## FLAT SEMIMODULES

## **HUDA MOHAMMED J. AL-THANI**

Received 8 February 2003

To my dearest friend Najla Ali

We introduce and investigate flat semimodules and k-flat semimodules. We hope these concepts will have the same importance in semimodule theory as in the theory of rings and modules.

2000 Mathematics Subject Classification: 16Y60.

**1. Introduction.** We introduce the notion of flat and k-flat. In Section 2, we study the structure ensuing from these notions. Proposition 2.4 asserts that V is flat if and only if  $(V \otimes_R -)$  preserves the exactness of all right-regular short exact sequences. Proposition 2.5 gives necessary and sufficient conditions for a projective semimodule to be k-flat. In Section 3, Proposition 3.3 gives the relation between flatness and injectivity. In Section 4, Proposition 4.1 characterizes the k-flat cancellable semimodules with the left ideals. Proposition 4.4 describes the relationship between the notions of projectivity and flatness for a certain restricted class of semirings and semimodules. Throughout, R will denote a semiring with identity 1. All semimodules M will be left R-semimodules, except at cited places, and in all cases are unitary semimodules, that is,  $1 \cdot m = m$  for all  $m \in M$  ( $m \cdot 1 = m$  for all  $m \in M$ ) for all left R-semimodules R (resp., for all right R-semimodule R).

We recall here (cf. [1, 2, 4, 7, 8]) the following facts.

- (a) A semiring R is said to satisfy the left cancellation law if and only if for all  $a,b,c \in R$ ,  $a+b=a+c \Rightarrow b=c$ . A semimodule M is said to satisfy the left cancellation law if for all  $m,m',m'' \in M$ ,  $m+m'=m+m'' \Rightarrow m'=m''$ .
- (b) We say that a nonempty subset N of a left semimodule M is subtractive if and only if for all  $m, m' \in M$ , m, m + m' in N imply m' in N.
- (c) A semiring R is called completely subtractive if R is a completely subtractive semimodule; and a left R-semimodule M is called completely subtractive if and only if for every subsemimodule N of M, N is subtractive.
  - (d) A semimodule *M* is said to be free *R*-semimodule if *M* has a basis over *R*.
- (e) A semimodule C is said to be semicogenerated by U when there is a homomorphism  $\varphi: M \to \Pi_A C$  such that  $\ker \theta = 0$ . A semimodule C is said to be a semicogenerator when C semicogenerates every left R-semimodule M.
- (f) Let  $\alpha : M \to N$  be a homomorphism of semimodules. The subsemimodule Im  $\alpha$  of N is defined as follows: Im  $\alpha = \{n \in N : n + \alpha(m') = \alpha(m) \text{ for some } m, m' \in M\}$ . Also  $\alpha$  is

said to be a semimonomorphism if  $\ker \alpha = 0$ , to be a semi-isomorphism if  $\alpha$  is surjective and  $\ker \alpha = 0$ , to be an isomorphism if  $\alpha$  is injective and surjective, to be i-regular if  $\alpha(M) = \operatorname{Im} \alpha$ , to be k-regular if for  $a, a' \in A$ ,  $\alpha(a) = \alpha(a')$  implying a + k = a' + k' for some  $k, k' \in \ker \alpha$ , and to be regular if it is both i-regular and k-regular.

- (g) An R-semimodule M is said to be k-regular if there exist a free R-semimodule F and a surjective R-homomorphism  $\alpha : F \to M$  such that  $\alpha$  is k-regular.
- (h) The sequence  $K \xrightarrow{\alpha} M \xrightarrow{\beta} N$  is called an exact sequence if  $\operatorname{Ker} \beta = \operatorname{Im} \alpha$ , and proper exact if  $\operatorname{Ker} \beta = \alpha(K)$ .
- (i) A short sequence  $0 \to K \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$  is said to be left *k*-regular right regular if  $\alpha$  is *k*-regular and  $\beta$  is right regular.
- (j) For any two R-semimodules N, M,  $\operatorname{Hom}_R(N,M) := \{\alpha : N \to M \mid \alpha \text{ is an } R$ -homomorphism of semimodules $\}$  is a semigroup under addition. If M, N, and U are R-semimodules and  $\alpha : M \to N$  is a homomorphism, then  $\operatorname{Hom}(\alpha,I_U) : \operatorname{Hom}_R(N,U) \to \operatorname{Hom}_R(M,U)$  is given by  $\operatorname{Hom}(\alpha,I_U)\gamma = \gamma\alpha$ , where  $I_U$  is the identity on U.
- (k) If M is a right R-semimodule, N is a left R-semimodule, and T is an N-semimodule, then a function  $\theta: M \times N \to T$  is R-balanced if and only if, for all  $m, m' \in M$ , for all  $n, n' \in N$ , and for all  $r \in R$ , we have
  - (1)  $\theta(m+m',n) = \theta(m,n) + \theta(m',n)$ ,
  - (2)  $\theta(m, n+n') = \theta(m,n) + \theta(m,n'),$
  - (3)  $\theta(mr, n) = \theta(m, rn)$ .

