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We prove limit theorems for a family of random vectors whose coordinates are a special
form of random sums of Bernoulli random variables. Applying these limit theorems, we
study the number of productive individuals in n-type indecomposable critical branching
stochastic processes with types of individuals T1, . . . ,Tn.
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1. Introduction. We consider a sequence of random vectors, which is defined as

follows. Let {ξij(k,m), j ≥ 1}, i = 1,2, . . . ,n, for any pair (k,m) ∈ N2
0, N = {1,2, . . .},

N0 = {0}
⋃
N, be n independent sequences of random variables and let {νik, k ∈ N0},

i= 1,2, . . . ,n, be n sequences of (not necessarily independent) random variables taking

values 0,1, . . . , and independent of family {ξij(k,m)}. We consider the family of random

vectors

W(k,m)= (W1(k,m), . . . ,Wn(k,m)
)
, Wi(k,m)=

νik∑
j=1

ξij(k,m). (1.1)

Assume that ξij(k,m), j = 1,2, . . . , for any fixed k,m, and i, are independent and identi-

cally distributed Bernoulli random variables with parameter P(i)km (i.e., have distribution

b(1,P(i)km)).
We will study the asymptotic behavior of W(k,m) as k,m→∞ under some assump-

tions on random variables νik and ξij(k,m) in different cases of relationship between

parameters k and m.

Random sums of independent random variables or random vectors have been con-

sidered by many authors. First, it is because of the interest in extending classic limit

theorems of the probability theory to a more general situation and to discover new

properties of the random sums caused by “randomness” of the number of summands.

On the other hand, many problems in different areas of probability can be connected

with a sum of a random number of random variables. A rather full list of publications

on random sums can be found in a recent monograph by Gnedenko and Korolev [4].

Transfer theorems for the random sum of independent random variables can also be

found in [3].

The relationship between random sums and branching stochastic processes is well

known. Starting from early studies (see, e.g., [5]) including the recent publications, the
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fact that the number of particles in a model of branching process can be represented as

a random sum has been mentioned. Some investigations show that using this relation-

ship in the study of branching models makes it possible to investigate new variables

related to the genealogy of the process to study more general modifications of branch-

ing processes and to consider different characteristics of the process from a unique

point of view. So, limit distributions for the number of pairs of individuals at time τ
having the same number of descendants at time t, t > τ , are found in [7]. A more gen-

eral variable of this kind, describing the number of individual pairs having a “relatively

close” number of descendants, is considered in [8] (see also [9, Chapter IV]). Using this

relationship, limit theorems for different models of branching processes with immi-

gration which may depend on the reproduction processes of particles are also proved.

This kind of problems is systematically studied in the above-mentioned monograph [9].

Investigations of the maximum family size in a population by Arnold and Villaseñor

[1], Rahimov and Yanev [11], and Yanev and Tsokos [16] are also based on this kind of

relationship.

Here, we discuss the relationship the random sum of random vectors and multitype

branching processes. Although X(t), the number of individuals of different types at

time t, is the main object of investigation in the theory of multitype branching pro-

cesses, there are many other variables related to the population, which are of interest

as well. One example of such a variable is the time to the closest common ancestor

of the entire population observed at a certain time. For a single-type Galton-Watson

process, this variable was considered by Zubkov [17], who proved that, if the process

is critical, the time is asymptotically uniformly distributed. Later, it turned out that

the time to the closest common ancestor may be treated as a functional of the so-

called reduced branching processes. This process was introduced by Fleischmann and

Siegmund-Schultze [2] as a process that counts only individuals at a given time τ having

descendants at time t, t > τ . They demonstrated that in the critical single-type case,

the reduced process can be well approximated by a nonhomogeneous pure birth pro-

cess. Later, a number of studies extended their results to general single and multitype

models of branching processes (see, e.g., [12, 14, 15]).

