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We obtain global estimates for the modulus, interior gradient estimates, and boundary
Hölder continuity estimates for solutions u to the capillarity problem and to the Dirichlet
problem for the mean curvature equation merely in terms of the mean curvature, together
with the boundary contact angle in the capillarity problem and the boundary values in the
Dirichlet problem.
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1. Introduction. Let Ω be a bounded domain in Rn, n≥ 2. Consider a solution to the

mean curvature equation

divTu=H(x,u(x)) in Ω, (1.1)

with

Tu= Du√
1+|Du|2 . (1.2)

A solution of the Dirichlet problem can be regarded as a solution of (1.1) subject to the

Dirichlet boundary condition

u=ϕ, (1.3)

whereϕ is a given function on ∂Ω; a solution of the capillarity problem can be regarded

as a solution of (1.1) subject to the “contact angle” boundary condition

Tu·ν = cosθ, (1.4)

where ν is the outward pointing unit normal of ∂Ω, and where cosθ is a given function

on ∂Ω. (Thus, in the capillarity problem, we are considering geometrically a function u
in Ω̄ whose graph has the prescribed mean curvature H and which meets the boundary

cylinder in the prescribed angle θ.) Here, H =H(x,t) is assumed to be a given locally

Lipschitz function in Ω×R satisfying the structural conditions

∂H
∂t
(x,t)≥ 0, for x ∈Ω, t ∈R. (1.5)

http://dx.doi.org/10.1155/S0161171204307039
http://dx.doi.org/10.1155/S0161171204307039
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


914 FEI-TSEN LIANG

Equation (1.1) is the Euler equation of the functional

I(v)=
∫
Ω

√
1+|Dv|2dx+

∫
Ω

∫ v
0
H(x,t)dtdx. (1.6)

The Dirichlet problem corresponds to the variational problem

I(v) �→min, ∀v ∈ BV(Ω)∩{v|∂Ω =ϕ}. (1.7)

The capillarity problem corresponds to the variational problem

I(v)−
∮
∂Ω
βvd�n−1 �→min, with β= cosθ, ∀v ∈ BV(Ω), (1.8)

where �k is the k-dimensional Hausdorff measure. The work of de Giorgi, Miranda,

and Giusti (see, e.g., [13, Chapter 14]) initiates the study of the following generalized

version of the variational problem (1.7), namely, to find a solution u ∈ H1,1(Ω) of the

variational problem

I(v)+
∮
∂Ω
|v−ϕ|d�n−1 �→min, v ∈ BV(Ω). (1.9)

The main purpose of this paper is to obtain global estimates for the modulus of

solutions, interior gradient estimates, and boundary Hölder continuity estimates of

solutions to the capillarity problem and to the Dirichlet problem merely in terms of

the mean curvature H, together with the boundary contact angle θ in the capillarity

problem and the boundary values ϕ in the Dirichlet problem. Since in the capillarity

problem and in Dirichlet problem the only prescribed data are the mean curvature H,

together with the boundary contact angles θ and the boundary values ϕ, respectively,

estimates which are the most natural and convenient for use take such a form.

We recall that [1] (or later [23, 24]) established the following interior gradient esti-

mates for any solutions u of (1.1) and for any point y ′ ∈Ω:

∣∣Du(y ′)∣∣≤ c1 ·exp
{
c2 ·sup

Ω

(
u−u(y ′))

d

}
, (1.10)

where d = dist(y ′,∂Ω) and where c1 = c1(n,dsupΩ |DH|), c2 = c2(n,dsupΩ |H|,
d2 supΩ |DH|). Thus, once we obtain the global estimates for the modulus of solutions

in terms of the above-mentioned quantities, the interior gradient estimates in terms of

the same set of quantities follow as an immediate consequence of (1.10).

1.1. Global estimates of the desired type will be obtained and formulated in Sec-

tions 3 and 4.3. In Section 3, estimates for |u||Ω in terms of
∫
∂Ωud�n−1, H, and the

n-dimensional Hausdorff measure of Ω are established under various conditions on H,

the geometry of Ω, and the Hausdorff measure of Ω. Estimates which are valid in the

most general case are formulated in Theorem 3.8. In particular, these results provide

us with global estimates of |u| for solutions to the Dirichlet problem.
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In Sections 4.2.1, 4.2.2, and 4.2.3, we estimate
∫
∂Ωud�n−1 in terms of the L1-norm of

|u| and |Du| in case ∂Ω is piecewise Lipschitz continuous without outward cusps. Using

this, in Sections 4.2.4 and 4.5, we formulate and prove Theorem 4.10 which provides

us with estimates of the oscillation of the trace of u on ∂Ω in terms ofH and |cosθ| for

variational solutions to the capillarity problems with |cosθ| being bounded away from

both 0 and 1, and |H(x,t)| being bounded in Ω̄×R. Combining this with Theorem 3.8,

we obtain Theorem 4.11 in Section 4.4, which yields global estimates of the oscillation

of u for solutions to the capillarity problem with |cosθ| bounded away from 0 and 1,

and |H(x,t)| bounded in Ω̄×R.

For the capillarity problem with cosθ not bounded away from 0 and/or 1 on ∂Ω, we

will treat only the special case where H satisfies certain growth condition and obtain

Theorem 4.13 in Section 4.6.

1.2. Simon and Spruck treat in [21] the boundary regularity for the capillarity prob-

lems in the case where Ω is C4, θ in (1.4) is C1,α on ∂Ω for some 0<α< 1, and H(x,t)
is strictly monotone in t:

inf
x∈Ω̄;t∈R

∂H(x,t)
∂t

> 0. (1.11)

In case 0< θ <π , [21] shows the existence of a C2(Ω̄) solution of (1.1) and (1.3). In case

θ is allowed to take the values 0 or π , setting

S+1 ={x ∈ ∂Ω : θ ≡ 0 in some neighborhood of x},
S−1 ={x ∈ ∂Ω : θ ≡π in some neighborhood of x},
S2 ={x ∈ ∂Ω : 0< θ <π}

(1.12)

[21] shows the existence of a function u defined on Ω̄ which is of class C2(Ω∪ S2),
satisfies (1.1) in Ω, and satisfies (1.3) on S2; furthermore, u is Hölder continuous at each

point of S+1 ∪S−1 , has a restriction to ∂Ω which is Lipschitz continuous at each point of

S+1 ∪S−1 , and satisfies (1.3) on S+1 ∪S−1 in the sense that

lim
ε→0+

∫
U∩Ωε

|ν ·Tu±1|dx = 0 for each U ⊂Ω with U∩∂Ω⊂ S∓1 , (1.13)

assuming that Tu is extended to some boundary strip Ωε with width ε so that it is

constant along the normals to ∂Ω. To prove this, a transformation of coordinates near

the boundary is performed analogously to that in [20], which, together with a subse-

quent differentiation of (1.1), (1.3), and an application of (1.11), establishes an estimate

of the tangential derivative of u along ∂Ω, under the condition that |cosθ| ≤ γ < 1

for some positive constant γ; in case θ is constant in a neighborhood of the point

under consideration, this estimate of tangential derivative is independent of γ. This

proves the Lipschitz continuity of the trace of u on ∂Ω, which together with the result

in [19] yield the boundary Hölder continuity of u. The disadvantage of their proof is

that H is assumed to satisfy the strict inequality (1.11) rather than the less restrictive

condition (1.5).
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In contrast, as a consequence of the estimates of local oscillation on ∂Ω, under the

assumptions

Ĥ(x)=H
(
x, inf

∂Ω
u
)
∈ Lp(Ω), ˆ̂H(x)=H

(
x,sup

∂Ω
u
)
∈ Lp(Ω), (1.14)

for some p > n, the Lipschitz continuity of the trace of u on ∂Ω will be established in

Section 4.4 at each point x0 of ∂Ω which satisfies the following assumptions:

(A1) a small neighborhood Ω∩BR(x0) exists such that cosθ is continuous in ∂Ω∩
BR(x0), and, for some constant β̂, 1≥ β̂ > 0, we have

0< |cosθ| ≤ β̂ (1.15)

in ∂Ω∩BR(x0),
(A2) ∂Ω∩BR(x0) is either C2 or the graph of a Lipschitz continuous function with

Lipschitz constant L:

β̂·
√

1+L2 < 1. (1.16)

The Lipschitz norm of the trace of u on ∂Ω in such a small neighborhood of x0 will be

shown to depend only on H, β̂, and the geometry of Ω.

1.3. Furthermore, we will establish in Section 2.1 useful growth lemmas by con-

structing suitable barriers, adapting the work in [14, II.1.4] and [16, Lemma 4.1]. Theo-

rem 2.7 in Section 2.2 provides us with an interior Hölder seminorm estimate with expo-

nent log4(5/2)merely in terms of (supΩu−infΩu)/(d(y ′))log4(5/2), under the assump-

tion that H is nonnegative. We notice that, in contrast to the classical interior gradient

estimate (1.10) which depends exponentially on the quantity (supΩu− infΩu)/d(y ′),
the interior Hölder seminorm estimate is linearly proportional to the quantity (supΩu−
infΩu)/(d(y ′))log4(5/2).

These growth lemmas also yield boundary Hölder continuity with exponent 1/2 in

the case that H is nonnegative and bounded above for solutions to the mean curva-

ture equation with C1/2 Dirichlet data ϕ, without an assumption on the regularity of

the domain. This result, being formulated as Theorem 2.6 in Section 2.1, improves in

some respects a previous work of Korevaar and Simon [15], in which boundary Hölder

continuity with exponent 1/2 is established for solutions with C2 Dirichlet dataϕ, also

with no dependence on the regularity of the domain. However, the Hölder norm cannot

be estimated in our result and is explicitly estimated in [15] in terms of supΩ |u|, the

C2-norm of |ϕ|, and the Lipschitz constant of H.

We notice that Theorems 4.12 and 2.6 yield the Hölder continuity with exponent

1/2 of u up to the boundary locally in Ω∩ BR(x0) under the assumption that H is

nonnegative and bounded above.

The results in Sections 3 and 4 are, however, derived without resort to results in

Section 2.
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2. Growth lemmas, interior gradient estimates, and boundary Hölder continuity.

The formulation and proof of the following growth lemma are adapted from [14, II.1.4]

and [16, Lemma I.4.1].