Let R be a semiring, let M be a right R-semimodule, and let N be a left R-semimodule. Let A be the set  $M \times N$ , and let U be the N-semimodule  $\bigoplus_A N \times \bigoplus_A N$ . Let W be the subset of U consisting of all elements of the following forms:

- (1)  $(\alpha[m+m',n], \alpha[m,n] + \alpha[m',n]),$
- (2)  $(\alpha[m,n] + \alpha[m',n], \alpha[m+m',n]),$
- (3)  $(\alpha[m, n+n'], \alpha[m, n] + \alpha[m, n']),$
- (4)  $(\alpha[m,n] + \alpha[m,n'], \alpha[m,n+n']),$
- (5)  $(\alpha[mr,n],\alpha[m,rn])$ ,
- (6)  $(\alpha[m,rn],\alpha[mr,n])$ ,

for m and m' in M, n and n' in N, and r in R, and where  $\alpha[m,n]$  is the function from  $M \times N$  to N which sends (m,n) to 1 and sends every other element of  $M \times N$  to 0. Let U' be the N-subsemimodule of U generated by W. Define N congruence relation  $\equiv$  on  $\oplus_A N$  by setting  $\alpha \equiv \alpha'$  if and only if there exists an element  $(\beta, \gamma) \in U'$  such that  $\alpha + \beta = \alpha' + \gamma$ . The factor N-semimodule  $\oplus_A N/\equiv$  will be denoted by  $M \otimes_R N$ , and is called the tensor product of M and N over R.

- (A) A left R-semimodule P is said to be projective semimodule if and only if for each surjective R-homomorphism  $\varphi: M \to N$ , the induced homomorphism  $\overline{\varphi}: \operatorname{Hom}_R(P,M) \to \operatorname{Hom}_R(P,N)$  is surjective.
- **2. Flat and** k-flat semimodules. In this section, we discuss the structure of flat and k-flat semimodules. Proposition 2.4 asserts that V is flat if and only if  $(V \otimes_R -)$  preserves the exactness of all left k-regular right regular short sequences. In Proposition 2.5, we give the necessary and sufficient condition for the projective right semimodule to be k-flat relative to a cancellable left semimodule.

**DEFINITION 2.1.** A semimodule  $V_R$  is flat relative to a semimodule  $_RM$  (or that V is M-flat) if and only if for every subsemimodule  $K \le M$ , the sequence  $0 \to V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M$  is proper exact (i.e.,  $\operatorname{Ker}(I_V \otimes_R i_K) = 0$ ) where  $I_V \otimes_R i_K(v \otimes k) = v \otimes i_K(k)$ . A semimodule  $V_R$  that is flat relative to every left R-semimodule is called a flat right R-semimodule.

**DEFINITION 2.2.** A semimodule  $V_R$  is k-flat relative to a semimodule RM (or that V is Mk-flat) if and only if for every subsemimodule  $K \leq M$ , the sequence  $0 \to V \otimes_R K \xrightarrow{I_V \otimes_R i_K} V \otimes_R M$  is proper exact and  $I_V \otimes i_K$  is k-regular (i.e.,  $I_V \otimes_R i_K$  is injective). A semimodule  $V_R$  that is k-flat relative to every right R-semimodule is called a k-flat right R-semimodule. Thus, if  $V_R$  is k-flat relative to RM, then RM is flat relative to RM.

Our next result shows that the class of flat and k-flat semimodules is closed under direct sums.

**PROPOSITION 2.3.** Let  $(V_{\alpha})_{\alpha \in A}$  be an indexed set of right R-semimodules. Then  $\bigoplus_A V_{\alpha}$  is M-flat (k-flat) if and only if each  $V_{\alpha}$  is M-flat (k-flat).