In this paper, we show that, if one uses theorems proved for the random sums defined

in (1.1), one may study a generalized model of multitype reduced processes. Let θ(t)=
(θ1(t), . . . ,θn(t)) be a vector of nonnegative functions, let τ and t, τ < t, be two times

of observations. We define the process X(τ,t) = (X1(τ,t), . . . ,Xn(τ,t)), where Xi(τ,t)
is the number of type Ti individuals at time τ whose number of descendants at time t
of at least one type is greater than the corresponding level given by vector θ(t−τ). It

is clear that X(τ,t) counts only “relatively productive” individuals at time τ . We also

note that X(τ,t) is a usual n-type reduced process, if θ(t) = 0 for all t ∈ N0. In this

paper, we obtain limit distributions for process X(τ,t) as t,τ → ∞ in different cases

of relationship between observation times τ and t for critical processes. It must be

noted that the generalized reduced single-type process was introduced and studied by

Rahimov [10].

In Section 2, we prove several limit theorems for the random sum of random vec-

tors W(k,m) under some natural assumptions on parameters. Section 3 is devoted to
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the construction and definition of the generalized multitype reduced process. Applica-

tions of theorems of Section 2 to reduced branching processes are given in Section 4.

Section 5 contains proofs of theorems from Section 4. In Section 6, possible applica-

tions of theorems on random sum (1.1) in the study of the number of productive an-

cestors in large populations are discussed.

2. Convergence of the random sum. Forn-dimensional vectors x= (x1, . . . ,xn), y=
(y1, . . . ,yn), we denote x⊕y = (x1y1, . . . ,xnyn), xy = (xy1

1 , . . . ,xynn ), x/y = (x1/y1, . . . ,
xn/yn), (x,y) = x1y1+···+xnyn,

√
x = (√x1, . . . ,

√
xn), and x ≥ y or x > y if xi ≥ yi

or xi > yi, respectively.

The first theorem concerning the vector (1.1) covers the case when the normalized

vector νk = (νik, i = 1, . . . ,n) has a limit distribution. Namely, we assume that there

exists a sequence of positive vectors Ak = (Aik, i= 1, . . . ,n) such that Aik→∞, k→∞,

{
νk
Ak

| νk ≠ 0
}
�→ Y = (Y1, . . . ,Yn

)
(2.1)

in distribution, and for the vector P(k,m)= (P(i)km, i= 1, . . . ,n),

P(k,m)⊕Ak �→ a = (a1, . . . ,an
)
, (2.2)

where the components of the vector a may be +∞.

Theorem 2.1. If conditions (2.1) and (2.2) are satisfied, then

{
W(k,m)

P(k,m)⊕Ak
| νk ≠ 0

}
�→W (2.3)

in distribution and Ee(λ,W) =ϕ(λ∗), where ϕ(λ) is the Laplace transform of the vector

Y, λ∗ = (λ∗1 , . . . ,λ∗n) and λ∗i = λi if ai =∞, and λ∗i = ai(1−e−λi/ai) if ai <∞.

Proof. First we consider the case when ai < ∞, i = 1, . . . ,n. Since variables ξij(k,
m), j = 1,2, . . . , are independent and identically distributed, by total probability argu-

ments, we find for any S= (S1, . . . ,Sn), 0< S< 1,

E


 n∏
i=1

SWi(k,m)i


= E


E

 n∏
i=1

νik∏
j=1

S
ξij(k,m)
i

∣∣νk



= F(k,G(k,m,S)), (2.4)

where

G(k,m,S)= (Gi(k,m,Si), i= 1, . . . ,n
)
, Gi

(
k,m,Si

)= ESξij(k,m)i , (2.5)

and F(k,S) is the probability generating function of the vector νk. Note here that, since

ξij(k,m) are Bernoulli random variables with parameter P(i)km,

Gi
(
k,m,Si

)= 1−P(i)km
(
1−Si

)
. (2.6)
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It follows from condition (2.1) that for any 0< S< 1,

