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OPTICAL VORTICES IN DISPERSIVE NONLINEAR
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The applied method of slowly varying amplitudes gives us the possibility to reduce the non-
linear vector integrodifferential wave equation of the electrical and magnetic vector fields to
the amplitude vector nonlinear differential equations. Using this approximation, different or-
ders of dispersion of the linear and nonlinear susceptibility can be estimated. Critical values
of parameters to observe different linear and nonlinear effects are determined. The obtained
amplitude equations are a vector version of 3D+1 nonlinear Schrödinger equation (VNSE)
describing the evolution of slowly varying amplitudes of electrical and magnetic fields in
dispersive nonlinear Kerr-type media. We show that VNSE admits exact vortex solutions
with classical orbital momentum � = 1 and finite energy. Dispersion region and medium
parameters necessary for experimental observation of these vortices are determined.
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1. Introduction. At the present time, there are no difficulties for experimentalist in

laser physics and nonlinear optics to obtain picosecond or femtosecond optical pulses

with equal durations in x,y , and z directions. The problems with the so-generated light

bullets arise in the process of their propagation in a nonlinear media with dispersion. In

the transparency region of a dispersive Kerr-type media, as it was established in [6, 14],

the scalar paraxial approximation (no dispersion in the direction of propagation) is

in a very good accordance with the experimental results. The paraxial approximation,

used in the derivation of the scalar 2D+1 nonlinear Schrödinger equation (NLS), does

not include (in first- or second-order of magnitude) a small second derivative of the

amplitude function in the direction of propagation. The inclusion of this term does

not change the main result dramatically in the case of a linear propagation (pulses

with small intensity), as generated optical bullets at short distance are transformed

in optical disks, with large transverse and small lengthwise dimension. Some of the

experimental possibilities for this small term to become important were discussed in

[21]. In [2] it was shown that this second derivative in the direction of propagation term

is in the same order and with the same sign as the others only in some special cases:

optical pulses near the Langmuir frequency or near some of the electronic resonances.

In these regions, the sign of the dispersion is negative and the scalar 2D+1 NLS becomes

a 3D+1 NLS one. Propagation of optical bullets under the dynamics of 2D+1 and 3D+1

NLS is investigated also in relation to different kinds of nonlinearity [9, 10, 19, 23, 24].

A generation of a new kind of 2D and 3D optical pulses, the so-called optical vortices,

has recently become a topic of considerable interest. Generally, the optical vortices
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are such type of optical pulses which admit angular dependence of electrical field or

helical phase distribution. The electrical field or intensity is zero also in the center

of the vortices. The original scalar theory of optical vortices was based on the well-

known 2D+1 NLS [7, 25, 26]. In a self-focusing regime of propagation, optical rings

can be generated, but they are modulationally unstable [18, 27]. One alternative way

of stabilizing optical vortices in 2D and 3D cases, using saturable [11, 28] or cubic-

quintic [8, 17] nonlinearity, was discussed also. On the other hand, the experiments

with optical vortices show that the polarization and the vector character of the electric

field play an important role in the dynamics and the stabilization of the vortices [16].

To investigate these cases, we are going to a vector version of 3D+1 NLS. In Section 2,

we derive this vector version of 3D+1 NLS (VNSE), using also dispersion in the direction

of propagation and envelope approximation in the standard way as it was constructed

in [13, 20]. This vector generalization allows us to find exact vortex solutions with spin

l = 1 and finite energy. The question for shape and finiteness energy of these vortices

is crucial and will be discussed extensively in Section 5.

2. Maxwell’s equations for a source-free, dispersive, nonlinear Kerr-type medium.

The Maxwell’s equations for a source-free dispersive medium with Kerr nonlinearity

are

∇× �E =−1
c
∂�B
∂t
, (2.1)

∇× �H = 1
c
∂ �D
∂t
, (2.2)

∇· �D = 0, (2.3)

∇· �B =∇· �H = 0, (2.4)

�B = �H, �D = �Plin+4π �Pnlin, (2.5)

where �E and �H are the electric and magnetic intensity fields, �D and �B are the electric and

magnetic induction fields, and �Plin and �Pnlin are the linear and nonlinear polarizations

of the medium, respectively. The linear electric polarization of an isotropic, disperse

medium can be represented as

�Plin =
∫ t
−∞

(
δ(t−τ)+4πχ(1)(t−τ))�E(τ,x,y,z)dτ

=
∫ t
−∞
ε0(t−τ)�E(τ,x,y,z)dτ,

(2.6)

where χ(1) and ε0 are the linear electric susceptibility and the dielectric constant. In the

following, we study such a polarization (linearly or circularly polarized light), where

the nonlinear polarization in the case of one carrying frequency can be expressed as

�P(3)nl =
∫ t
−∞

∫ t
−∞

∫ t
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
×(�E(τ1,x,y,z

)· �E∗(τ2,x,y,z
))�E(τ3,x,y,z

)
dτ1dτ2dτ3.

(2.7)
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It is very important to point out here the remark of Akhmanov et al. [1] that the method

slowly varying amplitudes of electrical and magnetic fields applied to such nonstation-

ary linear and nonlinear representations is valid when the optical pulse duration of the

pulses t0 is greater than the characteristic response time of the media τ0 (t0 � τ0),
as well as when the time duration of the pulses is less than or equal to the time re-

sponse of the media (t0 ≤ τ0). This possibility is discussed in the process of deriving

the amplitude equations.