**PROOF.** Let M be a left R-semimodule and K a subsemimodule of M. Consider the following commutative diagram:



where  $\pi_{\alpha}: \oplus (V_{\alpha} \otimes K) \to V_{\alpha} \otimes K$  and  $i_{\alpha}: V_{\alpha} \otimes K \to \oplus (V_{\alpha} \otimes K)$  are defined respectively by  $\pi_{\alpha}: (v_{\alpha} \otimes k_{\alpha})\hbar v_{\alpha} \otimes k_{\alpha}$  and  $i_{\alpha}: v_{\alpha} \otimes k_{\alpha}\hbar (v_{i} \otimes k_{i})$ , where  $v_{i} \otimes k_{i} = 0$  if  $i \neq \alpha$  and  $v_{i} \otimes k_{i} = v_{\alpha} \otimes k_{\alpha}$  if  $\alpha = i$ ;  $\varphi$  and  $\varphi'$  are the isomorphisms of [8, Proposition 5.4] given by  $\varphi[(v_{\alpha}) \otimes k] = (v_{\alpha} \otimes k)$  and  $\theta(v_{\alpha} \otimes k) = (v_{\alpha} \otimes i(k))$ . Now suppose that  $\oplus V_{\alpha}$  is M-flat (k-flat). If  $I_{V_{\alpha}} \otimes i_{K}(v_{\alpha} \otimes k) = 0[I_{V_{\alpha}} \otimes i_{K}((v_{\alpha} \otimes k)) = I_{V_{\alpha}} \otimes i_{K}((v'_{\alpha} \otimes k'))]$ , then by the above diagram we have  $(v_{\alpha}) \otimes i_{K}(k) = 0[(v_{\alpha}) \otimes i(k) = (v'_{\alpha}) \otimes i(k')]$ . Since  $\oplus V_{\alpha}$  is flat (k-flat), then  $(v_{\alpha}) \otimes k = 0[(v_{\alpha}) \otimes k = (v'_{\alpha}) \otimes k']$ . Again by (2.1),  $(v_{\alpha} \otimes k) = 0$  whence  $v_{\alpha} \otimes k = 0[(v_{\alpha} \otimes k) = (v'_{\alpha} \otimes k')$ , whence  $v_{\alpha} \otimes k = v'_{\alpha} \otimes k'$ . Therefore  $V_{\alpha}$  is flat (k-flat).

Conversely, suppose that  $V_{\alpha}$  is M-flat (k-flat) for each  $\alpha \in A$ . If  $I_{\oplus V_{\alpha}} \otimes i_K((v_{\alpha}) \otimes k) = 0[I_{\oplus V_{\alpha}} \otimes i_K((v_{\alpha}) \otimes k) = I_{\oplus V_{\alpha}} \otimes i_K((v_{\alpha}') \otimes k')]$ , then by the above diagram we have  $v_{\alpha} \otimes i(k) = 0[v_{\alpha} \otimes i(k) = v_{\alpha}' \otimes i(k')]$  for each  $\alpha \in A$ . Since  $V_{\alpha}$  is flat (k-flat), then  $v_{\alpha} \otimes k = 0[v_{\alpha} \otimes k = v_{\alpha}' \otimes k']$  for each  $\alpha$ . Therefore,  $(v_{\alpha} \otimes k) = 0[(v_{\alpha} \otimes k) = (v_{\alpha}' \otimes k')]$ . Again by (2.1),  $(v_{\alpha}) \otimes k = 0[(v_{\alpha}) \otimes k = (v_{\alpha}') \otimes k']$ . Thus  $\oplus V_{\alpha}$  is flat (k-flat).

**PROPOSITION 2.4.** Let M be a left R-semimodule. A right R-semimodule V is M flat if and only if the functor  $(V \otimes_R -)$  preserves the exactness of all left k-regular right regular

short exact sequences with middle term M:

$$0 \longrightarrow_R K \xrightarrow{\alpha} {}_R M \xrightarrow{\beta} {}_R N \longrightarrow 0. \tag{2.2}$$

**PROOF.** "If" part. Let  $0 \to {}_RK \xrightarrow{\alpha} {}_RM \xrightarrow{\beta} {}_RN \to 0$  be a left k-regular right regular exact sequence. Since  $V_R$  is  ${}_RM$ -flat, then using [8, Theorem 5.5(2)], the sequence

$$0 \longrightarrow V \otimes_R K \xrightarrow{I_V \otimes \alpha} V \otimes_R M \xrightarrow{I_V \otimes \beta} V \otimes_R N \longrightarrow 0$$
 (2.3)

is exact.