Growth Lemma 2.1. Suppose that D is a domain in Rn such that ∂D has nonempty

intersection with the ball B4R(x0). Suppose that H(x,t) is nonnegative for all x ∈ D∩
B4R(x0) and for all t ∈ R. Let u be a solution to (1.1) in D which is continuous in D̄∩
B4R(x0). Suppose that

u|∂D∩B4R(x0) = 0. (2.1)

Then, there exists a positive constant ξ1 > 1 such that

sup
D∩B4R(x0)

u(x)≥ ξ1 · sup
D∩BR(x0)

u(x). (2.2)

Indeed,

ξ1 = 4. (2.3)

Growth Lemma 2.2. Suppose, in addition to the assumptions in Growth Lemma 2.1,

that H(x,t) is bounded above in (D∩B4R(x0))×R such that there exists a constant H∗∗
for which

H(x,t)≤H∗∗, ∀x ∈D∩B4R
(
x0
)
, t ∈R. (2.4)

Suppose furthermore that

lim
r→0

[∣∣ infD∩Br (x0) u
∣∣

rα

]
>a for some α<

1
2
, a > 0. (2.5)

Then, there exist positive constants ξ2 > 1 and R0 such that for R ≤ R0, there holds

inf
D∩B4R(x0)

u(x)≤ ξ2 · inf
D∩BR(x0)

u(x). (2.6)

Indeed, for R ≤ R0,

ξ2 = 2. (2.7)

Growth Lemma 2.3. Under the assumptions in Growth Lemma 2.2, let R0 be the

number introduced in Growth Lemma 2.2. For R ≤ R0,

sup
D∩B4R(x0)

u(x)− inf
D∩B4R(x0)

u≥min
(
ξ1,ξ2

)·
[

sup
D∩BR(x0)

u(x)− inf
D∩BR(x0)

u
]
. (2.8)

Proof of Growth Lemmas 2.1, 2.2, and 2.3. Let

M = sup
D∩B4R(x0)

u≥ 0, m= inf
D∩B4R(x0)

u≤ 0. (2.9)
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We set

v1(x)=M ·
(
U1
(∣∣x−x0

∣∣)
U1(4R)

)
, v2(x)=m·

(
U2
(∣∣x−x0

∣∣)
U2(4R)

)
, (2.10)

where

U1(r)= r , U2(r)= 8H∗∗r 1/2, (2.11)

and |x−x0| = dist(x,x0). We observe that U1(r) and U2(r) are two strictly increasing

functions of class C2(0,∞) such that

divTU1
(∣∣x−x0

∣∣)= 0,

divTU2
(∣∣x−x0

∣∣)≤−H∗∗ for
∣∣x−x0

∣∣ sufficiently small.
(2.12)

Indeed, we have

divU2 ≤−2H∗∗

∑
i
∣∣xi−(x0

)
i
∣∣−3/2

[
1+∑i∣∣xi−(x0

)
i
∣∣−1
]3/2 , (2.13)

which yields

divTU2
(∣∣x−x0

∣∣)≤−H∗∗ for
∣∣x−x0

∣∣ sufficiently small. (2.14)

Furthermore, we have

U2(4R) < |m| for R sufficiently small, (2.15)

by virtue of assumption (2.5).

Thus, we have, for R sufficiently small,

divTv1(x)≤H
(
x,u(x)

)
, divTv2(x)≥H

(
x,u(x)

)
in B4R

(
x0
)∩D. (2.16)

Furthermore, we have

v1|∂D∩B4R(x0) ≥ 0=u|∂D∩B4R(x0),

v2|∂D∩B4R(x0) ≤ 0=u|∂D∩B4R(x0),
(2.17)

and, if ∂B4R(x0)∩D is nonempty,

v1|∂B4R(x0)∩D =M ≥u|∂B4R(x0)∩D,

v2|∂B4R(x0)∩D =m≤u|∂B4R(x0)∩D.
(2.18)
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Therefore,

u≤ v1, u≥ v2 in D∩B4R
(
x0
)
. (2.19)

Since M ≥ 0 and m≤ 0, these yield

sup
D∩BR(x0)

u≤ sup
D∩BR(x0)

v1 ≤M ·
(
U1(R)
U1(4R)

)
,

inf
D∩BR(x0)

u≥ inf
D∩BR(x0)

v2 ≥m·
(
U2(R)
U2(4R)

)
.

(2.20)

Hence, we can take

ξ1 = U1(R)
U1(4R)

, ξ2 = U2(R)
U2(4R)

. (2.21)

The choice of U1 and U2 yield (2.3) and (2.7).

We note that in the proof of Growth Lemma 2.1, the comparison function U1(x) can

be taken instead to be |x−x0|α∗ , for any α∗, 0<α∗ ≤ 1/2. A closer examination of the

role (2.1) plays yields the following.

Growth Lemma 2.4. Let D, B4R(x0), and H(x,t) satisfy the assumptions of Growth

Lemma 2.2. Let u be a solution to (1.1) in D which is continuous in D̄ with x0 ∈ Ω̄ such

that

lim
r→0

[
sup∂D∩B4R(x0)

∣∣u(x)−u(x0
)∣∣

√
r

]
= 0; (2.22)

that is, u|∂D∩B4R(x0) is of class C1/2 and

lim
r→0

[
infD∩B4R(x0)

∣∣u(x)−u(x0
)∣∣

rα

]
�= 0 for some α<

1
2
. (2.23)

Then, there hold

sup
D∩B4R(x0)

u−u(x0
)≥ 2

(
sup

D∩BR(x0)
u−u(x0

))
,

inf
D∩B4R(x0)

u−u(x0
)≤ 2

(
inf

D∩BR(x0)
u−u(x0

))
,

(2.24)

and thus

sup
D∩B4R(x0)

u− inf
D∩B4R(x0)

u≥ 2

(
sup

D∩BR(x0)
u− inf

D∩BR(x0)
u
)

(2.25)

for R sufficiently small.

2.1. Growth lemmas and Hölder continuity for solutions to the Dirichlet problem.

We now recall the following result from [11, Lemma 8.23], which is also used in [16,

Theorem 7.1, page 39].
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Lemma 2.5. Let ω be a nondecreasing function on the interval (0,R0] satisfying, for

R ≤ R0, the inequality

ω(τR)≤ γω(R), (2.26)

where 0< γ,τ < 1. Then, for any R ≤ R0,

ω(R)≤ 1
γ
·
(
R
R0

)α
·ω(R0

)
, (2.27)

where

α= log1/τ
1
γ
. (2.28)

From Growth Lemma 2.4 and Lemma 2.5, we obtain the following.

Theorem 2.6. Let u be a solution to (1.1) which is continuous in Ω̄ and let x0 ∈ ∂Ω.

Suppose that H is nonnegative and bounded above by a positive constant. If u|∂Ω∩BR(x0)

is of class C1/2 in the sense of (2.22), then u is Hölder continuous with exponent 1/2 up

to the boundary near x0.

Indeed, suppose that u is not Hölder continuous with exponent 1/2 up to the bound-

ary near x0; that is, (2.23) fails to hold. Then (2.22) and (2.23), Growth Lemma 2.4, and

Lemma 2.5 yield the Hölder continuity of u on Ω∩BR/4(x0), which contradicts (2.23).

This contradiction proves Theorem 2.6.

We notice that since we do not know how small R has to be in Growth Lemma 2.4, we

are not able to obtain estimates of the boundary Hölder norm of u from our argument.

2.2. Growth Lemma 2.1 and interior Hölder seminorm estimates. From Growth

Lemma 2.1 and Lemma 2.5, we obtain the following estimates of the interior Hölder

seminorm.

Theorem 2.7. Let u be a solution to (1.1) and suppose that H is nonnegative. Then,

for

α= log4
5
2
, (2.29)

the estimate

|u||C0,α ≤ (5/2)
(
supΩu− infΩu

)
(
dist
(
x0,∂Ω

))α (2.30)

is valid for x0 ∈Ω.

Indeed, setting R0 = dist(x0,∂Ω) and setting, for R1 ≤ R0/4,

a= sup
BR1 (x0)

u− inf
BR1 (x0)

u, v =u− inf
BR1 (x0)

u− a
2
, (2.31)

we let

E+ = {x ∈ B4R1

(
x0
)

: v(x)≥ 0
}
. (2.32)
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Then, ∂E+∩B4R1(x0) is nonempty. We obtain from Growth Lemma 2.1 that

sup
B4R1 (x0)

u− inf
B4R1 (x0)

u= sup
E+∩B4R1 (x0)

v− inf
B4R1 (x0)

v

≥ 4 sup
E+∩BR1 (x0)

v− inf
BR1 (x0)

v

≥ 5
2

(
sup

BR1 (x̂0)
u− inf

BR1 (x̂0)
u
)
,

(2.33)

which together with Lemma 2.5 yield Theorem 2.7.

3. Estimates for |u||Ω in terms of u|∂Ω and global estimates for solutions to the

Dirichlet problem. We will establish local and global estimates for the modulus of so-

lutions to the variational problems (1.7) and (1.9). The reasoning below will be adapted

from that used in [7, 8, 9] to demonstrate the boundedness of solutions with respect

to the capillarity problem or to the Dirichlet problem.

We assume that Ω is a bounded domain with piecewise Lipschitz boundary. We first

consider the following variational problem, which is slightly more general than the

preceding ones. Namely, let H ∈ C0,1(Rn×R) be given functions such that (1.5) holds;

let j : ∂Ω×R→ R satisfy a Carathéodory condition, that is, it is measurable in x (with

respect to the (n−1)-dimensional Hausdorff measure on ∂Ω) and continuous in the

second variable. Then, we consider the functional

J(v)=
∫
Ω

√
1+|Dv|2dx+

∫
Ω

∫ v
0
H(x,t)dtdx+

∮
∂Ω
j(x,v)d�n−1. (3.1)

We note that by taking

j(x,t)=−β(x)·t, j(x,t)= ∣∣t−ϕ(t)∣∣, (3.2)

the functionals I in (1.7) and (1.9) are included in the general setting.

3.1. The simplest case where H satisfies a certain growth condition. Under the

above assumptions onΩ,H, and j, we will prove that the following holds in the simplest

case where H satisfies a certain growth condition.

Proposition 3.1. Let u be a solution of the variational problem

J(v) �→min in BV(Ω). (3.3)

Suppose

Ht0(x)=H
(·, t0)≥ 0 (3.4)

for some t0 ∈R and all x ∈Ω. Then a constant C1 exists, which is determined completely

by |Ω|, n, and t0 such that the following estimate is valid:

u≤max

(
sup
∂Ω
u,t0

)
+C1. (3.5)
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Suppose, instead, that

Ht0(x)≤ 0 (3.6)

for all x ∈Ω, then

min
(

inf
∂Ω
u,t0
)
−C1 ≤u. (3.7)

Indeed, take

C1 = 2n+1(c∗)−1|Ω|n+1, (3.8)

where c∗ is a constant depending only on n such that the Sobolev inequality takes the

form

‖f‖n∗ ≤ c∗‖Df‖1 for each f ∈W 1,1
0 (Ω), n∗ = n

n−1
. (3.9)

Here and in the following, we denote by | · | either an n-dimensional or (n− 1)-
dimensional Hausdorff measure.

We notice that such t0 exists in the case where H satisfies the relations

lim
t→∞

inf
Ω
H(x,t)=+∞, (3.10)

lim
t→−∞

sup
Ω
H(x,t)=−∞. (3.11)

Concus and Finn [2] and Gerhardt [9, Lemma 4.1] obtain a bound for the solution to

the capillarity problem with H satisfying the previous two relations in the case where

Ω satisfies an interior sphere condition.

