity element ofG) (i.e., 〈f ,δe〉 =
∫
G f(t)dδe(t)= f(e), for all f :G→ C), (1.1) reduces

to Levi-Civita equation

f(xy)=
n∑
i=1

gi(x)hi(y), x,y ∈G, (1.2)

a special case of which is Cauchy’s functional equation f(xy) = f(x)f(y), for all

x,y ∈G. This explains the choice of the title of this note.

Solutions of general equations like (1.2) were studied by many authors. The trigono-

metric addition and subtraction formulas and their relations have been studied by Wil-

son [19], Vietoris [17], and Vincze [18].

In their work, Chung et al. [7] found the solutions of the equation

f(xy)= f(x)g(y)+g(x)f(y)+h(x)h(y), x,y ∈G, (1.3)

in which the group G need not be abelian.
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O’Connor [11] studied a solution of the equation

f
(
xy−1)= n∑

i=1

ai(x)ai(y), x,y ∈G, (1.4)

on a locally compact abelian group.

Poulsen and Stetkær [12] introduced and solved the following functional equations:

f
(
xσ(y)

)= f(x)f(y)+g(x)g(y), x,y ∈G,
f
(
xσ(y)

)= f(x)g(y)+g(x)f(y), x,y ∈G, (1.5)

where σ is a homomorphism of G such that σ(σ(x))= x, for all x ∈G.

For other references and more information about (1.2), we can see the monographs

by Aczél [1], by Aczél and Dhombres [2], and by Székelyhidi [16].

LetK be a compact subgroup of the group Aut(G) of all mappings ofG ontoG that are

simultaneously automorphisms and homeomorphisms. Let dk be the normalized Haar

measure on K, that is, the normalized nonnegative measure on K which is invariant by

translations of K (see [10]) and consider

∫
K
f
(
xk(y)

)
dk=

n∑
i=1

gi(x)hi(y), x,y ∈G. (1.6)

Equation (1.6) were considered by Stetkær in several works (see, e.g., [13, 14, 15]) and

it was solved in the particular case when G is compact and commutative (see [13]).

Furthermore, on an abelian group G, the bounded solutions of equations like∫
K
f
(
xk(y)

)
dk= f(x)f(y), x,y ∈G, (1.7)

were discussed by Chojnacki [6] and Badora [5].

Consider the group G̃ =G×sK, the semidirect product ofG andK, where the topology

is the product topology and the group operation is given by

(
g1,k1

)(
g2,k2

)= (g1k1
(
g2
)
,k1k2

)
, (1.8)

Ks = {e}×K is a closed compact subgroup of G̃. So the functional equation (1.6) on G
is closely related to the functional equation

∫
Ks
f (xky)dk=

n∑
i=1

gi(x)hi(y) (1.9)

on G̃, which is a particular case of (1.1).

When n= 2, there are two interesting cases of (1.1):∫
G
f(xty)dµ(t)= f(x)g(y)+f(y)g(x), x,y ∈G, (1.10)∫

G
f(xty)dµ(t)= f(x)f(y)+g(y)g(x), x,y ∈G, (1.11)

which cover the functional equation for sinh and cosh that were studied by Vincze [18].
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The aim of this note is to study (1.1). Our discussion is organized as follows. In

Section 2, we make a general setup and recall some definitions. In Section 3, we establish

some general properties about the solutions of (1.1). In Section 4, we suppose that G
is compact and µ is a Gelfand measure (see [3]). In this case, when {g1, . . . ,gn} and

{h1, . . . ,hn} are two sets of linearly independent functions and f is µ-invariant, we

completely solve (1.1). The solutions are described in Theorem 4.2. As a particular case,

we obtain the result given by Stetkær when G is compact and commutative (see [13]).

In Sections 4.3 and 4.4, we solve (1.10) and (1.11) without any assumption of µ-

invariance nor of independence of the unknown functions f and g. We notice that the

solutions of (1.1), (1.10), and (1.11) are expressed in terms of µ-spherical function of

the compact group G characterized in [3]. The approach adopted here is based on a

general process of diagonalization of matricial µ-spherical functions.