Taking the curl of (2.1) and using (2.2) and (2.5), we then obtain

∆�E−∇(∇· �E)− 1
c2

∂2 �D
∂t2

= 0, (2.8)

where ∆≡∇2 is the Laplacian operator. Equation (2.8) is derived without the use of the

third Maxwell’s equation. Using (2.3) and the expressions for the linear and nonlinear

polarizations (2.6) and (2.7), the second term in (2.8) for arbitrary localized vector func-

tion of the electrical field can be estimated. As shown in [2], for such type of functions,

∇· �E � 0 and (2.8) is written as

∆�E− 1
c2

∂2 �D
∂t2

= 0. (2.9)

We define a complex presentation of the real electrical field by the relation

�E(x,y,z,t)= �A′(x,y,z,t)
1
2i
(
exp

(
i
(
k0z−ω0t

))−c ·c), (2.10)

where �A′, ω0, and k0 are the real vector amplitude, the optical frequency, and the

wave number of the optical field, respectively. The real vector amplitude �A′ is also

represented by a complex vector amplitude field:

�A′(x,y,z,t)= 1
2i
( �A(x,y,z,t)− �A∗(x,y,z,t)), (2.11)

where �A is the complex amplitude of the electrical field. In this way, our real electrical

field is presented with four complex fields of the kind

�E(x,y,z,t)=−1
4

( �Aexp
(
i
(
k0z−ω0t

))+ �A∗ exp
(−i(k0z−ω0t

)))

+ 1
4

( �Aexp
(−i(k0z−ω0t

))+ �A∗ exp
(
i
(
k0z−ω0t

)))
.

(2.12)

This special kind of presentation of electrical field is connected with shape and finite-

ness energy of vortex solutions, and it is discussed in Section 5. Here we also use the

Fourier representations of the complex amplitude function �A and their time derivatives
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of second order:

�A(x,y,z,t)=
∫ +∞
−∞

�A
(
x,y,z,ω−ω0

)
exp

(−i(ω0−ω
)
t
)
dω, (2.13)

∂ �A(x,y,z,t)
∂t

=−i
∫ +∞
−∞

(
ω−ω0

) �A(x,y,z,ω−ω0
)

×exp
(−i(ω−ω0

)
t
)
dω,

(2.14)

∂2 �A(x,y,z,t)
∂t2

=−
∫ +∞
−∞

(
ω−ω0

)2 �A
(
x,y,z,ω−ω0

)
×exp

(
i
(
ω−ω0

)
t
)
dω.

(2.15)

The principle of causality requires the next conditions on the response functions:

ε(t−τ)= 0, χ(3)
(
t−τ1, t−τ2, t−τ3

)= 0,

t−τ < 0, t−τi < 0, i= 1,2,3.
(2.16)

That is why we can prolong the upper integral boundary to infinity and use standard

Fourier presentation [20]:

∫ t
−∞
ε0(τ−t)exp(iωτ)dτ =

∫ +∞
−∞
ε0(τ−t)exp(iωτ)dτ, (2.17)

∫ t
−∞

∫ t
−∞

∫ t
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
dτ1dτ2dτ3

=
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
dτ1dτ2dτ3.

(2.18)

The spectral presentation of linear optical susceptibility ε̂0(ω) is connected to the

nonstationary optical response function by the next Fourier transform:

ε̂0(ω)exp(−iωt)=
∫ +∞
−∞
ε0(t−τ)exp(−iωτ)dτ. (2.19)

The expression of the spectral presentation of the nonstationary nonlinear optical sus-

ceptibility χ̂(3) is similar:

χ̂(3)(ω= 2ω−ω)exp(−iωt)

=
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
×exp

(−i(ω(τ1+τ2+τ3
)))
dτ1dτ2dτ3.

(2.20)

From (2.6), (2.10), (2.13), (2.17), and (2.19), for the linear polarization of one of the

complex fields �P
′
lin[ �Aexp(i(k0z−ωt))], we obtain

�P
′
lin =

∫ t
∞
ε0(t−τ)exp

(
i
(
k0z−ω0τ

))∫ +∞
−∞

�A
(
x,y,z,ω−ω0

)
×exp

(−i(ω−ω0
)
τ
)
dωdτ

= exp
(
ik0z

)∫ +∞
−∞

�Ai
(
x,y,z,ω−ω0

)∫ +∞
−∞
ε0(t−τ)exp(−iωτ)dτdω.

(2.21)
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The second integral in (2.21) is simply (2.19), and the linear polarization can be written

in the form

�P
′
lin(x,y,z,t)

= exp
(
i
(
k0z−ω0t

))∫ +∞
−∞
ε̂0(ω) �A

(
x,y,z,ω−ω0

)
exp

(−i(ω−ω0
)
t
)
dω.

(2.22)

It is important to point out that similar expressions as (2.22) are also written for the

polarization of the complex fields of the kind

�P
′
lin

[ �Aexp
(−i(k0z−ωt

))]
,

�P
′
lin

[ �A∗ exp
(
i
(
k0z−ωt

))]
,

�P
′
lin

[ �A∗ exp
(−i(k0z−ωt

))]
.