In the proof of Proposition 3.1, we will apply a result due to Stampacchia [22, Lemma

4.1], which can be stated as follows.

Lemma 3.2 (Stampacchia). Suppose that ϕ(t) is a nonnegative nondecreasing func-

tion defined on R such that for some positive constants C , k0, and γ, there holds

(h−k)·ϕ(h)≤ C ·[ϕ(k)]γ for each h> k≥ k0. (3.12)

Then

h1/(1−γ) ·ϕ(h)≤ 21/(1−γ)2 ·{C1/(1−γ)+(2k0
)1/(1−γ) ·ϕ(k)}, if γ < 1, (3.13)

ϕ
(
k0+τ

)= 0, if γ > 1, (3.14)

where

τ = 2γ/(γ−1) ·C ·[ϕ(k0
)](γ−1). (3.15)

Proof of Proposition 3.1. Let k be a number greater than max(sup∂Ωu,t0) and

set uk =min(u,k). From the minimizing property of u, we obtain

J(u)≤ J(uk). (3.16)
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Hence, using the notation

A(k)= {x ∈Ω :u(x)≥ k} (3.17)

and assuming for a moment that u is smooth, we obtain

∫
A(k)

√
1+|Du|2+

∫
Ω

∫ u
uk
H(x,t)dtdx ≤ ∣∣A(k)∣∣. (3.18)

We set

w =max(u−k,0)=u−uk. (3.19)

The monotonicity condition (1.5) on H(x,·) yields

∫ u
uk
H(x,t)dt ≥H(x,t0)·(u−uk)=Ht0w. (3.20)

Inserting this into (3.18), we obtain

∫
Ω
|Dw|dx+

∫
Ω
Ht0wdx ≤

∣∣A(k)∣∣. (3.21)

It is easy to see that this is also valid for u ∈ BV(Ω) by using an approximation argu-

ment. From (3.20) and (3.4), we obtain

∫
Ω
|Dw|dx ≤ ∣∣A(k)∣∣. (3.22)

From this and the Sobolev inequality (cf. [13, Theorem 1.28, page 24]), we obtain

‖w‖n∗ ≤ c∗ ·
∣∣A(k)∣∣, (3.23)

where the constants n∗ and c∗ are given in the statement of Proposition 3.1. This and

Hölder inequality yield

∫
A(k)

(u−k)dx = ‖w‖1 ≤ c∗ ·
∣∣A(k)∣∣1+(1/n), (3.24)

and hence

(h−k)·∣∣A(h)∣∣≤ c∗ ·∣∣A(k)∣∣1+(1/n)
for each h> k>max

(
sup
∂Ω
u,t0
)
. (3.25)

From this and Lemma 3.2, we obtain

u≤max
(

sup
∂Ω
u,t0
)
+2n+1 ·c∗|Ω|1/n. (3.26)

By setting uk = max(u,−k), −k ≤ min(inf∂Ωu,t0), k ≥ 0, in (3.3), a lower bound of

u can be obtained in case (3.6) is valid, which completes our proof of Proposition 3.1.
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3.2. The general cases. We are however interested in the cases where (3.4) or (3.6)

fails to hold.

3.2.1. Estimates for small domains. Assume for a moment that for some t0 ∈R,

Ht0 =H
(
x,t0
)∈ Lp(Ω) for some p >n, (3.27)

|Ω|(p−n)/(np) ≤ λ
(
c∗
)−1∥∥Ht0∥∥Lp(Ω) (3.28)

for some constant 0< λ< 1. We will prove the following.

Proposition 3.3. Let u be a solution of the variational problem (3.3). Suppose (3.28)

holds and (3.27) holds for some t0 ∈R. Then, the following inequalities are valid:

sup
Ω
u≤max

(
sup
∂Ω
u,t0
)
+2n+1(1−λ)−1c∗ ·|Ω|1/n,

inf
Ω
u≥min

(
inf
∂Ω
u,t0
)
−2n+1(1−λ)−1c∗ ·|Ω|1/n.

(3.29)

Choosing k≥ sup∂Ωu and setting uk =min(u,k), (3.7) is still valid for each k≥ t0 no

matter (3.4) or (3.6) holds or not and, we can still obtain (3.21) from (3.16), (3.18), and

(3.20). To treat the second integral in (3.21), we observe that under assumption (3.27),

we obtain from Hölder inequality that

∣∣∣∣
∫
Ω
Ht0wdx

∣∣∣∣≤ ‖w‖n∗
{∫

A(k)

∣∣Ht0∣∣ndx
}1/n

≤ ‖w‖n∗ ·
∥∥Ht0∥∥p ·∣∣A(k)∣∣(p−n)/(np).

(3.30)

Inserting this into (3.21) and treating the first integral in (3.21) by means of the Sobolev

inequality and the Hölder inequality as above, we obtain

[(
c∗
)−1−∥∥Ht0∥∥p ·∣∣A(k)∣∣(p−n)/(np)

]
·‖w‖n∗ ≤

∣∣A(k)∣∣. (3.31)

Assume that (3.28) holds. Then, by (3.31), we have

(1−λ)·(c∗)−1 ·‖w‖n∗ ≤
∣∣A(k)∣∣. (3.32)

Inserting (3.23) into (3.32), we obtain

(h−k)·∣∣A(h)∣∣≤ (1−λ)−1 ·c∗ ·
∣∣A(k)∣∣1+(1/n)

(3.33)

for each h> k>max(sup∂Ωu,t0). Proposition 3.3 follows from this and Lemma 3.2.

3.2.2. Estimates for general domains. In general, (3.28) does not hold and we as-

sume that (3.27) holds for some t0 ∈R and set

Cλ =
[

1
λ
c∗
∥∥Ht0∥∥Lp(Ω)

]pn/(p−n)∫
Ω
|u|dx. (3.34)

The following will be established.
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Proposition 3.4. Let u be a solution of the variational problem (3.3). Suppose (3.27)

holds. Then, for the constant Cλ given in (3.34), there hold

sup
Ω
u≤max

(
sup
∂Ω
u,t0,Cλ

)
+2n+1(1−λ)−1c∗|Ω|1/n,

inf
Ω
u≥min

(
inf
∂Ω
u,t0,−Cλ

)
−2n+1(1−λ)−1c∗|Ω|1/n.

(3.35)

Indeed, we observe that

∣∣A(k)∣∣≤ 1
k

∫
Ω
|u|dx. (3.36)

Hence, if (3.27) holds, for Cλ given in (3.34), we obtain (3.32) from (3.31) and (3.30) for

each h> k>max(sup∂Ωu,t0,Cλ). From this and Lemma 3.2, we prove Proposition 3.4.

To estimate Cλ, we proceed to estimate ‖u‖1 in terms of
∮
∂Ω |u|d�n−1. For this, we

set H0 =H(·,0) and first assume that

∣∣∣∣
∫
E
H0dx

∣∣∣∣≤ (1−ε0
)
M(∂E) (3.37)

for some positive number ε0 independent of E, where E is any measurable subset of Ω
andM(∂E) denotes the mass of ∂E in the sense of [4, Chapter 4.1.7]. (We may note that

in the case that H does not depend on t, Giaquinta [10] demonstrated the existence

of solutions for each ϕ ∈ L1(Ω) in BV(Ω) to problem (1.9) provided that H satisfies

condition (3.30).) We assume, in addition, that

H(x,0)∈ L1(Ω) (3.38)

holds. The proof of [8, Theorem 5] yields the following.

Proposition 3.5. Let u be a solution of the variational problem (2.2). Let H satisfy

conditions (1.5), (3.37), and (3.38) and let u|∂Ω ∈ L1(∂Ω). Then

∫
Ω
|Du|dx+

∫
Ω
|u|dx (3.39)

is bounded by a constant depending only on ε0, Ω,
∮
∂Ω |u|d�n−1, and

∫
ΩH(x,0)dx.

The proof of Proposition 3.5 given in [10] is based on the observation that u is a

solution of the problem

J∗(v) �→min in BV(Ω), (3.40)

where

J∗(v)=
∫
Ω

√
1+|Dv|2dx+

∫
Ω

∫ v
0
H(x,t)dtdx+

∫
∂Ω
|v−u|d�n−1. (3.41)

Let B be any ball containing Ω̄. Extend u|∂Ω to some function ϕB in H1,1(B \Ω̄) having

boundary values zero on ∂B (cf. [6]). Then, extend H to H̃ which vanishes outside Ω, let



926 FEI-TSEN LIANG

K̃ = {v ∈ BV(Ω),v|B\Ω̄ =ϕB}, and set

J̃(v)=
∫
B

√
1+|Dv|2dx+

∫
B

∫ v
0
H̃(x,t)dtdx. (3.42)

To solve problem (3.40) is equivalent to finding a solution u of the problem

J̃(v) �→min in K̃. (3.43)

By (1.5),

∫ u
0
H̃(x,t)dt ≥ H̃0 ·u for H̃0 = H̃(·,0), (3.44)

and by (3.37), it is shown in [10, page 77] that

∫
Ω
H̃0 ·udx ≥−

(
1−ε0

)·
∫
Ω
|Du|dx−(1−ε0

)·
∫
∂Ω
|u|d�n−1. (3.45)

Inserting these into (3.42) and using the minimizing property of u for J̃, we obtain

J∗(0)+
∫
B\Ω̄

√
1+∣∣DϕB

∣∣2dx

≥ J̃(u)≥ ε0

∫
Ω
|Du|dx+

∫
B\Ω̄

√
1+|Du|2dx−(1−ε0

)∫
∂Ω
|u|d�n−1.

(3.46)

This yields a bound of the L1-norm of |Du|, which together with Sobolev inequality

yield a uniform bound of the BV -norm of u. This reasoning motivates the work below

in Section 3.2.3 for general domains where (3.37) and hence (3.45) do not necessarily

hold.

3.2.3. General cases without (3.27) or (3.37). In general, (3.27) does not hold and it

is not straightforward to estimate the number ε0 in (3.37). To treat general cases, we

recall the following isoperimetric inequality whose proof is presented in [13, Corollary

1.29].

Lemma 3.6 (isoperimetric inequality). Let E and A be bounded Caccioppoli sets in Rn.

Assume A to be of positive n-dimensional Hausdorff measure and to be sufficiently

smooth such that Poincaré inequality

(∫
A

∣∣f −fA∣∣n/(n−1)dx
)(n−1)/n

≤ cA
∫
A
|Df | (3.47)

holds for every v ∈ W 1,1(A), where cA is a constant depending only on n and A, and

define fA = (1/|A|)
∫
Af dx. Then

min
{|E∩A|,∣∣(Rn \E)∩A∣∣}(n−1)/n ≤ cA

∫
A

∣∣DχE∣∣, (3.48)

where χE is the characteristic function of the set E.
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In [25, Chapter 4], Poincaré inequality of the above type is shown to hold in a wide

class of domains, called extension domain in the sense that there exists for such a

domain A a bounded linear operator L :Wk,p(A)→Wk,p(Rn) such that L(f)|A = f for

all f ∈Wk,p(Ω). In particular, every Lipschitz domain is an extension domain.