The results obtained in this note may be viewed as some generalizations of important

works studied in the literature (see [1, 2, 5, 6, 7, 11, 12, 13, 14, 15, 19]). Our work unifies

many of the results presented in these references.

2. Setup and notations. Throughout this note, G will be a Hausdorff topological

locally compact group. Let M(G) denote the Banach algebra of complex bounded mea-

sures; it is the dual of C0(G), the Banach space of continuous functions vanishing at

infinity. For all µ,ν ∈M(G), we recall that the convolution product µ∗ν is the measure

given by

〈
f ,µ∗ν〉=

∫
G

∫
G
f(ks)dµ(k)dν(s), (2.1)

and the involution is defined in M(G) by µ∗ = ˇ̄µ, where

〈f ,µ̄〉 = 〈f̄ ,µ〉, 〈
f ,µ̌

〉= 〈f̌ ,µ〉, with f̌ (x)= f (x−1), (2.2)

for all x ∈G.

Let C(G) (resp., Cb(G)) designate the Banach space of continuous (resp., continuous

and bounded) complex valued functions.

For f ∈ Cb(G), we define

fµ(x)=
∫
G

∫
G
f(kxt)dµ(t)dµ(k), x ∈G, (2.3)

and we say that f is µ-invariant if fµ(x)= f(x), for all x ∈G.

For every n ∈ N, M(n,n)(C) (resp., GLn(C)) will be the algebra of all complex n×n
matrices (resp., invertible matrices). If A∈M(n,n)(C), we let At denote the transpose of

the matrix A.

Let µ ∈ M(G), µ is called a Gelfand measure (see [3, 4]) if µ∗ = µ = µ∗µ and the

Banach algebra µ∗M(G)∗µ is commutative under the convolution.
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Remark 2.1. If K is a compact subgroup of G and µ = dk is the normalized Haar

measure of K, then dk is a Gelfand measure on G if and only if (G,K) is a Gelfand pair

(see [8, 9]).

Definition 2.2. A nonzero functionΦ ∈ Cb(G) is a µ-spherical function if it satisfies

the functional equation
∫
GΦ(xty)dµ(t)= Φ(x)Φ(y), for all x,y ∈G.

A function Φ ∈M(n,n)(C) (n≥ 2), is a µ-spherical matrix function if Φ(e)= In and Φ
satisfies the functional equation

∫
GΦ(xty)dµ(t)= Φ(x)Φ(y), for all x,y ∈G.

3. Cauchy-type functional equations. In this section, we study the general prop-

erties of the functional equation (1.1) where µ ∈ M(G) and the unknown functions

f ,gi,hi ∈ Cb(G), for all i∈ {1,2, . . . ,n}.
The following useful lemma produces a necessary condition for (1.1) to have a solu-

tion.

Lemma 3.1. If (f ,{gi},{hi}) are solutions of (1.1), then

n∑
i=1

(∫
G
gi(xty)dµ(t)

)
hi(z)=

n∑
i=1

(∫
G
hi(ytz)dµ(t)

)
gi(x), (3.1)

for all x,y,z ∈G.

Proof. Using Fubini’s theorem, (1.1) shows that

n∑
i=1

(∫
G
gi(xty)dµ(t)

)
hi(z)=

∫
G

( n∑
i=1

gi(xty)hi(z)
)
dµ(t)

=
∫
G

(∫
G
f(xtysz)dµ(s)

)
dµ(t)

=
∫
G

(∫
G
f(xtysz)dµ(t)

)
dµ(s)

=
∫
G

( n∑
i=1

gi(x)hi(ysz)
)
dµ(s)

=
n∑
i=1

(∫
G
hi(ytz)dµ(t)

)
gi(x),

(3.2)

which proves equality (3.1).