(2.23)

The above procedures are used also with the nonlinear polarization. When the third

harmonic term is neglected, the result is

�Pnlin(x,y,z,t)

= 3
4

exp
(
i
(
k0z−ω0t

))

×
∫ +∞
−∞
χ̂(3)(ω)exp

(−i(ω−ω0
)
t
)∣∣ �A(x,y,z,ω−ω0

)∣∣2 �A
(
x,y,z,ω−ω0

)
dω.

(2.24)

Multiplying (2.22) and (2.24) by 1/c2, and using the second derivatives in time, we obtain

1
c2

∂2 �P
′
lin(x,y,z,t)
∂t2

=−exp
(
i
(
k0z−ω0t

))∫ +∞
−∞

ω2ε̂0(ω)
c2

�A
(
x,y,z,ω−ω0

)
×exp

(−i(ω−ω0
)
t
)
dω,

(2.25)

4π
c2

∂2 �Pnlin(x,y,z,t)
∂t2

=−exp
(
i
(
k0z−ω0t

))∫ +∞
−∞

3πω2χ̂(3)(ω)
c2

∣∣ �A(x,y,z,ω−ω0
)∣∣2

× �A(x,y,z,ω−ω0
)
exp

(−i(ω−ω0
)
t
)
dω.

(2.26)

The spectrum of the amplitude function is restricted by writing the wave vectors

klin =
√
ω2ε̂0(ω)

c2
, knl =

√
3πω2χ̂(3)(ω)

c2
(2.27)
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near the carrying frequency in a Taylor series:

k2
lin(ω)=

ω2ε̂0(ω)
c2

= k2(ω0
)+ ∂

(
k2
(
ω0

))
∂ω0

(
ω−ω0

)

+ 1
2
∂2
(
k2
(
ω0

))
∂ω2

0

(
ω−ω0

)2+··· ,

k2
nl(ω)=

ω2χ̂(3)(ω)
c2

= k2
nl
(
ω0

)+ ∂
(
k2
nl
(
ω0

))
∂ω0

(
ω−ω0

)+··· .
(2.28)

It is convenient to express the nonlinear wave vector by linear wave vector and nonlinear

refractive index:

k2
nl
(
ω0

)= 3πω2
0χ̂(3)

(
ω0

)
c2

= ω
2
0ε̂
(
ω0

)
c2

3πχ̂(3)
(
ω0

)
ε̂
(
ω0

) = k2
0n2, (2.29)

where

n2
(
ω0

)= 3πχ̂(3)
(
ω0

)
ε̂
(
ω0

) (2.30)

is the nonlinear refractive index. We note here that no approximation of the response

function is used. There is only one requirement of the spectral presentations (2.19) and

(2.20) of the response functions to admit first- and second-order derivatives with re-

spect to frequency (to be smooth functions). So, this method is not limited from the time

duration of the response function and we can also apply it when the half-max of the

pulses is in order of the time duration of the response function (femtosecond pulses).

The restriction is only with respect to the relation between the main frequency ω0 and

time duration of the envelope functions t0 determined from the relations (2.28) (condi-

tions for slowly varying amplitudes). Putting (2.28) in (2.25) and (2.26), respectively, and

keeping in mind the expressions of time derivatives of the amplitude functions (2.14)

and (2.15) for the electric field, the second time derivative of the linear polarization of

the optical component is represented in the next truncated form:

1
c2

∂2 �P
′
lin(x,y,z,t)
∂t2

=
(
−k2

0
�A+ 2ik0

v
∂ �A
∂t
+
(
k0k′′0 +

1
v2

)
∂2 �A
∂t2

+···
)

exp
(
i
(
k0z−ω0t

))
.

(2.31)

A similar result is also obtained for the linear polarization of the terms of kind (2.23).

The nonlinear polarization term is

4π
c2

∂2 �P
′
nlin(x,y,z,t)
∂t2

=
(
−k2

0n2| �A|2 �A+2iknl
∂knl
∂ω

∂
(| �A|2 �A)
∂t

+···
)

exp
(
i
(
k0z−ω0t

))

=
(
−k2

0n2| �A|2 �A+
(

2ik0
n2

v
+ik2

0
∂n2

∂ω

)
∂
(| �A|2 �A)
∂t

+···
)

exp
(
i
(
k0z−ω0t

))
,

(2.32)
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where v = 1/(∂klin(ω0)/∂ω) and k′′0 are the group velocity and dispersion. From the

wave equation (2.9), using (2.12), (2.31), (2.32), and (2.23), the next two equations of

complex vector amplitude and its complex conjugates are obtained:

i
(
∂ �A
∂t
+v ∂ �A

∂z
+
(
n2+ k0v

2
∂n2

∂ω

)
∂
(| �A|2 �A)
∂t

)

= v
2k0

∆ �A− v
2

(
k′′0 +

1
k0v2

)
∂2 �A
∂t2

+ n2k0v
2

| �A|2 �A,
(2.33)

−i
(
∂ �A∗

∂t
+v ∂ �A

∗

∂z
+
(
n2+ k0v

2
∂n2

∂ω

)
∂
(| �A|2 �A∗)
∂t

)

= v
2k0

∆ �A∗− v
2

(
k′′0 +

1
k0v2

)
∂2 �A∗

∂t2
+ n2k0v

2
| �A|2 �A∗ = 0.