1−F(k,e−λ0/Ak
)

P
{
νk ≠ 0

} �→ 1−ϕ(λ0
)
, (2.7)

where λ0 = a⊕(1−S).
Now we consider

ε(k,m,S)= F
(
k,G(k,m,S)

)−F(k,e−λ0/Ak
)

P
{
νk ≠ 0

} = E[B(k,m,νk) | νk ≠ 0
]
, (2.8)

where

B
(
k,m,νk

)= n∏
i=1

Gνiki
(
k,m,Si

)− n∏
i=1

e−νikai(1−Si)/Aik . (2.9)

Let ∆ be a positive number. Introducing the event

C
(
∆,νk

)= { νik
Aik

<∆, i= 1, . . . ,n
}
, (2.10)

we write ε(k,m,S) as follows:

ε(k,m,S)= E[B(k,m,νk)χ | νk ≠ 0
]+E[B(k,m,νk)(1−χ) | νk ≠ 0

]
(2.11)

with χ = χ{C(∆,νk)}. If we use the inequality

∣∣∣∣∣
n∏
i=1

ai−
n∏
i=1

bi

∣∣∣∣∣≤
n∑
i=1

∣∣ai−bi∣∣, (2.12)

which holds for any sets of numbers ai, bi such that |ai| ≤ 1, |bi| ≤ 1, i = 1, . . . ,n, we

obtain that the absolute value of the first expectation on the right-hand side of (2.11)

is not greater than

n∑
i=1

E
[∣∣Gνiki −e−νikai(1−Si)/Aik∣∣χ | νk ≠ 0

]

=
n∑
i=1

E
[∣∣∣∣exp

{
νikδi(k,m)

Aik

}
−1

∣∣∣∣χ | νk ≠ 0
]
,

(2.13)

where

δi(k,m)=Aik lnGi
(
k,m,Si

)+ai(1−Si). (2.14)

Taking into account the definition of event C(∆,νk), we obtain that the last sum can

be estimated by

n∑
i=1

max
l∈D

∣∣∣∣exp
{(

l
Aik

)
δi(k,m)

}
−1

∣∣∣∣, (2.15)
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whereD = {l∈N0 : l/Aik <∆}. It follows from (2.6) that 1−Gi(k,m,Si)→ 0 (sinceAik→
∞). Therefore, lnGi ∼−(1−Gi) and we conclude from condition (2.2) that δi(k,m)→ 0,

i= 1, . . . ,n. Hence, the first expectation on the right-hand side of (2.11) tends to zero.

Now we consider the second term. Since |B(k,m,νk)| ≤ 1 for all sample points, we

obtain that the absolute value of the second expectation is not greater than

1−P{C(∆,νk) | νk ≠ 0
}
, (2.16)

which, according to condition (2.1) and the definition of C(∆,νk), tends to

1−P{Y1 ≤∆, Y2 ≤∆, . . . ,Yn ≤∆
}
. (2.17)

This estimation shows that the second expectation on the right-hand side of (2.11)

can be made arbitrarily small by choosing sufficiently large ∆. Thus, we conclude that,

under conditions (2.1) and (2.2), ε(k,m,S)→ 0. This, along with (2.4), (2.7), and the fact

that

E


 n∏
i=1

SWi(k,m)i | νk ≠ 0


= 1−

1−E
[∏n

i=1S
Wi(k,m)
i

]
P
{
νk ≠ 0

} , (2.18)

gives the assertion of the theorem in the case ai <∞.

Now, we consider the case when the limit in condition (2.2) is not finite, that is,

ai =∞, i= 1, . . . ,n. In this case, we use the following notation: M(k,m)=Ak⊕P(k,m)=
(Mi(k,m), i= 1, . . . ,n). The proof is the same as of that of the first case and, therefore,

we only provide some important points.