"Only if" part. Let  $_RK \leq _RM$ . Consider the following exact sequence:

$$0 \longrightarrow K \xrightarrow{i_K} M \xrightarrow{\pi_{\text{Im } i_K}} M / \text{Im } i_K \longrightarrow 0.$$
 (2.4)

By hypothesis,  $0 \to V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M$  is an exact sequence. Thus V is M-flat.  $\square$ 

Our next result gives a necessary and sufficient condition for a projective semimodule to be k-flat relative to a cancellable semimodule M.

**PROPOSITION 2.5.** Let  $V_R$  be projective and  $_RM$  cancellable. Then, V is Mk-flat if and only if the functor  $(V \otimes_R -)$  preserves the exactness of all left k-regular right regular short exact sequences

$$0 \longrightarrow_R K \xrightarrow{\alpha} {}_R M \xrightarrow{\beta} {}_R N \longrightarrow 0. \tag{2.5}$$

**PROOF.** "If" part. Let  $0 \to {}_RK \xrightarrow{\alpha} {}_RM \xrightarrow{\beta} {}_RN \to 0$  be a left k-regular right regular exact sequence. Since  $V_R$  is  ${}_RM$  k-flat, then  $V_R$  is  ${}_RM$ -flat. By using Proposition 2.4, the sequence

$$0 \longrightarrow V \otimes_R K \xrightarrow{I_V \otimes \alpha} V \otimes_R M \xrightarrow{I_V \otimes \beta} V \otimes_R N \longrightarrow 0$$
 (2.6)

is exact.

"Only if" part. Let  $K \leq M$ . Consider the following exact sequence:

$$0 \longrightarrow K \xrightarrow{i_K} M \xrightarrow{\pi_{\text{Im}\,i_K}} M/\text{Im}\,i_K \longrightarrow 0. \tag{2.7}$$

Since V is projective and M is cancellable, then by using [9, Proposition 1.16],  $I_V \otimes i_K$  is k-regular. By hypothesis,  $0 \to V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M$  is an exact sequence. Thus V is Mk-flat.

**3. Flatness via injectivity.** We will discuss the relation between the injectivity and flatness. By  $(\cdot)^*$  we mean the functor  $\operatorname{Hom}_N(-,C)$ , where C is a fixed injective semicogenerator cancellative N-semimodule.

**REMARK 3.1.** If U is a right R-semimodule, then  $U^*$  is a left R-semimodule.

**PROOF.** Let  $\alpha \in \text{Hom}_N(U,C)$  and let  $r \in R$ . Define  $r\alpha(u) = \alpha(ur)$ . If  $s \in R$ , then  $s(r\alpha)u = (r\alpha)(us) = \alpha(usr) = (sr)\alpha(u)$ . Therefore,  $U^*$  is a left R-semimodule.  $\square$ 

We state and prove the following lemma, analogous to the one on modules which is needed in the proof of Proposition 3.3.

**LEMMA 3.2.** Let R be a semiring, let M and M' be left R-semimodules, and let U be a right R-semimodule. Let T be a cancellative N-semimodule. If  $\alpha: M' \to M$  is an R-homomorphism, then there exist N-isomorphisms  $\varphi$  and  $\varphi'$  such that the following diagram commutes:

**PROOF.** By [7, Proposition 14.15], there exists an N-isomorphism

$$\varphi : \operatorname{Hom}_{R}(M, \operatorname{Hom}_{N}(U, T)) \longrightarrow \operatorname{Hom}_{R}(M \otimes U, T)$$
 (3.2)

given by  $\varphi(\gamma)$ :  $u \otimes m\hbar \gamma(m)u$ . Then with a parallel definition for  $\varphi'$ , we have

$$\varphi' \hbar \operatorname{Hom}_{R} (\alpha, I_{\operatorname{Hom}_{N}(U,T)})(\gamma)(u \otimes m')$$

$$= \varphi'(\gamma \alpha)(u \otimes m') = (\gamma \alpha)(m')(u)$$

$$= \gamma(\alpha(m'))(u) = \varphi(\gamma)(u \otimes \alpha(m'))$$

$$= \varphi(\gamma) \hbar (I_{U} \otimes \alpha)(u \otimes m')$$

$$= \operatorname{Hom}_{N} (I_{U} \otimes \alpha, I_{T})(\varphi(\gamma))(u \otimes m'),$$
(3.3)

and the diagram commutes.