(2.34)

Equations (2.33) and (2.34) are equal. Solving (2.33) for �A, we can also find �A∗ and,

respectively, the real amplitude vector field �A′. We investigate the case when

v2k0k′′0 =−1, (2.35)

a condition that can only be fulfilled for materials possessing negative dispersion. The

∂2 �A/∂t2 term in this case is neglected. Applying a Galilean transformation to the vector

amplitude equation (2.33), where the new reference frame moves at the group veloc-

ity, t′ = t, z′ = z−vt (the primes are missing for clarity), we obtain our final vector

amplitude equation

−i
(
∂ �A
∂t
+
(
n2+ k0v

2
∂n2

∂ω

)
∂
(| �A|2 �A)
∂t

)
+ v

2k0
∆⊥ �A− v

3k′′0
2

∂2 �A
∂z2

+ n2k0v
2

| �A|2 �A= 0,

(2.36)

where ∆⊥ = ∂2/∂x2+∂2/∂y2.

3. Norming VNSE and exact vortex solutions. In this section, we obtain solutions

in the case of amplitude vector equations of one carrying frequency. The case of two

carrying frequencies is discussed in [2]. The case of three and more localized optical

waves on different frequencies with additional conditions on the frequencies (paramet-

ric vortices) will be discussed in a next paper. Defining the rescaled variables

�A=A0 �A′, x = r0x′, y = roy ′, z = r0z′, t = t0t′, (3.1)

and constants

α= 2k0r 2
0

t0v
, β= v2k′′k0, γ = k2

0r
2
0n2

∣∣A0

∣∣2,

r0

t0
= v, γ1 = 2k0r0n2

∣∣A0

∣∣2, γ2 = vc k0r0n2

∣∣A0

∣∣2,
(3.2)
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(2.36) can be transformed into the following (the primes are not written):

−i
(
α
∂ �A
∂t
+(γ1+γ2

)∂(| �A|2 �A)
∂t

)
+∆⊥ �A−β∂

2 �A
∂z2

+γ| �A|2 �A= 0. (3.3)

The dispersion term (the second derivative in z direction of the amplitude function)

in the transparency region of a medium is one or two orders of magnitude smaller

than the diffractive term (transverse Laplacian). This is why the linear (dispersion) pa-

rameter is usually β ∼ 10−2. There is a possibility to reach β = 1 only in some special

cases, near to Langmuir frequency in cold plasma, high-frequency transparency region

of dielectrics, and near to some of the electronic resonances [2]. The constant α has

a value of α ≈ 102 (α ≈ r0k0) if the slowly varying approximation is used. When the

nonlinear constant admits a typical critical value γ = 1 for self-focusing regime, the

constants γ1 � γ2 ∼ 10−2 are small. We point out here that the effects of asymmetry of

the pulses (asymmetry of their spectrum) due to nonlinear addition to the group veloc-

ity presented by the second term in (3.3) are substantial when γ1 � γ2 ∼ 1 or γ ∼ 102.

These terms depend on intensity of the fields, and when γ ∼ 102 or n2|A0|2 ∼ 10−2,

effects of self-steepening of the pulses, connected also with considerable self-focusing,

can be estimated. Such a type of experiments [12] is provided with 80 femtosecond

pulses and intensity I0 ∼ 1014W/cm2. These correspond to the parameters discussed

above (γ ∼ 102 or n2|A0|2 ∼ 10−2). In this paper, we investigate the case when β = −1

(negative dispersion) and γ = 1. Neglecting the small terms, (3.3) becomes

−iα∂ �A
∂t
+∆⊥ �A+ ∂

2 �A
∂z2

+| �A|2 �A= 0. (3.4)

Now we go to the next step—the possible polarization of the amplitude vector field (3.4).

Recently, this problem was discussed intensively [4, 5] and the difference between the

polarization of the optical waves with spectral bandwidth (slowly varying amplitudes)

and the polarization of monochromatic fields was pointed out. In the case of monochro-

matic and quasimonochromatic fields, the Stokes parameters can be constructed from

transverse components of the wave field [4]. This leads to two-component vector fields

in a plane, transverse to the direction of propagation. For electromagnetic fields with

spectral bandwidth (our case), the two-dimensional coherency tensor cannot be used

and the Stokes parameters cannot be found directly. As it was shown by Carozzi et al. in

[5], using a high order of symmetry (SU(3)), in this case, six independent Stokes param-

eters can be found. This corresponds to a three-component vector field. We investigate

this case here. The increase of the spectral bandwidth of the vector wave increases also

the depolarization term (a component normal to the standard Stokes coherent polar-

ization plane). The amplitude vector function of electrical field �A is represented as the

sum of three orthogonal linearly polarized amplitudes:

�A(x,y,z,t)=
∑

�j=�x, �y,�z

�jAj(x,y,z)exp(iΩt). (3.5)
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In a Cartesian coordinate system, for solutions of the kind of (3.5), the vector equation

is reduced to a scalar system of three nonlinear wave equations:

αΩAl+∆Al+
∑

j=x,y,z

(∣∣Aj∣∣2
)
Al = 0, l= x,y,z. (3.6)

As it was pointed out in [20], we may choose to express each of the components Ai in

spherical coordinates Ai(r ,θ,ϕ) of the independent variables i = x,y,z. In this way,

the linear unique (polarization) vector of each of the components is kept. The system

(3.6) in spherical variables is

αΩAl+∆rAl+ 1
r 2
∆θ,ϕAl+

∑
j=x,y,z

(∣∣Aj∣∣2
)
Al = 0, l= x,y,z, (3.7)

where

∆r = 1
r 2

∂
∂r

(
r 2 ∂
∂r

)
, ∆θ,ϕ = 1

sinθ
∂
∂θ

(
sinθ

∂
∂θ

)
+ 1

sin2θ
∂2

∂ϕ2
(3.8)

are the radial and the angular operators, respectively, and r =
√
x2+y2+z2, θ =

arccos(z/r), and ϕ = arctan(x/y) are the moving spherical variables of the indepen-

dent variables x, y , and z. The system of equations (3.7) is solved using the method of

separation of the variables. We present the components of the field as a product of a

radial and an angular part:

Al(r ,θ,ϕ)= R(r)Yl(θ,ϕ), l= x,y,z, (3.9)

with the additional constraint on the angular parts

∣∣Yx(θ,ϕ)∣∣2+∣∣Yy(θ,ϕ)∣∣2+∣∣Yz(θ,ϕ)∣∣2 = const . (3.10)

Multiplying (3.7) by r 2/RYl and bearing in mind the constraint expressed in (3.10), we

obtain

r 2∆rR
R

+r 2(αΩ+|R|2)=−∆θ,ϕYl
Yl

= �(�+1), (3.11)

where � is a number. Thus the following equations for the radial and the angular parts

of the wave functions are obtained:

∆rR+αΩR+|R|2R− �(�+1)
r 2

R = 0, (3.12)

∆θ,ϕYl+�(�+1)Yl = 0, l= x,y,z. (3.13)

Equations (3.12) and (3.13) show that the nonlinear term occurs only in the radial com-

ponents of the fields. As for the angular parts, we have the usual linear eigenvalue
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problem. The solutions of (3.13) of the angular parts are well known; each of them has

exact solutions of the form

Yl = Ym� =Θm� (θ)Φm(ϕ)=
√

4π
3

√
2�+(�−m)!
4π(�+m)! P

m
� (cosθ)exp(imϕ), (3.14)

where Pm� are the Legendre functions for a discrete series of numbers: � = 0,1,2, . . . ,
m= 0,±1,±2, . . ., and |m|< �. Returning to (3.7), it is seen that separation of variables

for spherical functions, which satisfy condition (3.10), is possible only for l= 1:

Yx = Y−1
1 = sinθcosϕ, Yy = Y 1

1 = sinθc sinϕ, Yz = Y 0
1 = cosθ, (3.15)

or another appropriate combination of axes. By choosing one of these angular com-

ponents for each of the field components, we see that the eigenfunctions (3.15) are

solutions to the angular part of the set of equations (3.13). It is straightforward to

show that the radial part of (3.12) admits “de Broglie soliton” solutions [3] of the form

R =
√

2
exp

(
i
√
αΩr

)
r

. (3.16)

In this way, we prove the existence of vortex solutions with angular momentum l = 1

in a Kerr-type medium. The solutions of the vector amplitude equation (3.4) in a fixed

basis are

Ax =
√

2
exp

(
i
√
αΩr

)
r

sinθcosϕexp(iΩt), (3.17)

Ay =
√

2
exp

(
i
√
αΩr

)
r

sinθ sinϕexp(iΩt), (3.18)

Az =
√

2
exp

(
i
√
αΩr

)
r

cosθexp(iΩt). (3.19)

Equation (3.4) is normed and this leads to the following normed constants:

αΩ = 1, Ω� 10−2. (3.20)

Now we can turn back to the amplitude of real solutions �A′ , using (2.11),

A
′
x =

1
2i
(
Ax−A∗x

)= √2
sin

(√
αΩr +Ωt)
r

sinθcosϕ, (3.21)

A
′
y =

1
2i
(
Ay−A∗y

)= √2
sin

(√
αΩr +Ωt)
r

sinθ sinϕ, (3.22)

A
′
z =

1
2i
(
Az−A∗z

)= √2
sin

(√
αΩr +Ωt)
r

cosθ. (3.23)

The condition ∇· �E = 0 splits the nonlinear Maxwell system into two wave equation

systems, one nonlinear of the electrical field, and the other nonlinear of the magnetic

field. We define again a complex presentation of the real magnetic field by the relation

�H(x,y,z,t)= �C′(x,y,z,t)
1
2i
(
exp

(
i
(
k0z−ω0t

))−c ·c), (3.24)
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where �C′, ω0, and k0 are the real vector amplitude, the optical frequency, and the

wave number of the optical field, respectively. The real magnetic vector amplitude �C′

is represented also by a complex vector amplitude field:

�C′(x,y,z,t)= 1
2i
( �C(x,y,z,t)− �C∗(x,y,z,t)), (3.25)

where �C is the complex amplitude of the magnetic field. Applying similar procedures to

those which were made for the electrical field, namely, using the Fourier representation

of the amplitude functions �C and their time derivatives of second order, as was done

for the electrical field, we obtain the vector equation of slowly varying amplitudes of

the magnetic field �C :

iα
∂ �C
∂t
+∆⊥ �C+ ∂

2 �C
∂z2

+| �A|2 �C = 0 (3.26)

if the condition

∇| �A|2× �A= 0 (3.27)

is satisfied. For solutions of the amplitudes of electrical field like (3.17), (3.18), and

(3.19), condition (3.27) is satisfied. Equation (3.26) has a localized solution of the same

kind of (3.17), (3.18), and (3.19), as the amplitude functions of the electrical field, but

with opposite phase:

Cx =
√

2
exp

(
i
√
αΩr

)
r

sinθcosϕexp(−iΩt),

Cy =
√

2
exp

(
i
√
αΩr

)
r

sinθ sinϕexp(−iΩt),

Cz =
√

2
exp

(
i
√
αΩr

)
r

cosθexp(−iΩt).

(3.28)

The real dynamics of localized fields can be understood only by investigating both

(3.3) and (3.26).The solutions of electrical (3.17), (3.18), and (3.19) and magnetic (3.28)

fields are with opposite phases, and that is why the corresponding electromagnetic

localized wave oscillating in coordinate system moves with group velocity.

4. Experimental conditions. The results presented above require the satisfaction of

the conditions relating the linear parameter β and the nonlinear parameter γ; namely,

β=−1 and γ = 1. The relation γ = 1 is a typical critical value for starting a self-focusing

regime of a Gaussian pulse. The nonlinear parameter written again is

γ = r 2
0 k

2
0n2

∣∣A0

∣∣2 =α2n2

∣∣A0

∣∣2 = 1. (4.1)

The constant α= r0ki in the optical region ranges in values from 102 to 103. Using this

range in the condition (4.1), we obtain a required nonlinear refractive index change:

n2

∣∣A0

∣∣2 � 10−4–10−6. (4.2)
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It was shown, using relations (3.2), that if γ = 1, then γ1 ∼ γ2 ∼ 10−2–10−3. This is

one important result: the nonlinear addition to the group velocity term in amplitude

equation (3.3) is relatively small, even for (femtosecond) pulses with time duration less

than or equal to characteristic time response of the nonlinear medium.

Using the condition of linear parameter β,

β= k0v2k′′ = −1, (4.3)

we see that the vortex propagation takes place only in the negative dispersion region. In

[2], we find that the constraint given in (4.3) corresponds to the next two experimental

situations:

(1) cold plasma near the Langmuir frequency,

(2) a region near an electronic resonance in an isotropic medium.

We point out also the equivalence in high-frequency region between the spectral

presentation of dielectric susceptibility of a cold plasma and this of a dielectric medium.

The expression is supposed to be precisely equal to a (dielectric) constant. Near these

frequencies, the dispersion parameter increases rapidly and admits values

|k′′| ∼ 10−24–10−25 sec2/cm. (4.4)

This leads to the fact that the dispersion term (the second derivative in z direction of

the amplitude function) in normed amplitude equations of electrical (3.3) and magnetic

(3.26) fields is of the same order of the diffractive term (transverse Laplacian).

5. Finiteness of the energy of the vortex solutions. Now we come to the crucial

point—energy and shape of the vortex solutions (3.21), (3.22), (3.23), and (3.28) of the

electrical and magnetic fields. To prove the finiteness of energy of the vortex solutions

(3.21), (3.22), (3.23), and (3.28), we start with the equations for average time balance of

energy density of electrical and magnetic fields [15]:

∂W
∂t

= 1
16π

(
�E · ∂ �D

∗

∂t
+ �E∗ · ∂ �D

∂t
+ �B · ∂�B

∗

∂t
+ �B∗ · ∂�B

∂t

)
, (5.1)

where �D = �Plin+4π �Pnlin is the sum of the linear induction and the nonlinear induction of

the electrical field. In many books, the calculations of the averaged energy of the optical

waves in a dispersive medium are worked out bearing in mind only the first order of

slowly varying amplitude approximation of the linear electrical induction. This is why

the result comes to the old result of Brillouin (1921) for the energy density of electrical

field:

Wlin = 1
8π

(
∂
(
ωε0

)
∂ω

| �A|2+| �C|2
)
= 1

8π

(
c
v
| �A|2+| �C|2

)
. (5.2)

It is straightforward to show using this approximation that after integrating in space

our vortex solutions, they admit infinite energy. As seen from (5.2), this approximation

does not include the dispersion parameter k′′, which is present in the envelope (3.3)

and (3.26) as a coefficient in front of the second derivative in z direction. So there is
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no possibility to estimate the influence of k′′ in the energy integral. Our vector ampli-

tude equations are obtained using the second-order approximation of �Plin. The right

expression of the energy density in this case requires expanding the linear electrical

inductions in the energy integral also up to the second order and including this disper-

sion parameter in the energy integral. Using truncated form for first derivative in time

of the linear induction of electrical field, we have

∂ �Plin

∂t
=−iω0ε

(
ω0

) �A+ c
v
∂ �A
∂t
+ ick

′′

2
∂2 �A
∂t2

. (5.3)