We notice that the reasoning leading to [11, (7.45)] enables us to take

cA =
(
ωn

|A|
)1−1/n(

diamÂ
)n, (3.49)

where Â is the convex hull of A and ωn is the Lebesgue measure of the n-dimensional

unit ball.

Select a Caccioppoli set A such that ∂Ω∩A is of positive (n−1)-dimensional Haus-

dorff measure and such that

|Ω∩A| ≤ ∣∣(Rn \Ω)∩A∣∣. (3.50)

Given δ∗, 0< δ∗ < 1, suitably choose A so that

cA
(

sup
Ω

∣∣H0(x)
∣∣)|Ω∩A|1/n ≤ δ∗ (3.51)

under the additional assumption

(
sup
Ω

∣∣H0(x)
∣∣)<∞. (3.52)

Inequalities (3.50) and (3.51) yield

∫
Ω∩A

H0udx ≥−δ∗
∫
Ω∩A

|Du|dx−δ∗
∫
∂Ω∩A

|u|d�n−1. (3.53)

Indeed, we obtain from (3.50) and Lemma 3.6 that

|Ω∩A| ≤ cA|∂Ω∩A| (3.54)

and, for every Caccioppoli set E ⊂Ω,

|E∩A| ≤ cA|∂E∩A|; (3.55)

hence,

∣∣∣∣
∫
Ω∩A

H0dx
∣∣∣∣≤
(

sup
Ω

∣∣H0(x)
∣∣)|Ω∩A|

≤ cA
(

sup
Ω

∣∣H0(x)
∣∣)|Ω∩A|1/n|∂Ω∩A|; (3.56)

and, for every Caccioppoli set E ⊂Ω,

∣∣∣∣
∫
E∩A

H0dx
∣∣∣∣≤
(

sup
Ω

∣∣H0(x)
∣∣)|E∩A| ≤ cA

(
sup
Ω

∣∣H0(x)
∣∣)|E|1/n|∂E∩A|. (3.57)
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From the reasoning in [10, page 77], we have

∫
Ω∩A

H0udx =
∫∞

0
dt
∫
Σt∩A

H0dx, (3.58)

where

Σt =
{
x ∈Ω :u(x) > t

}
; (3.59)

hence, by (3.56), (3.57), and (3.58),

∣∣∣∣
∫
Ω∩A

H0udx
∣∣∣∣≤ cA

(
sup
Ω

∣∣H0(x)
∣∣)·|Ω∩A|1/n ·[

∫
Ω∩A

|Du|dx+
∫
∂Ω∩A

|u|dx
]
,

(3.60)

which, together with (3.51), yields (3.53).

We intend to estimate
∫
Ω∩A |Du|dx by using (3.53) and adapting the reasoning lead-

ing to Proposition 3.5. Setting d(x)= dist(x,∂Ω) for x ∈Ω and letting

∂∗Ωt =
{
x : x ∈Ω, dist(x,∂Ω)= t}, for t > 0, (3.61)

we let the boundary of Ω∩A be made up of three parts:

∂(Ω∩A)= (∂Ω∩A)∪(∂∗A)∪((∂A∩Ω)\∂∗A) (3.62)

such that ∂Ω∩A is either Lipschitz continuous or of zero n-dimensional Hausdorff

measure, ∂∗A is an (n−1)-dimensional Lipschitz continuous surface included in ∂∗Ωδ0

and several connected (n−1)-dimensional surfaces on which if ∂Ω∩A is C2, then we

have

Dd·νΩ∩A|(∂A∩Ω)\∂∗A = 0, (3.63)

where we let ν(Ω∩A) be the unit outward normal to ∂(A∩Ω) and if ∂Ω∩A can be

represented as the graph of a Lipschitz continuous function f , then we have that

(B) (∂A∩Ω)\∂∗A is orthogonal to the coordinate plane of f .

We require |∂Ω∩A|, |∂A∩Ω|, and δ0 to be so small and in such a suitable proportion

to each other that (3.51) is satisfied for given δ∗. For example, we may take

diam∂Ω∩A≤ (δ0
)n/(n−1), diam∂∗A≤ (δ0

)n/(n−1),

|∂Ω∩A| ≥ 1
2

(
δ0
)n, or

∣∣∂∗A∣∣≥ 1
2

(
δ0
)n. (3.64)

This assures us of the validity of (3.53).

We have the estimate∫
Ω∩A

|Du|dx ≤ 1
1−δ∗ |Ω∩A|+

1
1−δ∗

∫
Ω∩A

H(x,0)dx

+ 1+δ∗
1−δ∗

∫
∂Ω∩A

|u|d�n−1− 1
1−δ∗

∫
∂A∩Ω

βAud�n−1

(3.65)
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with

βΩ∩A = Tu·ν(Ω∩A) = Du√
1+|Du|2 ·νΩ∩A (3.66)

and with νΩ∩A being the unit outward normal of ∂A∩Ω. Indeed, motivated by the rea-

soning leading to Proposition 3.5, we observe that u|Ω∩A is a solution of the variational

problem

J∗A(v) �→min in BV(Ω∩A), (3.67)

where we set

J∗A(v)=
∫
Ω∩A

√
1+|Dv|2dx+

∫
Ω∩A

∫ v
0
H(x,t)dtdx

+
∫
∂Ω∩A

|v−u|d�n−1−
∫
∂A∩Ω

βAvd�n−1.
(3.68)

We extend u|∂(Ω∩A) to some function ϕA,B in H1,1(B \(Ω̄∩Ā)), for some smooth set

B ⊃ (Ω∩A) with ∂B ⊃ ∂A∩Ω such that ϕA,B has boundary value zero on ∂B \(∂A∩Ω).
Then we set

H̃A(x,t)=

H(x,t), if x ∈Ω∩A,

0, if x ∈Rn \(Ω∩A),
K̃A =

{
v ∈ BV(B) : v|B\(Ω̄∩Ā) =ϕA,B

}
.

(3.69)

Then we let

J̃A(v)=
∫
B

√
1+|Dv|2dx+

∫
B

∫ v
0
H̃A(x,t)dtdx−

∫
∂A∩Ω

βAvd�n−1,

JA(v)=
∫
Ω∩A

√
1+|Dv|2dx+

∫
Ω∩A

∫ v
0
H(x,t)dtdx−

∫
∂A∩Ω

βAvd�n−1.
(3.70)

Thus, we have

J̃A(v)= JA(v)+
∫
B\(Ω∩A)

√
1+∣∣DϕA,B

∣∣2dx, (3.71)

and to solve problem (3.67) is equivalent to finding a solution of the problem

J̃A(v) �→min in K̃. (3.72)

We obtain from (3.53) that

J̃A(u)≥
∫
B\(Ω̄∩Ā)

√
1+∣∣DϕA,B

∣∣2dx+(1−δ∗)
∫
Ω∩A

|Du|dx

−δ∗
∫
∂Ω∩A

|u|d�n−1−
∫
∂A∩Ω

βΩ∩Aud�n−1.
(3.73)

Now that J̃A(u) is estimated from above by

JA(0)+
∫
B\(Ω̄∩Ā)

√
1+∣∣DϕA,B

∣∣2dx, (3.74)
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we obtain that

(
1−δ∗

)∫
Ω∩A

|Du|dx ≤ JA(0)+δ∗
∫
∂Ω∩A

|u|d�n−1−
∫
∂A∩Ω

βΩ∩Aud�n−1

≤ |Ω∩A|+
∫
Ω∩A

H(x,0)dx

+(1+δ∗)
∫
∂Ω∩A

|u|d�n−1−
∫
∂A∩Ω

βΩ∩Aud�n−1,

(3.75)

which is (3.65).

To treat the last boundary integral in (3.65) and gain estimates of
∫
Ω |Du|dx, we

consider a tubular neighborhood of the boundary ∂Ω:

Ω0 = {x : x ∈Ω, dist(x,∂Ω)≤ f0(x)
}

(3.76)

with f0(x) being nonnegative, piecewise Lipschitz continuous and f0(x) being so small

that Ω0 can be covered by sets A0
α∩Ω, α ∈ I0, with I0 being a set of indices such that

sets with distinct indices can intersect at most on their boundaries and each set A0
α

satisfies condition (3.51), and is of the type described in the previous paragraph for

A=A0
α.

Then, for each α∈ I0, (3.65) is valid for A=A0
α. By our choice of the covering {A0

α∩
Ω}α∈I0 , we decompose the set

⋃
α∈I0

(
∂A0

α∩Ω
)\∂∗A0

α (3.77)

in such a way that each element in this decomposition belongs to the boundary of

exactly two elements of this covering. Since the unit outward normal points in opposite

directions along (∂A0
α∩Ω)\∂∗A0

α for each pair of two elements of the covering meeting

there, the integral along (∂A0
α∩Ω)\∂∗A0

α vanishes by summing over α ∈ I0, and we

obtain ∫
Ω0
|Du|dx ≤ 1

1−δ∗
∣∣Ωδ0

∣∣+ 1
1−δ∗

∫
Ω0
H(x,0)dx

+ 1+δ∗
1−δ∗

∫
∂Ω
|u|d�n−1− 1

1−δ∗
∫
∂∗Ω0

βΩδ0
·ud�n−1,

(3.78)

where we set ∂∗Ω0 = ∂Ω0∩Ω.

Setting

∂∗Ω0
t =
{
x : x ∈Ω\Ω̄0, dist

(
x,∂∗Ω0)= t}, for t > 0, (3.79)

we now consider a tubular neighborhood of ∂Ω0:

Ω1 = {x : x ∈Ω\Ω̄0, dist
(
x,∂Ω0)≤ f1(x)

}
(3.80)

with f1 being nonnegative, piecewise Lipschitz continuous and f1(x) being so small

that Ω1 can be decomposed into sets Ω1∩A1
α, α∈ Ī1, with I1 being a set of indices. For

each α ∈ I2, the boundary of Ω∩A1
α consists of ∂∗Ω0 ∩A1

α, an (n− 1)-dimensional
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surface ∂∗A1
α included in ∂∗Ω0

δ1
, and several connected (n− 1)-connected (n− 1)-

dimensional surfaces such that, if ∂∗A is C2, setting d1 = dist(x,∂Ω1), then we have

Dd1 ·ν|(∂A1
α∩Ω1)\∂∗A1

α
= 0, (3.81)

and if ∂Ω∩A can be represented as the graph of a Lipschitz continuous function f ,

then (∂A∩Ω) \ ∂∗A1
α is orthogonal to the coordinate plane of f . Furthermore, δ1 is

sufficiently small that there holds, analogously to (3.51),

cA1
α

∣∣Ω1∩A1
α
∣∣≤ δ∗. (3.82)

We further require that each two distinct elements in this covering can intersect at most

at their boundaries and ∂∗Ω0 is decomposed in such a way that each element in this

decomposition belongs to the boundary of exactly one element of this covering. Then,

we obtain analogously

∫
Ω1
|Du|dx ≤ 1

1−δ∗
∣∣Ω1
∣∣+ 1

1−δ∗
∫
Ω1
H(x,0)dx+ δ∗

1−δ∗
∫
∂∗Ω0

|u|d�n−1

− 1
1−δ∗

∫
∂∗Ω0

βΩδ0
·ud�n−1− 1

1−δ∗
∫
∂∗Ω1

βΩ1
δ1
·ud�n−1,

(3.83)

where we set ∂∗Ω1 = ∂Ω1 \∂∗Ω0.