**PROPOSITION 3.3.** *Let M be a left R-semimodule.* 

- (1) If the right R-semimodule V is Mk-flat, then  $V^*$  is M-injective.
- (2) If  $V^*$  is M-injective, then V is M-flat.

**PROOF.** (1) Let K be a subsemimodule of M. Since V is Mk-flat, then the sequence  $0 \to V \otimes K \xrightarrow{I_V \otimes i_K} V \otimes M$  is proper exact, and  $I_V \otimes i_K$  is k-regular. By Lemma 3.2, we have the following commutative diagram:

where  $\varphi'$  and  $\varphi$  are N-isomorphisms. It follows that the top row is proper exact if and only if the bottom row is proper exact, whence by [6, Proposition 3.1],  $V^*$  is injective.

(2) If  $V^*$  is injective, then

$$\operatorname{Hom}(M, V^*) \xrightarrow{\operatorname{Hom}(i_K, I_{V^*})} \operatorname{Hom}(K, V^*) \longrightarrow 0 \tag{3.5}$$

is proper exact. Again by the above diagram,

$$(V \otimes M)^* \xrightarrow{\operatorname{Hom}(I_V \otimes i_K, I_C)} (V \otimes K)^* \longrightarrow 0$$
(3.6)

is proper exact. Hence, the sequence is exact. Since C is a semicogenerator, then by [3, Proposition 4.1], the sequence  $0 \to V \otimes K \to V \otimes M$  is an exact sequence. Hence, V is M-flat.

**4. Cancellable semimodules.** In this section, we deal with cancellable semimodules. We characterize *k*-flat cancellable semimodules by means of left ideals.

**PROPOSITION 4.1.** The following statements about a cancellable right R-semimodule V are equivalent:

- (1) V is k-flat relative to  $_RR$ ;
- (2) for each (finitely generated) left ideal  $I \leq {}_R R$ , the surjective N-homomorphism  $\varphi: V \otimes_R I \to VI$  with  $\varphi(v \otimes a) = va$  is a k-regular semimonomorphism.

**PROOF.** (1) $\Rightarrow$ (2). Since *V* is cancellable, then by using [7, Proposition 14.16],  $V \otimes_R R \simeq V$ . Consider the following commutative diagram:

where  $\theta$  is the isomorphism of [7, Proposition 14.16]. Since  $\psi: V \times I \to VI$  given by  $\psi(v,i) = vi$  is an R-balanced function, then by using [7, Proposition 14.14], there is an exact unique N-homomorphism  $\varphi: V \otimes I \to VI$  satisfying the condition  $\varphi(v \otimes i) = \psi(v,i)$ . Since V is k-flat relative to  $_RR$ , then  $I_V \otimes_R i_I$  is injective. If  $\varphi(\Sigma v_i \otimes a_i) = \varphi(\Sigma v_i' \otimes a_i')$ , then  $\theta(I_V \otimes_R i_I)(\Sigma v_i \otimes a_i) = \theta(I_V \otimes_R i_I)(\Sigma v_i' \otimes a_i')$ . Since  $\theta$  and  $I_V \otimes i_I$  are injective, then  $\Sigma(v_i \otimes a_i) = (\Sigma v_i' \otimes a_i')$ .

 $(2)\Rightarrow (1)$ . Again consider the above diagram. Let I be any left ideal of R and let  $I_V\otimes_R i_I(\Sigma v_i\otimes a_i)=I_V\otimes_R i_I(\Sigma v_i'\otimes a_i')$ , where  $\Sigma v_i'\otimes a_i'$ ,  $\Sigma v_i\otimes a_i\in V\otimes_R I$ . Let  $K_1=\Sigma Ra_i$ ,  $K_2=\Sigma Ra_i'$ , and  $K=K_1+K_2$ . Now  $\theta(I_V\otimes i_I)(\Sigma v_i\otimes a_i)=\theta(I_V\otimes i_I)(\Sigma v_i'\otimes a_i')$ , whence  $\Sigma v_ia_i=\Sigma v_i'a_i'$ . Now consider the following diagram, where  $i_K:K\to I$  is the inclusion map:

By hypothesis,  $\varphi_K$  is monic. Thus,  $\Sigma_i v_i \otimes a_i = \Sigma_i v_i' \otimes a_i'$  as an element of  $V \otimes K$ . Hence,  $I_V \otimes_R i_K (\Sigma_i v \otimes a_i) = I_V \otimes i_K (\Sigma_i v_i' \otimes a_i') \in V \otimes I$ , and  $\Sigma v_i \otimes a_i = \Sigma v_i' \otimes a_i'$  as an element of  $V \otimes I$ . Therefore,  $I_V \otimes_R i_I$  is monic. Hence, V is k-flat relative to R.