Assumptions. For the remainder of the note, we will make the following assump-

tions:

(H1) µ ∈M(G) and µ∗µ = µ;

(H2) the two sets of functions {gi}, {hi} are linearly independent.

We recall from [2] that assumption (H2) implies that there exist {ai}i∈{1,2,...,n} ∈ G×
G×···×G and {bi}i∈{1,2,...,n} ∈G×G×···×G such that the matrices {gj(ai)}, {hi(bj)}
are invertible.

In the next theorem, we illustrate how the µ-spherical matrix functions can be useful

in the study of the functional equation (1.1).
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Theorem 3.2. Let µ ∈M(G) such that µ∗µ = µ. Let (f ,{gi},{hi}) be a solution of

(1.1). Then

(i) for all z ∈G, the following identity holds in M(n,n)(C):

{∫
G
gj
(
xitz

)
dµ(t)

}{
hi
(
yj
)}= {gj(xi)}

{∫
G
hi
(
ztyj

)
dµ(t)

}
; (3.3)

(ii) let Φ(z) for z ∈G be the n×n matrix function defined by

Φ(z)= {gj(ai)}−1
{∫

G
gj
(
aitz

)
dµ(t)

}

=
{∫

G
hi
(
ztbj

)
dµ(t)

}{
hi
(
bj
)}−1,

(3.4)

then Φ is a µ-spherical matrix function. Furthermore, there exist the following

identities:

{∫
G
gj
(
xitz

)
dµ(t)

}
= {gj(xi)}Φ(z), (3.5){∫

G
hi
(
ztxj

)
dµ(t)

}
= Φ(z){hi(xj)}, ∀z ∈G; (3.6)

(iii) let

(
g′1, . . . ,g

′
n
)= (g1, . . . ,gn

)
A−1,

(
h′1, . . . ,h

′
n
)= (h1, . . . ,hn

)
At, (3.7)

where A is an invertible matrix of M(n,n)(C). Then (g′1, . . . ,g′n) and (h′1, . . . ,h′n)
are linearly independent sets. There exists

n∑
i=1

gi(x)hi(y)=
n∑
i=1

g′i(x)h
′
i(y), (3.8)

for all x,y ∈ G, and the µ-spherical matrix function Φ′ corresponding to {g′i}
and {h′i} defined in (ii) above is given by

Φ′(z)=AΦ(z)A−1; (3.9)

(iv) assume that Φ′(z) has diagonal form, that is,

Φ′(z)=Diag
(
Φ′i(z)

)
i∈{1,...,n}, (3.10)

then Φ′1, . . . ,Φ′n are µ-spherical functions with complex values and

∫
G
g′i(xty)dµ(t)= g′i(x)Φ′i(y),∫

G
h′i(xty)dµ(t)= Φ′i(x)h′i(y),

(3.11)

for all x,y ∈G and for all i= 1, . . . ,n.
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Proof. (i) From Lemma 3.1, we can easily derive (3.3).

(ii) For all x1, . . . ,xn, z ∈G,

{
gj
(
xi
)}
Φ(z)= {gj(xi)}

{∫
G
hi
(
ztbj

)
dµ(t)

}{
hi
(
bj
)}−1. (3.12)

By using (3.3), we get

{
gj
(
xi
)}
Φ(z)=

{∫
G
gj
(
xitz

)
dµ(t)

}{
hi
(
bj
)}{
hi
(
bj
)}−1

=
{∫

G
gj
(
xitz

)
dµ(t)

}
,

(3.13)

which proves (3.5).

From the assumed form of Φ, we compute∫
G
Φ(xsy)dµ(s)= {gj(ai)}−1

{∫
G

∫
G
gj
(
aitxsy

)
dµ(t)dµ(s)

}

= {gj(ai)}−1
{∫

G
gj
(
aitx

)
dµ(t)

}
Φ(y)

= {gj(ai)}−1{gj(ai)}Φ(x)Φ(y)= Φ(x)Φ(y).
(3.14)

Using (1.1) and assumption (H1), we obtain

n∑
i=1

∫
G
gi(xs)dµ(s)hi(y)=

n∑
i=1

gi(x)hi(y), ∀x,y ∈G. (3.15)

In view of assumption (H2), we deduce that
∫
Ggi(xs)dµ(s) = gi(x), for all x ∈ G and

Φ(e)= In. Therefore, according to Definition 2.2, Φ is a µ-spherical matrix function.