From (5.1), (5.3), and the complex conjugate of (5.3), we obtain

∂Wlin

∂t
= c
v

(
�A
∂ �A∗

∂t
+ �A∗ ∂ �A

∂t

)
+ ick

′′

2
∂
∂t

(
�A∗
∂ �A
∂t
− �A∂ �A

∗

∂t

)
+ �B ∂�B

∗

∂t
+ �B∗ ∂�B

∂t
(5.4)

or

Wlin = c
v
| �A|2+| �C|2+ ick

′′

2

(
�A∗
∂ �A
∂t
− �A∂ �A

∗

∂t

)
, (5.5)

where A∗ denotes the complex conjugate in time amplitude function. Rewriting the

vortex solutions of electrical (3.21), (3.22), and (3.23) and magnetic (3.28) fields in un-

normed (dimension) coordinates and substituting in (5.5), for the case of negative dis-

persion, we finally obtain the next expression of the linear part of averaged energy

density:

Wlin =
(

1+ c
v
−c|k′′|ω

)
| �A|2, (5.6)

where ω denotes the spectral bandwidth of the vortices. We obtain one unexpected

result: with the increase of the spectral bandwidth of our solutions, the linear part

of energy density will decrease in the negative dispersion region. Conditions when the

linear part of the energy density of electrical field is zero determine one critical spectral

bandwidth:

ωc = v+cvc
1
|k′′| . (5.7)

Near to plasma frequency or some of the electronic resonances, the dispersion param-

eter increases with values about k′′ ∼ 10−24–10−25 cek2/cm. The critical spectral band-

width in this case becomesωc ∼ 1014–1015 Hz. The envelope approximation requires

that ω0 >ωc . This condition shows that the linear part of the energy density of vor-

tices is zero only when their main frequency is situated in optical region, or regions,

whose frequency is greater than the optical region frequencies, and admits spectral

bandwidth equal to ωc . The nonlinear part of averaged energy density is expressed

in [22], and for the vortex solutions (3.17), (3.18), and (3.19), it becomes

Wnlin = 3n2| �A′|2 �A′2+ω0
∂n2

∂ω0
| �A′|2 �A′2. (5.8)
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These results give the condition for the finiteness of energy of the vortices that the

spectral bandwidth of vortices be equal to ωc . Integrating Wnlin on the 3D space,

we obtain a finite value proportional to the main frequency ω0. The intensity part

in this expression for the energy (5.8) is limited by the experimental condition (4.2)

and it is a constant. In this way, we obtain the result that the localized energy of the

solutions increases linearly with the increase of the main frequency. In addition, we

also investigate the shape and the behavior of electrical and magnetic fields in the

origin and infinity. To obtain the correct result, the real-part solutions of the amplitude

(3.22), (3.23), and (3.28) must be rewritten in the independent Cartesian coordinates x,

y , and z:

A′x =
√

2
x sin

(√
αΩ

√
x2+y2+z2+Ωt

)
x2+y2+z2

,

A′y =
√

2
y sin

(√
αΩ

√
x2+y2+z2+Ωt

)
x2+y2+z2

,

A′z =
√

2
zsin

(√
αΩ

√
x2+y2+z2+Ωt

)
x2+y2+z2

.

(5.9)

The limits of these functions in origin and in infinity are investigated using the Haine

criteria for the limit of a multidimensional function. It is straightforward to show that

the solutions (5.9) are odd functions, going to zero in infinity and admitting very little

value near to the origin. In the origin, using the same criteria, we find that the above

functions have no limit. But as we must point out, the envelope functions (5.9) are only

imaginary functions around the real electrical field, expressed in our case by relation

(2.10):

Ex =A′x sin
(
k0z−ω0t

)
,

Ey =A′y sin
(
k0z−ω0t

)
,

Ez =A′z sin
(
k0z

)−ω0t.

(5.10)

Using the same criteria as in the previous case, it is seen that the electrical field admits

exact limit zero in the origin and infinity:

lim
x,y,z→0

(
Ei
)= 0,

lim
x,y,z→±∞

(
Ei
)= 0, i= x,y,z. (5.11)

6. Numerical experiment. In this section, we compare the evolutions of one-compo-

nent localized electrical field A(x,y,z,t) whose propagation is governed by the 3D+1

scalar NSE

−iα∂A
∂t
+∆⊥A+ ∂

2A
∂z2

+|A|2A= 0 (6.1)
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Figure 6.1. Evolution of a Gaussian pulse on distanceπ with initial amplitude
constant A0 = 0.8, governed by the scalar NSE (6.1). This corresponds to the
nonlinear parameter γ < 1 and the dominating diffraction.

with the evolution of vortex solutions (3.17), (3.18), and (3.19) of the vector version of

NSE (VNSE)

−iα∂ �A
∂t
+∆⊥ �A+ ∂

2 �A
∂z2

+| �A|2 �A= 0. (6.2)

We have chosen a split-step Fourier method for solving (6.1) and (6.2).