П

**PROPOSITION 4.2.** Let M be a cancellable left R-semimodule. Then  $R_R$  is Mk-flat.

**PROOF.** Let  $i_K : K \to M$  be the inclusion homomorphism. By [7, Proposition 14.16],  $R \otimes_R K \simeq K$  and  $R \otimes_R M \simeq M$ . Consider the following commutative diagram:



since  $i_K$  is injective, then  $I \otimes_R i_K$  is injective.

**COROLLARY 4.3.** Let M be a cancellable left R-semimodule. Then every free R-semimodule is Mk-flat.

**PROOF.** The proof is immediate from Propositions 2.3 and 4.2.  $\Box$ 

In module theory every projective module is flat. Now we see that this is true for certain special semimodules.

**PROPOSITION 4.4.** Let M be a cancellable left R-semimodule, where R is a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is Mk-flat.

**PROOF.** By using [5, Theorem 19], P is isomorphic to a direct summand of a free semimodule F. By Corollary 4.3, F is Mk-flat. Hence, by using Proposition 2.3, P is Mk-flat.

**COROLLARY 4.5.** Let M be a k-regular left R-semimodule and R a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is Mk-flat.

**PROOF.** We only need to show that M is cancellable. Since M is k-regular, then there exists a free R-semimodule F such that  $\varphi: F \to M$  is surjective. Let  $m_1 + m = m_2 + m$ , where  $m_1, m_2, m \in M$ . Since  $\varphi$  is surjective, then  $\varphi(a_1) + \varphi(a) = \varphi(a_2) + \varphi(a)$ , where  $\varphi(a_1) = m_1$ ,  $\varphi(a) = m$ , and  $\varphi(a_2) = m_2$ . Since  $\varphi$  is k-regular, then  $a_1 + a + k_1 = a_2 + a + k_2$ , where  $k_1, k_2 \in \text{Ker } \varphi$ . Since F is cancellable, then  $a_1 + k_1 = a_2 + k_2$ . Hence  $\varphi(a_1) = \varphi(a_2)$ .

**PROPOSITION 4.6.** Let M be a cancellable left R-semimodule. If V is a free R-semimodule, then the following assertions hold:

- (a) V is Mk-flat;
- (b)  $V^*$  is M-injective.

**PROOF.** By using Corollary 4.3, V is Mk-flat.

(i) $\Rightarrow$ (ii). The proof is immediate from Proposition 3.3.

**ACKNOWLEDGMENTS.** I wish to thank Dr. Michael H. Peel for his crucial comments. I would also like to thank Dr. Mustafa A. Mustafa for his help.

## REFERENCES

- [1] H. M. J. Al-Thani, *Cogenerators, and the notion of rejects I*, to appear in AMSE Journals.
- [2] \_\_\_\_\_\_, Cogenerators, and the notion of rejects II, to appear in AMSE Journals.
- [3] \_\_\_\_\_, *The rejects and the semicogenertors*, preprint.
- [4] \_\_\_\_\_\_, A note on projective semimodules, Kobe J. Math. 12 (1995), no. 2, 89-94.
- [5] \_\_\_\_\_, *k-projective semimodules*, Kobe J. Math. **13** (1996), no. 1, 49–59.
- [6] \_\_\_\_\_\_, *Injective semimodules*, Journal of Institute of Mathematics and Computer Sciences **16** (2003), no. 3.
- [7] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 54, Longman Scientific & Technical, Harlow, 1992.
- [8] M. Takahashi, *On the bordism categories. III. Functors Hom and* ⊗ *for semimodules*, Math. Sem. Notes Kobe Univ. **10** (1982), no. 1, 211–236.
- [9] \_\_\_\_\_\_, Extensions of semimodules. II, Math. Sem. Notes Kobe Univ. 11 (1983), no. 1, 83-118.

Huda Mohammed J. Al-Thani: P.O. Box 13896, Doha, Qatar

Current address: Department of Environmental Sciences and Mathematics, Faculty of Science and Health, University of East London, London, UK

E-mail address: nnhm@qatar.net.qa