Now, by applying (3.3) and (3.4), we get

Φ(z)
{
hi
(
xj
)}= {gj(ai)}−1

{∫
G
gj
(
aitz

)
dµ(t)

}{
hi
(
xj
)}

= {gj(ai)}−1{gj(ai)}
{∫

G
hj
(
ztxj

)
dµ(t)

}

=
{∫

G
hi
(
ztxj

)
dµ(t)

}
,

(3.16)

which proves (3.6). Thus (i) and (ii) are proved.

To prove (iii), we write (g′1, . . . ,g′n)= (g1, . . . ,gn)A−1 and (h′1, . . . ,h′n)= (h1, . . . ,hn)At ,
where A is an invertible n×n matrix. Then by a simple computation we get (3.8).

As mentioned above, the matrices {gj(ai)}, {hi(bj)} are invertible, then {g′j(ai)},
{h′i(bj)} are also invertible, and from (ii), the matrix µ-spherical function Φ′ corre-

sponding to {g′i} and {h′i} is defined by

Φ(z)′ = {g′j(ai)}−1
{∫

G
g′j
(
aitz

)
dµ(t)

}

=A{gj(ai)}−1
{∫

G
gj
(
aitz

)
dµ(t)

}
A−1 =AΦ(z)A−1.

(3.17)

We notice that (3.11) come from (3.5) and (3.6). This ends the proof of Theorem.
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In the next section, we study (1.1) in the case of compact groups.

4. Cauchy-type functional equations on compact groups

4.1. The aim of this section is to treat (1.1) in the case where G is compact (Haus-

dorff) not necessarily commutative. We suppose only that G is endowed with a Gelfand

measure µ (see [3]). For such a measure, we let Σµ denote the set of all µ-spherical

functions on G; it is the Gelfand spectrum of the commutative Banach algebra Lµ1(G)=
µ∗L1(G,dx)∗µ. We recall (see [3]) that in compact groups, a µ-spherical function ω
is also a positive definite function and in particular, ω̆(x)=ω(x), for all x ∈G.

4.2. Solutions of (1.1) for compact groups. We start by the following result concern-

ing µ-spherical matricial function.

Theorem 4.1. Let Φ : G → M(n,n)(C) be a continuous µ-spherical matrix function,

that is,
∫
G
Φ(xty)dµ(t)= Φ(x)Φ(y), x,y ∈G,

Φ(e)= In.
(4.1)

Then there exists ω1, . . . ,ωn ∈ Σµ and an invertible matrix A∈M(n,n)(C) such that

AΦA−1 =Diag
(
ωi
)
i∈{1,...,n}. (4.2)

Proof. Let Ĝ denote the set of irreducible characters of G (see [10]) and consider

the mapping from Ĝ to M(n,n)(C) defined by

Φ̂
(
χπ
)=

∫
G
Φ(x)χπ(x)dx. (4.3)

From (4.1), we have
∫
GΦ(xt)dµ(t)= Φ(x). Consequently, we get

∫
G
Φ(x)χπ(x)dx =

∫
G

∫
G
Φ(xt)χπ(x)dµ(t)dx

=
∫
G
Φ(x)

(∫
G
χπ
(
xt−1

)
dµ(t)

)
dx

=
∫
G
Φ(x)

(∫
G
χπ
(
tx−1)dµ(t))

=
∫
G
Φ(x)ωπ

(
x−1)dx

=
∫
G
Φ(x)ωπ(x)dx,

(4.4)

where

ωπ(x)=
∫
G
χπ(tx)dµ(t). (4.5)

We recall (see [3]) that the µ-spherical functions in the compact group are exactly those

given by (4.5) with χπ ∈ Ĝ.
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For all y ∈G, we have

Φ(y)Φ̂
(
χπ
)=

∫
G
Φ(y)Φ(x)ωπ(x)dx

=
∫
G

∫
G
Φ(ytx)ωπ(x)dµ(t)dx.