6.1. Scalar NSE. The amplitude constant A0 =
√

2 of the vortex solutions corre-

sponds to a value greater than but close to the critical value for self-focusing of scalar

fields A0 = 1 (or γ = 1). To compare the results of the scalar theory (6.1) with those of

the vector one (6.2), we get the values of amplitude constants in scalar case less than

(A0 = 0.8) or equal (A0 =
√

2) to the amplitude constant of vortex solutions. The value

A0 = 0.8 corresponds to the situation when the diffraction term dominates and the

value A0 =
√

2 corresponds to a self-focusing regime near to the critical value γ = 1 in

dynamics of scalar NSE. The initial condition in the scalar case is Gaussian pulse:

A(x,y,z)=A0 exp


−

√
x2+y2+z2

2


. (6.3)

The evolution of the pulse when A0 = 0.8 governed by scalar NSE (6.1) is presented in

Figure 6.1. The upper left graph corresponds to initial condition (6.3) and the lower right

graph corresponds to evolution at distance π . We plotted the surface A(x,y,z = 0, t).
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Figure 6.2. Evolution of a Gaussian pulse on distanceπ with initial amplitude
constant A0 =

√
2 (the same as for the vortex solution) governed by the scalar

NSE (6.3). The nonlinear parameter γ > 1 is greater than but close to the critical
value for self-focusing.

In the same way situated the next two figures also. As it can be expected, the diffractive

term dominates and we observe linear (diffractive) regime of propagation. The evolution

of Gaussian pulse with A0 =
√

2 (equal to vortex initial amplitude) governed by scalar

NSE (6.1) is presented in Figure 6.2. The dynamics is close to a real experiment [22]. At

the beginning, as the initial constant is greater than but near to the critical value for

self-focusing A0 = 1, a self-focusing regime with focusing the central area and forming

large base is observed. As the part of intensity distribution goes to the base, the critical

power density of the pulse becomes less than the critical power density for self-focusing

and again the diffraction dominates.

6.2. Vector NSE. Figure 6.3 presents the result of a numerical experiment of evolu-

tion of vortex solutions

Ax =
√

2
x sin

(√
x2+y2+z2

)
x2+y2+z2

, (6.4)

Ay =
√

2
y sin

(√
x2+y2+z2

)
x2+y2+z2

, (6.5)

Az =
√

2
zsin

(√
x2+y2+z2

)
x2+y2+z2

, (6.6)
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Figure 6.3. Evolution of the intensity of the vortex solutions (6.4), (6.5), and
(6.6) in dynamics of VNSE (6.2). Stable propagation on distance π is estab-

lished.

Figure 6.4. Surface of one of the components Ax(x,y,z = 0) for the vortex
solution (6.4).

governed by the vector version of NSE (VNSE) (6.2). On the graphs is plotted the dynam-

ics of the surface

| �A|2z=0 =
∣∣Ax∣∣2

z=0+
∣∣Ay∣∣2

z=0+
∣∣Az∣∣2

z=0. (6.7)

As it can be established, the vortex is stable on distance π , where the scalar theory

gives an unstable propagation. On Figure 6.4, we present the surface of the solution

Ax =
√

2
x sin

(√
x2+y2+z2

)
x2+y2+z2

∣∣∣∣z = 0. (6.8)
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The numerical experiment of scalar NSE was performed on an area with grid 128×128×
128. The vortex solutions are situated on a large area, and to satisfy zero values on the

boundary of the space, we investigate VNSE (6.2) on large space and grid 192×192×192.

7. Conclusion. The applied method of slowly varying amplitudes gives us the pos-

sibility to reduce the nonlinear vector integrodifferential equations of the electrical

and magnetic vector fields to vector nonlinear differential equations of amplitudes.

Here we explain some more differences between the solutions obtained by separation

of the variables of the usual linear scalar Schrödinger equation with potential depend-

ing only on “r” (e.g., hydrogen atom) and the solutions of the vector version of NSE.

For the linear Schrödinger equations with potential of high order, spherical functions

correspond to a high order of radial spherical Bessel functions. While for vector version

of NSE, a high number of the fields components and high value of localized energy cor-

respond to a high order of spherical functions (� = 1,2, . . . ). In the nonlinear case, for

radial component, we have for all solutions the zero spherical Bessel function sinαr/r .

This is because we start with such a special kind of complexification of our electrical

field (2.10). It is important to highlight also the equivalence in high-frequency region

between the linear dielectric susceptibility of a cold plasma and that of a dielectric

medium. In high-frequency region, we can determine also a plasma frequency of one

dielectric. The expression is equal to that of cold plasma and is supposed to be precisely

a (dielectric) constant. All this discussion shows two possible regions for observing op-

tical vortices:

(1) high-frequency (transparency) region of cubic dielectrics or cold plasma,

(2) the region near to some of the electronics resonances of an χ(3) medium.

All the above investigations are provided only for the real part of linear and nonlinear

susceptibilities . This is because the first possibility, high-frequency region, is more at-

tractive for observing optical vortices. Near to electronic resonances, the complex part

of linear susceptibility is significant and should be kept in mind in a more detailed anal-

ysis. The numerical investigation of stability for such type of vortices, using split-step

Fourier method, is performed also. Comparing the numerical calculations for vortices

with these of a standard Gaussian pulse, it can be clearly seen that the vortices propa-

gate without any changing of their shape, whereas the Gaussian pulse, with the same

initial amplitude, is unstable.
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