Adding (3.78) and (3.83), the integral of βΩδ∗u along ∂∗Ω0 vanishes and we obtain

∫
Ω0∪Ω1

|Du|dx ≤ 1
1−δ∗

∣∣Ω0∪Ω1
∣∣+ 1

1−δ∗
∫
Ω0∪Ω1

H(x,0)dx

+ 1+δ∗
1−δ∗

∫
∂Ω
|u|d�n−1+ δ∗

1−δ∗
∫
∂∗Ω0

|u|d�n−1

− 1
1−δ∗

∫
∂∗Ω1

βΩ1
δ1
·ud�n−1.

(3.84)

We then set iteratively Ωm+1, N to be a tubular neighborhood of ∂∗Ω:

Ωm+1 = {x : x ∈Ω\Ω̄m, dist
(
x,∂∗Ωm

)≤ fm+1(x)
}
, (3.85)

where ∂∗Ωm = (∂Ωm)\∂∗Ωm, fm+1 is nonnegative, piecewise Lipschiz continuous, and

with fm+1(x) being sufficiently small such that Ωm+1 can be decomposed into Am+1
α ∩

Ωm+1, α ∈ Im, in a manner analogous to that for Ω0 and Ω1 described above. After a

finite iteration, the set Ωm∗+1 is empty for some m∗ ∈ N, and we finally arrive at the

inequality

∫
Ω
|Du|dx ≤ |Ω|+ 1

1−δ∗
∫
Ω
H(x,0)dx+ 1+δ∗

1−δ∗
∫
∂Ω
|u|d�n−1

+ δ∗
1−δ∗

m∗∑
m=0

∫
∂∗Ωm

|u|d�n−1.
(3.86)

To treat the last integral along ∂Ωi, 0≤ i≤M∗, we appeal to the results in Sections 4.2.1

and 4.2.2 to conclude that the last integral in (3.86) approaches 0 as δ∗ → 0. Indeed, by
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(4.25), (4.27), (4.35), and (4.38), and our choice of Ωm, we have

δ∗
∫
∂∗Ωm

|u|d�n−1

≤ δ∗
√

1+L2

∫
Ωm+1\Ωm

|Du|dx+δ∗
∑
α∈Im

Ĉ∂∗Amα ,δm ·
∫
Amα ∩Ω

|u|dx

≤ δ∗
∫
Ωm+1\Ωm

|Du|dx+δ∗
∑
α∈Im

Ĉ∂∗Amα ,δm ·
∣∣Amα ∩Ωm∣∣1/n ·

∫
Amα ∩Ω

|u|1+1/ndx,

(3.87)

where L=maxα∈Im Lα, Lα is the Lipschitz constant of Ω∩∂Amα , Ĉ∂∗Amα ,δm = 2(δm)−1 if

∂∗Amα can be represented as the graph of a Lipschitz continuous function, and Ĉ∂∗Amα =
2�∂∗Amα +2(δm)−1 if ∂∗Amα is C2. By (3.51), we have

δ∗ · Ĉ∂∗Amα ,δm ·
∣∣Amα ∩Ωm∣∣1/n

≤ 2
(
δ∗
)2[

K∂∗Amα +max
(∣∣∂∗Amα ∣∣,∣∣∂Amα ∩∂Ωm−1

∣∣)]·(cA)−1 ·
(

sup
Ω

∣∣H0(x)
∣∣)−1

,

(3.88)

where

K∂∗Amα =




�∂∗Amα , if ∂∗Amα is C2,

0,
if ∂∗Amα can be represented as the graph
of a Lipschitz continuous function.

(3.89)

By the Sobolev embedding theorem (cf. [11, (7.30)]), we know thatu∈ L1+1/n(Ω). Hence,

the last integral in (3.87) approaches zero as δ∗ → 0.

We obtain the following by setting δ∗ → 0 in (3.86) and an application of the modified

Sobolev inequality, Lemma 4.8, and Hölder inequality.

Theorem 3.7. Let u be a solution to the variational problem (3.3) and suppose H
satisfies (3.27), (3.38), and (3.52) for some t0 ∈ R. Suppose Ω is piecewise Lipschitz con-

tinuous without outward cusps such that the decompositionΩ =⋃m∗
m=0Ω

m
δm ofΩ indicated

above can be constructed. Then the L1-norm of |Du| and u can be estimated in terms

of |Ω|, ∫ΩH(x,0)dx,
∫
∂Ω |u|d�n−1, namely,

∫
Ω
|Du|dx ≤ |Ω|+

∫
Ω
H(x,0)dx+

∫
∂Ω
|u|d�n−1,∫

Ω
|u|dx ≤ n

ωn
·|Ω|1+1/n+ n

ωn
·|Ω|1/n ·

∫
Ω
H(x,0)dx

+2
n
ωn

·|Ω|1/n ·
∫
∂Ω
|u|d�n−1.

(3.90)

From Proposition 3.4 and Theorem 3.7, we obtain the following theorem.
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Theorem 3.8. Under the assumption made on u,H, andΩ, estimates (3.35) are valid

for each λ, 0< λ< 1, with the constant Cλ,

Cλ ≤
[

1
λ
·c∗ ·

∥∥Ht0∥∥Lp(Ω)
](p−n)/(np)

·
[
n
ωn

|Ω|1+1/n+ n
ωn

|Ω|1/n
∫
Ω
H(x,0)dx+2

n
ωn

∣∣Ωn∣∣1/n
∫
∂Ω
|u|d�n−1

]
.

(3.91)

4. Estimates for capillary surfaces

4.1. Global estimates for the oscillation of |u| in terms of H and the contraction

of j. Estimates for capillary surfaces with |cosθ| bounded away from 1. In order to

gain estimates for sup∂Ωu, inf∂Ωu, and sup∂Ωu− inf∂Ωu, with u being a minimizing

function of the functional J(u), we impose some additional restrictions on the domain

Ω and the functions H(x,t) and j(x,t). Namely, the function j(x,·) is assumed to be

a contraction for �n−1, almost every x in Ω, that is, for some constant a,

0≤ a≤ 1, (4.1)

which is independent of x, we have

∣∣j(x,r)−j(x,s)∣∣≤ (1−a)·|r −s|. (4.2)

Moreover, we assume that

j(·,0)∈ L1(∂Ω). (4.3)

We assume the existence of two positive constants µ and CΩ depending only on Ω such

that in the case where a> 0, there hold

(1−a)·µ ≤ 1, (4.4)∮
∂Ω
vd�n−1 ≤ µ ·

∫
Ω
|Dv|dx+CΩ ·

∫
Ω
|v|dx (4.5)

for all v ∈ BV(Ω).
We note that [12, Lemma 1.1] establishes (4.5) for µ = 1 in the special case where

Ω is a bounded domain with C2 boundary, and we formulate a generalized version of

this result in Section 4.2.1 as Lemma 4.2. An inequality of type (4.5) appears first in

[3] with µ = √1+L2 for any Lipschitz domain with Lipschitz constant L. (See also [17,

page 203].) In [5, pages 141–143], this result is extended to include domains in which

one or more corners with inward opening angle appear. As pointed out in [5, page

197], this extended result permits inward cusps and even boundary segments that may

physically coincide but are adjacent to different parts of Ω. However, it is pointed out

in [5, page 143] that an outward cusp or a vertex of an outward corner is not permitted.

A modified version of this result will be presented in Section 4.2.3; in particular, the

results in Lemma 4.7 permit domains with vertices of outward corners.

Under the assumption that (4.5) holds, a modified Sobolev inequality

‖f‖n∗ ≤ c∗∗ ·‖Df‖1+ ĉ∗∗ ·‖f‖1 (4.6)
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is valid for all f ∈ W 1,1(Ω); here c∗∗ and ĉ∗∗ depend only on n and Ω. This can be

reduced to Friedrich’s inequality. We will show this in Section 4.2.3.

Global estimates for the oscillation of u can be obtained in the special situation

indicated below. Results which are valid in the general situations will be indicated in

Section 4.3.

Proposition 4.1. Under the above assumptions on Ω, H, and j and under the as-

sumption that (3.27) holds for some t0 ∈R, let a> 0 andu be a solution of the variational

problem (3.3). Furthermore, set

a∗ =
[
1−(1−a)µ]·(c∗∗)−1−∥∥Ht0∥∥Lp(Ω) ·|Ω|(p−n)/(np)
−
[
(1−a)·CΩ−

[
1−(1−a)·µ]· ĉ∗∗ ·(c∗∗)−1

]
·|Ω|1/n

(4.7)

with

c∗∗ = n(µ+1)
ωn

, ĉ∗∗ = nCΩωn
. (4.8)

Suppose that

a∗ > 0. (4.9)

Then there exists a constantC3 determined completely bya∗,n, t0, |Ω|, and the geometry

of Ω such that

sup
Ω
u− inf

Ω
u≤ C3. (4.10)

Proof of Proposition 4.1. Let k be a number greater than max(infΩu,t0). We set

uk =min(u,k). Thenuk belongs to BV(Ω) and the minimizing property of the function

u yields

J(u)≤ J(uk). (4.11)

Adopting again the notation A(k) = {x ∈ Ω : u(x) ≥ k} and for a moment assuming

that u is smooth, we obtain∫
A(k)

√
1+|Du|2dx+

∫
Ω

∫ u
uk
H(x,t)dtdx

+
∮
∂Ω

[
j(x,u)−j(x,uk)]d�n−1 ≤

∣∣A(k)∣∣.
(4.12)

Condition (4.2) yields∮
∂Ω

[
j(x,u)−j(x,uk)]d�n−1 ≤ (1−a)·

∮
∂Ω

∣∣u−uk∣∣d�n−1, (4.13)

which together with (4.5) yield∮
∂Ω

[
j(x,u)−j(x,uk)]d�n−1

≤ (1−a)·µ ·
∫
A(k)

|Dw|dx+(1−a)·CΩ ·
∫
A(k)

|w|dx,
(4.14)
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where we have set

w =max(u−k,0). (4.15)

Inserting (3.38) and (4.14) into (4.12), we obtain

[
1−(1−a)·µ]·

∫
Ω
|Dw|dx+

∫
Ω
Ht0 ·wdx−(1−a)·CΩ ·

∫
A(k)

wdx ≤ ∣∣A(k)∣∣.
(4.16)

This is also valid for u∈ BV(Ω) using an approximation argument.