(4.6)

In view of
∫
GΦ(kx)dµ(k)= Φ(x), it follows that

Φ(y)Φ̂
(
χπ
)=

∫
G

∫
G

∫
G
Φ(kytx)ωπ(x)dµ(k)dµ(t)dx

=
∫
G

∫
G

∫
G
Φ(x)ωπ

(
t−1y−1k−1x

)
dµ(k)dµ(t)dx

=
∫
G

∫
G

∫
G
Φ(x)ωπ

(
x−1kyt

)
dµ(k)dµ(t)dx

=
∫
G
Φ(x)ωπ(x)ωπ(y)dx

=ωπ(y)
∫
G
Φ(x)ωπ(x)dx =ωπ(y)Φ̂

(
χπ
)
.

(4.7)

By the Peter-Weyl theorem (see, e.g., [10]), we know that the irreducible characters of

the compact groups G form a basis of the Banach space L2(G,dx). Therefore, the Span

{Φ̂(χπ)ς, χπ ∈ Ĝ, ς ∈ Cn} = Cn, and it follows that there exists χπ1 ,χπ2 , . . . ,χπn ∈ Ĝ
and ς1,ς2, . . . ,ςn ∈ Cn such that {Φ̂(χπi)ςi, i = 1, . . . ,n} is a basis of Cn. By combining

this result with (4.7), we obtain the desired conclusion.

By using Theorems 4.1 and 3.2, we get the following result.

Theorem 4.2. Let (f ,{gi},{hi}) be a solution of (1.1) such that f is µ-invariant. Then

there exists A∈GLn(C), and for each i= 1, . . . ,n, there exist positive definite µ-spherical

functions ωi and αi,βi ∈ C such that

(
g1, . . . ,gn

)= (α1ω1, . . . ,αnωn
)
A,(

h1, . . . ,hn
)= (β1ω1, . . . ,βnωn

)(
At
)−1,

(4.8)

f =
n∑
i=1

αiβiωi. (4.9)

Conversely, formulas (4.8) and (4.9) define a solution of (1.1).

To solve the functional equation (1.1) in compact groups, we note the following gen-

eral result that describes its solutions in case of n= 1.

Proposition 4.3. Let µ ∈M(G). Let f ,g,h∈ C(G)\{0} be a solution of the functional

equation

∫
G
f(xty)dµ(t)= g(x)h(y), x,y ∈G. (4.10)
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Then there exists a µ-spherical function φ on G such that

∫
G
g(xty)dµ(t)= g(x)φ(y), x,y ∈G,∫

G
h(xty)dµ(t)=φ(x)h(y), x,y ∈G,

(4.11)

for all x,y ∈G.

Furthermore, if µ∗µ = µ and f is µ-invariant, then there exist α,β∈ C∗ such that

g =αφ, h= βφ, f =αβφ. (4.12)

Proof. Let a,b ∈ G such that g(a) ≠ 0 and h(b) ≠ 0. In view of (4.10) and Lemma

3.1, we get

h(b)
∫
G
g(atx)dµ(t)= g(a)

∫
G
h(xtb)dµ(t), (4.13)

and

φ(x)= 1
h(b)

∫
G
h(xtb)dµ(t)= 1

g(a)

∫
G
g(atx)dµ(t) (4.14)

is a µ-spherical function.

Now according to Theorem 3.2, we have the rest of the proof.

Proof of Theorem 4.2. By Theorem 3.2, there exists a µ-spherical n×n matrix

function Φ(z), z ∈ G such that (3.5) and (3.6) hold. Since G is compact, then by using

Theorem 4.1, there exist ω1, . . . ,ωn ∈ Σµ and A∈GLn(C) such that

AΦA−1 =



ω1 ··· 0

...
. . .