We consider relation (2.18) with S = (S1, . . . ,Sn) and Si = exp{−λi/Mi(k,m)}, where

λi > 0, i= 1, . . . ,n. Using (2.6), we obtain this time that

1−Gi
(
k,m,Si

)∼Aikλi, k,m �→∞, i= 1, . . . ,n. (2.19)

Therefore, in relation (2.7), we have λ in place of λ0. Since Aik→∞, again lnGi ∼−(1−
Gi) and

lnGi
(
k,m,Si

)
Aik

�→−λi (2.20)

as k,m→∞.

We consider again ε(k,m,S) from (2.8) replacing λ0 by λ and putting Si = exp{−λi/Mi

(k,m)}. By the same arguments as in the proof of the first case, we obtain that the

absolute value of ε(k,m,S) can be estimated by sum (2.15) with

δi(k,m)= lnGi
(
k,m,Si

)
Aik

+λi (2.21)

and δi(k,m)→ 0, i = 1, . . . ,n, due to (2.20). Hence, ε(k,m,S)→ 0 as k,m →∞. Again,

appealing to relation (2.18), we obtain the assertion of the theorem when ai =∞. It is

now clear that when some of ai are finite and the others are infinite, the limit random

variable has the Laplace transform ϕ(λ∗). Theorem 2.1 is proved.
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The family of vectors (1.1) is eventually a sum of independent vectors if vectors

νk = (νik, i = 1, . . . ,n) have degenerate distributions. Therefore, one may expect to

obtain a normal limit distribution under some natural assumptions. The next theorem

obtains the conditions under which the limit of vector W(k,m) is a mixture of the

normal and a given distribution. Assume the following condition:

(C1) for a given sequence of positive vectors Ak, there exists a sequence lk = (lik, i=
1, . . . ,n), k≥ 1, such that Aik/lik→∞, k→∞, i= 1, . . . ,n, and

lk⊕P(k,m)⊕(1−P(k,m)
)
�→ C, i= 1, . . . ,n, (2.22)

as k,m→∞, where C= (Ci, i= 1, . . . ,n) is a positive vector of constants.

Theorem 2.2. If conditions (2.1) and (C1) are satisfied, then

{
W(k,m)−νik⊕P(k,m)√

Ak⊕C/lk
| νk ≠ 0

}
�→W (2.23)

as k,m→∞, where

P{W≤ x} =
∫∞

0
···

∫∞
0

n∏
i=1

Φ
(
xi√yi

)
dT
(
y1, . . . ,yn

)
, (2.24)

Φ(x) is the standard normal distribution, and T(x1, . . . ,xn) is the distribution of the

vector Y in (2.1).

Proof. Let W∗(k,m)= (W∗
i (k,m), i= 1, . . . ,n) with

W∗
i (k,m)=

Aik∑
j=1

ξij, i= 1, . . . ,n. (2.25)

In the proof, we use the following proposition.

Proposition 2.3. Assume that there exist sequences {lik, k ≥ 1}, i = 1, . . . ,n, for

which condition (C1) is satisfied. Then, for each i = 1, . . . ,n, the variable (W∗
i (k,m)−

AikPikm)/
√
AikCi/lik is asymptotically normal as k,m→∞.

Proof. The assertion follows directly from central limit theorem and from trivial

identities:

EW∗
i (k,m)=AikP(i)km, varW∗

i (k,m)=AikP(i)km
(
1−P(i)km

)
. (2.26)

Now we continue the proof of Theorem 2.2. Let L(k,m,x) be the conditional distri-

bution in Theorem 2.2 and for i= 1, . . . ,n,

Fi
(
k,m,ti,xi

)= P
{
Vi(k,m)−tiP(i)km√

AikCi/lik
≤ xi

}
, (2.27)
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where ti ∈ N0 and Vi(k,m) = ξi1(k,m)+···+ ξiti(k,m). Using independence of se-

quences {ξij(k,m), j ≥ 1} by total probability arguments, we obtain for any q > 0,