By the modified Sobolev inequality (4.6) and Hölder’s inequality, we obtain

[(
1−(1−a)µ)(c∗∗)−1−∥∥Ht0∥∥Lp(Ω) ·∣∣A(k)∣∣(p−n)/np
−
[
(1−a)·CΩ−

(
1−(1−a)µ)· ĉ∗∗·(c∗∗)−1

]
·∣∣A(k)∣∣1/n

]
·‖w‖n∗ ≤

∣∣A(k)∣∣. (4.17)

Thus, by (4.7) and (4.9), we have

a∗ ·‖w‖n∗ ≤
∣∣A(k)∣∣, (4.18)

which together with Hölder’s inequality imply

(h−k)·∣∣A(h)∣∣≤ (a∗)−1 ·∣∣A(k)∣∣1+1/n
(4.19)

for each h> k>max(infΩu,t0). This and Lemma 3.6 yield

sup
Ω
u≤max

(
inf
Ω
u,t0
)
+2n+1 ·(a∗)−1 ·|Ω|1/n. (4.20)

This completes the proof of Proposition 4.1.

4.2. Local estimates for the oscillation of u near the boundary. Estimates for cap-

illary surfaces with |cosθ| bounded away from 1. We are interested in the situations

where in some local sense a modified version of (4.5) holds for some proper subset Γ of

∂Ω; however, (4.9) does not necessarily hold. We will follow the approach taken in [8,

pages 176–179]. We consider the capillarity problem (1.8), rather than the variational

problem (3.3). Under the assumption that

0< |cosθ| = |β|< 1−a with 0<a< 1, (4.21)

for some constant a, we will arrive at local estimates for the oscillation ofu indicated in

Theorem 4.10, which will give us estimates for the Lipschitz constant near the boundary

as indicated in Theorem 4.12. In case (4.4) holds locally on ∂Ω in the sense indicated

in Section 4.3 below, we arrive at estimates of the oscillation of u along the boundary,

which, together with Theorem 3.8, gives us global estimates of the oscillation of u as

indicated in Theorem 4.11.

We first pay some special attention to the case where (4.4) holds locally on ∂Ω. For

this, we present some preliminary results in Sections 4.2.1, 4.2.2, and 4.2.3. These re-

sults were used to derive (3.87).
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4.2.1. Boundary integrals along piecewise C2 boundary. The proof of the following

lemma can be modified from that of [12, Lemma 1.1] in an obvious way.

Lemma 4.2. Let E be a Caccioppoli set in Rn, let Γ be a subset of ∂E which is a C2

manifold, and let d(x)= dist(x,∂E) for x ∈ E. Let

EΓ ,t =
{
x ∈ E : dist(x,Γ)≤ t} for t > 0. (4.22)

Let εΓ be so small that the functiond(x) is of classC2 in EΓ ,εΓ , and consider, for 0< ε′ < εΓ ,
a domain E∗Γ ,εΓ :

EΓ ,ε′ ⊆ E∗Γ ,εΓ ⊆ EΓ ,εΓ (4.23)

such that on a portion of its boundary, ∂∗E∗Γ ,εΓ ⊂ EΓ ,εΓ \EΓ ,ε′ , and on the remaining portion

of its boundary in Ω,

Dd·ν|(∂E∗Γ ,εΓ ∩Ω)\∂∗E∗Γ ,εΓ = 0 (4.24)

with ν being the unit outward normal to ∂E∗Γ ,εΓ . Then, there exists a constant CΓ ,ε′ de-

pending only on Γ and ε′ such that the inequality
∫
Γ
wd�n−1 ≤

∫
E∗Γ ,ε′

|Dw|dx+CΓ ,ε′
∫
E∗Γ ,ε′

|w|dx (4.25)

holds for all w ∈ BV(EΓ ,εΓ ). In fact, let ηε′ be a C∞ function with

0≤ ηε′ ≤ 1, ηε′ = 1 on Γ , ηε′ = 0 in E \EΓ ,ε′ , (4.26)

then inequality (4.25) holds with

CΓ ,ε′ = sup
E∗Γ ,εΓ

∣∣div
(
ηε′Dd

)∣∣. (4.27)

If, in addition,

w|∂∗E∗Γ ,εΓ = 0, (4.28)

then inequality (4.25) holds with

CΓ ,ε′ = sup
E∗Γ ,εΓ

∣∣div(Dd)
∣∣ (4.29)

for all w ∈ BV(EΓ ,εΓ ).
In order to apply Lemma 4.2, we have to estimate the value of CΓ ,ε′ in (4.27) and (4.29).

For this, we formulate the following result which is well known and can be found, for

example, in [11, pages 420–422].

Lemma 4.3. Let Γ ⊆ ∂E be of class C2 whose principal curvatures are bounded in

absolute value by �Γ . Then d(x)= dist(x,Γ) is of class C2 in EΓ ,εΓ , for εΓ ≤ 1/�Γ , where

EΓ ,εΓ is given in (4.22).
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Furthermore, for points x̄ in EΓ ,εΓ , εΓ ≤ 1/�∂E , define ȳ = y(x̄) to be the (unique)

nearest point of Γ to x̄. Consider the special coordinate frame in which the xn-axis is

oriented along the inward normal to Γ at ȳ and the coordinates x1, . . . ,xn−1 lie along the

principal directions of Γ at the point ȳ . In these special coordinates, there hold at x̄,

Dd= (0, . . . ,0,1), (4.30)

D2d= diagonal
[ −k1

1−k1d
,. . . ,

−kn−1

1−kn−1d
,0
]
, (4.31)

where k1, . . . ,kn−1 are the principal curvatures of Γ at ȳ .

Inserting (4.30) and (4.31) into (4.27) and (4.29), we obtain the following.

Lemma 4.4. Let Γ ⊆ ∂E be of class C2 whose principal curvatures are bounded in

absolute value by �Γ . Then, for εΓ ≤ 1/�Γ and for each δ, 0< δ≤ 1, there holds in (4.27)

that

CΓ ,ε′ ≤
∣∣Dηε′∣∣+2(n−1)�Γ ≤

(
1+δ
ε′

)
+2(n−1)�Γ , (4.32)

and in (4.29) that

CΓ ,ε′ ≤ 2(n−1)�Γ . (4.33)

4.2.2. Domains with piecewise Lipschitz continuous boundary. In this section, we

formulate some results in connection with (4.4) for piecewise Lipschitz continuous

domains. We first consider a portion of ∂Ω which can be represented as the graph of a

Lipschitz function.

Lemma 4.5. Let E be a Caccioppoli set in Rn and let Γ be a subset of ∂E which

can be represented over some (n− 1)-dimensional domain D by a Lipschitz function

f(x1, . . . ,xn−1) with Lipschitz constant LΓ . Suppose the strip

�Γ ,ε =
{(
x1, . . . ,xn−1

)∈D, −ε < xn−f (x1, . . . ,xn−1
)
< 0
}

(4.34)

lies in E for 0< ε < ε̃Ω. Then, for ε′ < ε̃Ω, there exists a constant C̃Γ ,ε′ depending only on

Γ and ε′ such that the inequality

∫
Γ
wd�n−1 ≤

√
1+(LΓ )2

∫
�∗Γ ,ε′

|Dw|dx+ C̃Γ ,ε′
∫

�∗Γ ,ε′
|w|dx (4.35)

holds for all w ∈ BV(S∗Γ ,ε′), with domains �∗Γ ,ε′ satisfying

�Γ ,ε′ ⊆�∗Γ ,ε′ ⊆�Γ ,ε̃Ω . (4.36)

In fact, letting ηε′ be a C∞ function with

0≤ ηε′ ≤ 1, ηε′ = 1 on Γ , ηε′ = 0 in ∂�Γ ,ε′ \∂E, (4.37)
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then inequality (4.35) holds with

C̃Γ ,ε′ = sup
�Γ ,ε′

∣∣Dηε′∣∣≤ 2
(
ε′
)−1. (4.38)

If w = 0 on ∂�∗Γ ,ε \(∂�Γ ,ε′ ∩�Γ ,ε̃Ω), then inequality (4.35) holds with

C̃Γ ,ε′ = 0. (4.39)

We now formulate a global result for domains with piecewise Lipschitz continuous

boundary.

Lemma 4.6. Let E ∈ Rn be bounded with ∂E being piecewise Lipschitz continuous.

Suppose the tubular neighborhood Eε of ∂E,

Eε =
{
x : x ∈ E, dist(x,∂E)≤ ε}, (4.40)

is covered by a partition of unity with particular properties; namely, suppose Eε is covered

by a finite numberN of sets Ei, 1≤ i≤N, each of which is open in Ē and to each of which

is associated a nonnegative function φi ∈ C∞0 (Rn) such that
∑
j φj(x)= 1 for all x ∈ Eε

and each ∂E∩Ei can be represented by a Lipschitz function fi of (n−1) variables for

which strips with width ε,

�∂E∩Ei,ε =
{(
x1, . . . ,xi,n−1,xi,n

)
,
(
xi,1, . . . ,xi,n−1

)∈Di,
−ε < xi,n−f

(
xi,1, . . . ,xi,n−1

)
< 0
}
,

(4.41)

are disjoint to each other. Let the Lipschitz constant of fi be Li, 1 ≤ i ≤ N. Then, the

inequality
∮
∂E
v d�n−1 ≤ µ

∫
E
|Dv|dx+CE

∫
E
|v|dx, (4.42)

with

µ =
√√√√1+

(
max
j
Lj
)2

, CE =
∑
j

sup
suppφj

∣∣Dφj∣∣+2ε−1, (4.43)

is valid for all v ∈ BV(E).
If there is a set E∗ including the tubular neighborhood Eε of ∂E such that v = 0 on

∂E∗∩E, then inequality (4.42) is valid with µ =
√

1+(maxj Lj)2 and

CE =
∑
j

sup
suppφj

∣∣Dφj∣∣; (4.44)

the same is true for thosew ∈ BV(E) with {x : x ∈ E,w(x)= 0} being of positive (n−1)-
dimensional Hausdorff measure and dividing ∂Ω into two connected portions intersecting

with each other at their endpoints.