...

0 ··· ωn


 . (4.15)

Now, if we put (g′1, . . . ,g′n)= (g1, . . . ,gn)A−1 and (h′1, . . . ,h′n)= (h1, . . . ,hn)At , it follows

immediately from Theorem 3.2(ii) that the functions h′i and g′i are solutions of the

system of functional equations

∫
G
g′i(xty)dµ(t)= g′i(x)ωi(y),∫

G
h′i(xty)dµ(t)=ωi(x)h′i(y),

(4.16)

for all x,y ∈G and for all i= 1, . . . ,n.

In view of Proposition 4.3, there exists αi,βi ∈ C∗ such that

g′i =αiωi, h′i = βiωi, (4.17)
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which implies that

(
g1, . . . ,gn

)= (α1ω1, . . . ,αnωn
)
A,(

h1, . . . ,hn
)= (β1ω1, . . . ,βnωn

)(
At
)−1,

(4.18)

and f =∑n
i=1αiβiωi. This ends the proof of the theorem.

The subject of the following subsections is to treat some particular cases with

n= 2. More precisely, we are interested in solving (1.10) and (1.11). We will see that the

assumptions of independence or µ-invariance required in Theorem 4.2 are not needed

here.

4.3. Solutions of (1.10). By using Theorems 4.2 and 3.2, and without assuming the

µ-invariance of f , we get the following result.

Theorem 4.4. The complete list of functions f ,g ∈ C(G)\{0} satisfying the functional

equation (1.10) consists of the following two cases, where Φ1, Φ2, (Φ1 ≠ Φ2), Φ are positive

definite µ-spherical functions and α,β∈ C\{0}:
(i) f = (1/2α)Φ, g = Φ/2;

(ii) f = β(Φ1−Φ2)/2, g = (Φ1+Φ2)/2.

To solve this equation we need to prove the following lemmas.

Lemma 4.5. If f ∈ C(G) is a solution of the functional equation
∫
G
f(xty)dµ(t)= f(x)ω(y)+f(y)ω(x), x,y ∈G, (4.19)

in which ω is a µ-spherical function such that f and ω are linearly independent, then

f(x)= 0, for all x ∈G.

Proof. Let f satisfy (4.19). By a small computation, we show that f is µ-invariant.

Multiplying (4.19) by ω(x) and integrating the result over G, we get
∫
G

∫
G
f(xty)ω(x)dxdµ(t)= f(y)

∫
G

∣∣ω(x)∣∣2dx+ω(y)
∫
G
f(x)ω(x)dx. (4.20)

Since
∫
G |ω(x)|2dx ≠ 0 (see [3]), and

∫
G

∫
G
f(xty)ω(x)dxdµ(t)

=
∫
G

∫
G

∫
G
f(xtyk)ω(x)dxdµ(t)dµ(k),

∫
G

∫
G

∫
G
f(x)ω

(
xk−1y−1t−1

)
dxdµ(t)dµ(k)

=
∫
G

∫
G

∫
G
f(x)ω

(
tykx−1)dxdµ(t)dµ(k)

=ω(y)
∫
G
f(x)ω(x)dx,

(4.21)

we obtain that f(x)= 0, for all x ∈G. This completes the proof of Lemma 4.5.
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Lemma 4.6. If f ,g ∈ C(G) with f ≠ 0 constitute a solution of the functional equation

(1.10), then there exists α∈ C\{0} such that

∫
G
g(xty)dµ(t)= g(x)g(y)+αf(x)f(y), x,y ∈G. (4.22)

Proof. Equation (1.10) shows that

f(x)
[∫

G
g(ytz)dµ(t)−g(y)g(z)

]
= f(z)

[∫
G
g(xty)dµ(t)−g(y)g(x)

]
, (4.23)

for all x,y,z ∈G.