Other estimates for constants in (4.42) are available for domains with piecewise Lip-

schitz continuous boundary.
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Lemma 4.7. Let E ∈Rn be bounded with ∂E being piecewise Lipschitz continuous; that

is, ∂E can be decomposed into

∂E =
N0⋃
i=1

∂iE (4.45)

such that ∂iE, 1 ≤ i ≤ N0, can be represented as the graph of a Lipschitz function fi of

(n−1) variables (xi,1, . . . ,xi,n−1) over an (n−1)-dimensional domain Di. Suppose that

the tubular neighborhood Eε of ∂E, where Eε is given in (4.40), can be covered by strips

of width ε,

�∂iE,ε =
{(
x1, . . . ,xi,n−1,xi,n

)
,
(
xi,1, . . . ,xi,n−1

)∈Di,
−ε < xi,n−f

(
xi,1, . . . ,xi,n−1

)
< 0
}
,

(4.46)

and that each point in Eε is included in at mostN1 such strips. Denoting by Li the Lipschitz

constant of fi, then inequality (4.42) with

µ =N1

√√√√1+
(

max
1≤j≤N0

Lj
)2

, CE = 2N1ε−1 (4.47)

is valid for all v ∈ BV(E).
If there is a set E∗ including the tubular neighborhood Eε of ∂E such that v = 0 on

∂E∗∩E, then inequality (4.42) is valid with µ =N1

√
1+(max1≤j≤N0 Lj)2 and

CE = 0; (4.48)

the same is true for thosew ∈ BV(E) with {x : x ∈ E,w(x)= 0} being of positive (n−1)-
dimensional Hausdorff measure and dividing ∂Ω into two connected portions intersecting

with each other at their endpoints.

4.2.3. Modified Sobolev inequality. We will give a proof of the modified Sobolev

inequality (4.5) and estimate the constant involved in this inequality. This result has

been used to prove Proposition 4.1 and will be used to prove Theorem 4.10.

To derive the modified Sobolev inequality (4.5), we first formulate the following result

which is a special case of the so-called Friedrich inequality.

Lemma 4.8 (cf. [18, Theorem 6.5.7]). Suppose E is a Caccioppoli set with piecewise

Lipschitz continuous boundary. Then for any f ∈ BV(E), the inequality

‖f‖Ln∗ (E) ≤ n
ωn

(∫
E
|Df |dx+

∫
∂E
|f |d�n−1

)
(4.49)

is valid, where ωn is the Lebesgue measure of the unit n-dimensional ball.

Inserting (4.25) and (4.42) into (4.49), we obtain the following.

Proposition 4.9. If inequality (4.42) holds, and given f ∈ BV(Ω), the boundary strip

Eε adjacent to {x : x ∈ ∂E : f(x) �= 0} and with width ε is included in E (cf. (4.40)), then
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the inequality

‖f‖Ln∗ (E) ≤ n(µ+1)
ωn

∫
E
|Df |dx+ n·CE

ωn

∫
E
|f |dx (4.50)

is valid with

µ = 1, CE = 2(n−1)�∂E+2ε−1 (4.51)

if ∂E is piecewise C2, and

µ =
√

1+L2, CE =
∑
j

sup
∣∣Dφj∣∣+2ε−1 (4.52)

if ∂E is piecewise Lipschitz continuous with Lipschitz constant L such that there exists a

partition of unity for Eε satisfying the conditions indicated in Lemma 4.6, and

µ =N1

√
1+L2, CE = 2N1ε−1 (4.53)

if ∂E is piecewise Lipschitz continuous such that, with decomposition of ∂E into graphs of

Lipschitz continuous functions, each of the associated boundary strips cannot intersect

more than N1 others, as indicated in Lemma 4.6.

If {x : x ∈ E,w(x) = 0} is of positive (n− 1)-dimensional Hausdorff measure and

divides ∂Ω into two connected portions intersecting with each other at their endpoints,

then inequality (4.50) holds with

CE = 2(n−1)�∂E,
∑
j

sup
∣∣Dφj∣∣, 0, (4.54)

respectively in the three cases indicated above.

4.2.4. Consider the capillarity problem (1.8) such that (4.21) holds for some con-

stant a.

Let A be a set with a portion of the boundary ∂∗A included in ∂∗Ωδ0 such that Ω∩A
satisfies (3.63), (B), and

diam∂Ω∩A≤ (δ0
)1+ε, diam∂∗A≤ (δ0

)1+ε,
|∂Ω∩A| ≥

(
δ0

2

)(1+ε)(n−1)
,

∣∣∂∗A∣∣≥ (δ0

2

)(1+ε)(n−1)
,

(4.55)

for a constant δ0, with δ0 ≤ (�∂Ω∩A)−1 in case ∂Ω∩A∈ C2 and δ0 being so small that the

boundary strip �∂Ω∩A,δ0 defined in (4.34) is in Ω∩A in case ∂Ω∩A can be represented

as a graph of a Lipschitz continuous function. Furthermore, let (Ω∩∂A)\∂∗A be made

up of gradient trajectories of u; that is,

Du·νΩ∩A|(Ω∩∂A)\∂∗A ≤ 0. (4.56)

Choosing δ0 to be so small that each component of (Ω∩∂A)\∂∗A can be represented

as the graph of a Lipschitz function with Lipschitz constant L∗∗ and that

diam∂∗Ωt∩A≤
(
δ0
)1+ε

for each t, 0< t < δ0, (4.57)
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and that there holds

(1−a)µ < 1,

λ
(
1−(1−a)µ)·

((
n/ωn

)− Ĉ∂Ω∩Ā ·δ0

1+µ+
√

1+(L∗∗)2
)
−(1−a)Ĉ∂Ω∩Āδ0

−∥∥Ht0∥∥Lp(Ω) ·(δ0
)(p−n)/p ≥ 0,

(4.58)

where µ = 1, Ĉ∂Ω∩Ā = 2(n−1)�∂Ω∩Ā if ∂Ω∩A is C2 and µ =√1+L2, Ĉ∂Ω∩Ā = 0 if ∂Ω∩
A can be represented as the graph of a Lipschitz continuous function with Lipschitz

constant L. The reason for the choice of such a constant Ĉ∂Ω∩Ā will be made clear in

Section 4.5, where we will show the following.

Theorem 4.10. Let u be a solution to the variational problem (1.8) which is of class

C2(Ω). Suppose H satisfies (3.38) and (3.27) for some t0 ∈R. Let A be a set with ∂Ω∩A
being either C2 or the graph of a Lipschitz continuous function. Suppose that (4.21) is

satisfied for all x ∈ ∂Ω∩A in which 1>a> 0 is a constant and (4.55), (4.56), (4.57), and

(4.58) are satisfied with the constant δ0. Suppose that β(x) is continuous in ∂Ω∩A. If

β(x) > 0 for all x ∈ ∂Ω∩A, then the inequality

sup
∂Ω∩A

u≤ C∗A ·max
(

inf
∂Ω∩A

u,t0,0
)
+C∗A ·C∗∗A ·|Ω∩A|1/n (4.59)

holds true, and if β(x) < 0 for all x ∈ ∂Ω∩A, then the inequality

inf
∂Ω∩A

u≥ C∗A ·min

(
sup
∂Ω∩A

u,t0,0
)
−C∗A ·C∗∗A ·|Ω∩A|1/n (4.60)

holds true; thus, if β(x) > 0 for all x ∈ ∂Ω∩A and if inf∂Ωu≥max(t0,0),

sup
∂Ω∩A

u− inf
∂Ω∩A

u≤ (C∗A −1
)· inf

∂Ω∩A
u+C∗A ·C∗∗A ·|Ω∩A|1/n. (4.61)

If β(x) < 0 for all x ∈ ∂Ω∩A and if sup∂Ωu≤min(t0,0), then

sup
∂Ω∩A

u− inf
∂Ω∩A

u≤−(C∗A −1
)· sup

∂Ω∩A
u+C∗A ·C∗∗A ·|Ω∩A|1/n (4.62)

holds true. Here

C∗A =
(
1−2
√

2·(δ0
)ε(n−1)/n ·C∗∗A

)−1
, (4.63)

C∗∗A = 2n+1 ·(1−λ)−1 ·(1−(1−a)µ)−1 · ˆ̂C∂Ω∩A, (4.64)

with

ˆ̂C∂Ω∩A =
(
n/ωn

)− Ĉ∂Ω∩Āδ0

1+µ+
√

1+(L∗∗)2 . (4.65)
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4.3. Global estimates for the oscillation of |u| for capillary surfaces with |cosθ|
bounded away from 1. We pay some special attention to the case where (4.22) or

(4.34) holds locally on ∂Ω, that is, a sufficiently small tubular neighborhood Ωδ0 of the

boundary ∂Ω can be covered by sets Ω∩Aα, α∈N, such that each set Aα is of the type

indicated above, which satisfies (4.55) and (4.57) and for which (4.22) or (4.34) is valid

with Γ = ∂Ω∩A. We note that we here allow elements in this covering with distinct

indices to intersect at a set of positive n-dimensional Hausdorff measure. If condition

(4.21) holds for all x ∈ ∂Ω and δ0 is so small that (4.29) is satisfied for sets Ω∩Aα in

such a covering of Ωδ0 , we obtain estimates of sup∂Ωu, inf∂Ωu, and sup∂Ωu− inf∂Ωu
from (4.59), (4.60), and (4.61). Combining with Theorem 3.8, we obtain estimates of

supΩu− infΩu. Thus, we have the following.

Theorem 4.11. Suppose that (4.22) or (4.34) holds locally in the sense indicated

above; in particular, ∂Ω is piecewise Lipschitz continuous without outward cusps. Sup-

pose that (3.27) holds for some t0 ∈R. If u is a solution of (1.8) such that cosθ(x)= β(x)
satisfies condition (4.21) for all x ∈ ∂Ω and is a piecewise continuous function on ∂Ω, and

if H(x,t) is bounded in Ω×R, then

sup
Ω
u− inf

Ω
u (4.66)

can be estimated in terms of t0, n, ‖Ht0‖Lp(Ω),
∫
ΩH(x,0)dx, |Ω|, a, and the geometry

of Ω.

4.4. Boundary regularity for capillary surfaces. From Theorem 4.10, we obtain the

following for solutions to the capillarity problem with |cosθ| being bounded away from

1 and 0.

Theorem 4.12. Let u be a bounded solution to (1.1) and (1.3). Suppose for x0 ∈ ∂Ω,

and for positive constants β̃, ˜̃β, β̃, ˜̃β ≤ 1 and a ball BR(x0) intersecting the interior of

Ω, that assumptions (A1) and (A2) hold. Furthermore, assumption (1.14) on H holds.

Assume that (3.38) holds. Then the trace of u on ∂Ω is Lipschitz continuous locally in

∂Ω∩BR(x0).
The Lipschitz norm of u near x0 depends only on H, β̃, ˜̃β, and a constant C̃∂Ω∩Ā

depending on the geometry of Ω, where C̃∂Ω∩Ā =�∂Ω∩BR(x0) in the case where the portion

of ∂Ω∩BR(x0) is C2 and C̃∂Ω∩Ā =
√

1+L2 in the case where ∂Ω∩BR(x0) is Lipschitz

continuous with Lipschitz constant L; here �∂Ω∩BR(x0) is an upper bound of the absolute

value of the principal curvatures of ∂Ω∩BR(x0) in the case where ∂Ω∩BR(x0) is C2.

To see that Theorem 4.10 implies Theorem 4.12, we notice that C∗A and L∗∗ in Theo-

rem 4.10 approach the respective values 1 and 0 as δ0 → 0. Thus, from letting δ0 → 0

and letting ε→ 0, we obtain Theorem 4.12 after a possible renormalization which makes

inf∂Ωu≤ 0 or sup∂Ωu≥ 0.

We emphasize again that Theorems 4.12 and 2.6 yield the Hölder continuity with

exponent 1/2 up to the boundary locally in ∂Ω∩BR(x0), under the assumptions on cosθ,

∂Ω∩BR(x0) indicated in Theorem 4.12, the assumption that inf∂Ωu≤ 0 or sup∂Ωu≥ 0,

and the assumption that H is nonnegative and bounded above.
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4.5. Proof of Theorem 4.10. We set η to be a smooth function such that

0≤ η≤ 1, η
∣∣
∂Ω∩A = 1, (4.67)

suppη⊆ (Ω∩A)\∂∗A. (4.68)

Let k be a number greater than max(inf∂Ω∩Ā u,t0,0). We set

uk = (1−η)u+min(ηu,k). (4.69)

Then, uk belongs to BV(Ω), and using the notation

A(k,η)= {x ∈Ω : ηu> k}, (4.70)

we obtain from the minimizing property of u,

Jk(u)≤ Jk
(
uk
)
, (4.71)

where

Jk(v)=
∫
A(k,η)

√
1+|Dv|2dx+

∫
∂A(k,η)

βA(k,η)v d�n−1. (4.72)

Assume for a moment that u is smooth. We obtain from this

∫
A(k,η)

√
1+|Du|2dx+

∫
Ω

∫ u
uk
H(x,t)dtdx−

∫
∂Ω∩A(k,η)

β·(ηu−k)d�n−1

≤
∫
A(k,η)

√
1+∣∣D[(1−η)u]2∣∣dx+

∫
∂∗∗A∩A(k,η)

βΩ∩A ·(ηu−k)d�n−1

≤
∫
A(k,η)

√
1+(1−η)2|Du|2dx+

∫
A(k,η)

√
1+u2|Dη|2dx,

(4.73)

where we set

∂∗∗A= (Ω∩A)\∂∗A (4.74)

and where the last inequality is obtained from (4.56) and the inequality
√

1+|a+b|2 ≤√
1+|a|2+√1+|b|2. Taking into account the inequality

√
1+t2−

√
1+(1−η)2t2 ≥ t−[1+(1−η)t]= ηt−1, (4.75)

we obtain from (4.73)

∫
A(k,η)

∣∣D(ηu)∣∣dx+
∫
Ω

∫ u
uk
H(x,t)dtdx

≤2
∣∣A(k,η)∣∣+2

(
sup
Ω
|Dη|
)
·
∫
A(k,η)

udx+(1−a)·
∫
∂Ω∩A(k,η)

(ηu−k)d�n−1.
(4.76)
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We set w =max(ηu−k,0). The monotonicity condition (1.5) on H(x,·) yields

∫ u
uk
H(x,t)dt ≥H(x,t0)·(u−uk)=Ht0w. (4.77)

Inserting this into (4.76), we obtain

∫
A(k,η)

|Dw|dx+
∫
A(k,η)

Ht0wdx

≤ 2
∣∣A(k,η)∣∣+2

(
sup
Ω
|Dη|
)
·
∫
A(k,η)

udx+(1−a)·
∫
∂Ω∩A(k,η)

wd�n−1,
(4.78)

which will also be valid for u∈ BV(Ω) using an approximation argument.

By the modified Sobolev inequality (4.49) with constants concerned in (4.51), we have

n
ωn

‖w‖Ln∗ (A(k,η))

≤
∫
A(k,η)

|Dw|dx+
∫
∂Ω∩A(k,η)

wd�n−1+
∫
∂∗∗A∩A(k,η)

wd�n−1,
(4.79)

in which, from (4.68), Lemmas 4.2 and 4.5, we obtain

∫
∂∗∗A∩A(k,η)

wd�n−1 ≤
√

1+(L∗∗)2 ·
∫
A(k,η)

|Dw|dx, (4.80)

∫
∂Ω∩A(k,η)

wd�n−1 ≤ µ ·
∫
A(k,η)

|Dw|dx+ Ĉ∂Ω∩Ā ·
∫
A(k,η)

wdx, (4.81)

where the constant Ĉ∂Ω∩Ā takes the value indicated immediately below (4.58) in Section

4.3. Inserting (4.80) and (4.81) into (4.79), we obtain

n
ωn

‖w‖Ln∗ (A(k,η))

≤
(

1+µ+
√

1+(L∗∗)2
)
·
∫
A(k,η)

|Dw|dx+ Ĉ∂Ω∩Ā ·
∫
A(k,η)

wdx,
(4.82)

from which and from Hölder inequality, we obtain

∫
A(k,η)

|Dw|dx ≥
((
n/ωn

)− Ĉ∂Ω∩Ā∣∣A(k,η)∣∣1/n

1+µ+
√

1+(L∗∗)2
)
·‖w‖Ln∗ (A(k,η)). (4.83)

Assuming that (3.27) holds, we can derive, by the reasoning leading to (3.30),

∣∣∣∣
∫
A(k,η)

Ht0wdx
∣∣∣∣≤ ‖w‖Ln∗ (A(k,η)) ·∥∥Ht0∥∥p ·∣∣A(k,η)∣∣(p−n)/(np). (4.84)
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Inserting (4.81), (4.83), and (4.84) into (4.79), we obtain

[(
1−(1−a)·µ)·

((
n/ωn

)− Ĉ∂Ω∩Ā ·∣∣A(k,η)∣∣1/n

1+µ+
√

1+(L∗∗)2
)

−(1−a)Ĉ∂Ω∩Ā
∣∣A(k,η)∣∣1/n−∥∥Ht0∥∥p ·∣∣A(k,η)∣∣(p−n)/(np)

]
·‖w‖Ln∗ (A(k,η))

≤ 2
∣∣A(k,η)∣∣+2

(
sup
Ω
|Dη|
)
·
∫
A(k,η)

udx.

(4.85)

From (4.58) and (4.85), we obtain

(1−λ)·[1−(1−a)·µ]·( ˆ̂C∂Ω∩A
)−1‖w‖n∗

≤ 2
∣∣A(k,η)∣∣+2

(
sup
Ω
|Dη|
)
·
∫
A(k,η)

udx,
(4.86)

with ˆ̂C∂Ω∩A being given in the statement of Theorem 4.10. This and Hölder’s inequality

then yield

(h−k)·∣∣A(h,η)∣∣≤ 2(1−λ)−1[1−(1−a)·µ]−1 · ˆ̂C∂Ω∩A

·
[∣∣A(k,η)∣∣1+1/n+

(
sup
Ω
|Dη|
)
·∣∣A(k,η)∣∣1/n ·

∫
A(k,η)

udx
] (4.87)

for each h> k>max(inf∂Ω∩Ā u,t0,0).
We have

∫
A(k,η)

udx ≤
(

sup
Ω∩A

u
)
·∣∣A(k,η)∣∣; (4.88)

since β(x) > 0 for all x ∈ ∂Ω∩Ā, we have

sup
Ω∩A

u= sup
∂Ω∩Ā

u, (4.89)

and hence, by the identity in (4.67), we have

sup
Ω∩A

u= sup
∂Ω∩Ā

ηu. (4.90)

Inserting this into (4.88), we obtain

∫
Ω∩A

udx ≤
(

sup
∂Ω∩Ā

ηu
)
·∣∣A(k,η)∣∣. (4.91)

From (4.87), (4.91), and (3.14) in Lemma 3.2, we obtain

sup
Ω∩A

ηu≤max
(

inf
∂Ω∩A

u,t0,0
)
+C∗∗A ·

(
sup
Ω
|Dη|
)
·
(

sup
∂Ω∩A

ηu
)
·|Ω∩A|1/n (4.92)
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with C∗∗A being given by (4.64), which yields (4.59) with

C∗A ≤
[

1−C∗∗A ·
(

sup
Ω
|Dη|
)
·|Ω∩A|1/n

]−1

, (4.93)

which is less than the right-hand side of (4.63) by (4.55) and (4.57).

Analogously, we can obtain (4.60) in case that β(x) < 0 for all x ∈ ∂Ω∩A.

4.6. The capillarity problem possibly with cosθ being 0 or π . Cases where H(x,t)
satisfies the growth conditions (3.10) and (3.11). For the capillarity problem with

boundary contact angle not bounded away from 0 and/or π , we will treat only the

cases where H(x,t) satisfies the growth conditions (3.10) and (3.11). We will prove the

following.

Theorem 4.13. Let u be a variational solution to (3.3) for which H(x,t) satisfies the

growth conditions (3.10) and (3.11). Suppose ∂Ω is piecewise Lipschitz continuous without

outward cusps. Then, with the constant CΩ given in (4.5), there exist two numbers t̂0 and
ˆ̂t0 satisfying the respective conditions

inf
x∈Ω

H
(
x, t̂0
)
>−CΩ, (4.94)

sup
x∈Ω

H
(
x, ˆ̂t0
)
<CΩ, (4.95)

for which there hold

sup
Ω
u≤max

(
inf
Ω
u,t̂0
)
+2n+1 ·

(
inf
x∈Ω

H
(
x, t̂0
)−CΩ

)−1

·|Ω|1/n, (4.96)

inf
Ω
u≥min

(
sup
Ω
u, ˆ̂t0
)
−2n+1 ·

(
CΩ+sup

x∈Ω
H
(
x, ˆ̂t0
))−1

·|Ω|1/n. (4.97)

Proof of Theorem 4.13. Assume that H(x,t) satisfies the growth conditions

(3.10) and (3.11). Then, assuming that ∂Ω is of class C2, we have µ = 1 in (4.4). Al-

lowing a= 0 in (4.1), we obtain from (4.16)

∫
Ω
Ht ·wdx−CΩ ·

∫
A(k)

wdx ≤ ∣∣A(k)∣∣, (4.98)

where

w =max(u−k,0), A(k)= {x : x ∈Ω, u(x)≥ k}, (4.99)

for k >max(infΩu,t). Under the assumption of (3.10), there exists a number t̂0 such

that (4.59) holds. We obtain

(
inf
x∈Ω

H
(
x, t̂0
)−CΩ

)
·
∫
Ω
wdx ≤ ∣∣A(k)∣∣ (4.100)

for k >max(infΩu,t̂0). This and Lemma 3.2 yield (4.96).
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Analogously, the growth condition (3.11) gives us a number ˆ̂t0 satisfying (4.95), which

yields analogously

(
−CΩ−sup

x∈Ω
H
(
x, ˆ̂t0
))·
∫
Ω
(u+k)dx ≤ ∣∣{x : x ∈Ω, u(x)≤−k}∣∣ (4.101)

for k >min(−supΩu,−ˆ̂t0), and hence (4.97) follows from Lemma 3.2.
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