Let a ∈ G such that f(a) ≠ 0, Φ(x,y) = ∫
Gg(xty)dµ(t)−g(x)g(y), then we get

f(x)Φ(y,a) = f(a)Φ(x,y) and Φ(x,y) = f(x)Ψ(y), where Ψ(y) = Φ(y,a)/f(a).
Consequently, f(x)f(y)Ψ(a) = f(y)f(a)Ψ(x), from which we see that there exists

α∈ C such that α=ω(a)/f(a) and
∫
Gg(xty)dµ(t)= g(y)g(x)+αf(x)f(y), for all

x,y ∈G.

Now, by Lemma 4.5, α≠ 0. This proves Lemma 4.6.

Proof of Theorem 4.4. If f , g are linearly independent, by using Lemma 4.6, the

matrix µ-spherical function defined in Theorem 3.2 is

Φ(z)=
(
g(z) αf(z)
f(z) g(z)

)
, z ∈G. (4.24)

Since α≠ 0, then we can diagonalize Φ(z) as follows:

Φ(z)=
(
g(z)+βf(z) 0

0 g(z)−βf(z)

)
, (4.25)

where β2 =α. This implies that g(z)+βf(z)= Φ1 and g(z)−βf(z)= Φ2 are µ-spherical

functions. Consequently, we obtain case (ii). The rest of the proof is obvious.

4.4. Solutions of (1.11)

Theorem 4.7. The complete list of functions f ,g ∈ C(G)\{0} satisfying the functional

equation (1.11) consists of the following two cases, where Φ1,Φ2, (Φ1 ≠ Φ2), Φ are positive

definite µ-spherical functions and α,β∈ C\{0,±i}:
(i) f = (1/(1+α2))Φ, g =αΦ/(1+α2)

(ii) f = (βΦ1+β−1Φ2)/(β+β−1), g = (Φ1−Φ2)/(β+β−1).

To solve (1.11) we need the following lemma.

Lemma 4.8. If f ,g ∈ C(G) constitute a solution of the functional equation (1.11), then

there exists α∈ C such that

∫
G
g(xty)dµ(t)= f(x)g(y)+g(x)f(y)+αg(x)g(y), x,y ∈G. (4.26)
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Proof of Lemma 4.8. Let f , g satisfy (1.11). A small computation shows that

g(x)
(∫

G
g(ytz)dµ(t)−f(y)g(z)−g(y)f(z)

)

= g(z)
(∫

G
g(xty)dµ(t)−g(x)f(y)−f(x)g(y)

)
.

(4.27)

The case g = 0 is trivial. Now we assume that g ≠ 0. Let a ∈ G such that g(a) ≠ 0

and Φ(x,y) = ∫
Gg(xty)dµ(t)− f(x)g(y)− g(x)f(y), then we get g(x)Φ(y,a) =

g(a)Φ(x,y) and Φ(x,y) = g(x)Ψ(y), where Ψ(y) = Φ(y,a)/g(a). Consequently, for

all x,y ∈ G, we have g(a)g(y)Ψ(x) = g(x)g(y)Ψ(a), which proves that g(a)Ψ(x) =
g(x)Ψ(a) and Ψ(x) = αg(x), where α = Ψ(a)/g(a), from which we get Φ(x,y) =
αg(x)g(y). This completes the proof of Lemma 4.8.

Proof of Theorem 4.7. If f , g are linearly independent, then by using Lemma 4.8,

the matrix µ-spherical function defined in Theorem 3.2 is

(
f(z) g(z)
g(z) f(z)+αg(z)

)
, (4.28)

and from Lemma 4.5, α∈ C\{0,±i}, then we may diagonalize Φ(z) as follows:

Φ(z)=



f(z)+

(
α
2
+
√
α2

4
+1

)
g(z) 0

0 f(z)+
(
α
2
−
√
α2

4
+1

)
g(z)


 . (4.29)

Now if we take β= (α/2+√α2/4+1), by a small computation, we produce the solution

formulas of (1.11).
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