L(k,m,x)=
∑

h∈Nn0

n∏
i=1

∑
ti∈∆

Fi
(
k,m,ti,xi

)
Pk(t), (2.28)

where h= (h1, . . . ,hn), t= (t1, . . . , tn), Pk(t)= P{νk = t | νk ≠ 0}, and

∆i =
{
ti ∈N0 :

hi
q
≤ ti
Aik

<
hi+1
q

}
. (2.29)

Let now p > 0 be such that pq is an integer. We partition the sum on the right-hand

side of (2.28) as follows:

L(k,m,x)= Σ′ +Σ′′ = I1+I2, (2.30)

where Σ′ is the sum over all vectors h∈Nn0 such that hi ≤ pq, i= 1, . . . ,n, and Σ′′ is the

sum over all such vectors that at least one of the coordinates is greater than pq.

First we consider I1. Using the monotonicity of the distribution function, we obtain

the following estimate for I1:

I1 ≤ Σ′
n∏
i=1

∑
ti∈∆i

P
{
Vi(k,m)−tiP(i)km√

tiCi/lik
≤ xiα(i,q)

}
Pk(t), (2.31)

where α(i,q) = √q/hi if xi > 0, and it is equal to
√
q/(hi+1) if xi < 0. We denote by

Y = (Y1, . . . ,Yn) a random vector having distribution T(x1, . . . ,xn). Since hiAik/q ≤ ti <
(hi+1)Aik/q for ti ∈ ∆i, if Aik →∞, then so does ti and ti/lik →∞. Consequently, if

we use Proposition 2.3 and condition (2.1), we get

limsup
k,m→∞

I1 ≤ Σ′
n∏
i=1

Φ
(
xiα(i,q)

)
P
{
hi
q
≤ Yi < hi+1

q
, i= 1, . . . ,n

}
. (2.32)

Repeating similar arguments, we obtain that

liminf
k,m→∞

I1 ≥ Σ′
n∏
i=1

Φ
(
xiβ(i,q)

)
P
{
hi
q
≤ Yi < hi+1

q
, i= 1, . . . ,n

}
, (2.33)

where β(i,q)= √q/(hi+1) if xi > 0, and it is equal to
√
q/hi otherwise. Since for each

fixed p and q→∞ right-hand sides of (2.32) and (2.33) have the same limit, we conclude

that

lim
k,m→∞

I1 =
∫ p

0
···

∫ p
0

n∏
i=1

Φ
(
xi√yi

)
dT
(
y1, . . . ,yn

)
. (2.34)
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Now we consider I2. Recall that Σ′′ is the sum over all vectors h∈Nn0 such that at least

one of the coordinates is greater than pq. Let hj be the coordinate of h, which is greater

than pq. Then it is not difficult to see that

I2 ≤
∞∑

hj=pq+1

P
{hj
q
≤ νjk
Ajk

<
hj+1

q
| νk ≠ 0

}
≤ P

{ νjk
Ajk

> p | νk ≠ 0
}
. (2.35)

From here, due to condition (2.1), we obtain that

limsup
k,m→∞

I2 ≤ 1−T(p), (2.36)

where T(p)= P{Yi <∞, i≠ j, Yj ≤ p}. It is clear that the difference on the right-hand

side of (2.36) can be made arbitrarily small by choosing p sufficiently large. Therefore,

I2 → 0 as k,m→∞. Theorem 2.2 is proved.

3. Generalized reduced processes. Now we give a rigorous definition of the gener-

alized reduced process X(τ,t). We use the following notation for individuals partici-

pating in the process. Let the process start with a single ancestor at time t = 0 of type

Ti, i = 1, . . . ,n. We denote it by Ti and consider it as the zeroth generation. We denote

the direct offspring of the initial ancestor as (Ti,Tj,mj), where Tj , j = 1, . . . ,n, is the

type of the direct descendant and mj ∈ N, N = {1,2, . . .}, is the label (the number) of

the descendant in the set of all immediate descendants of Ti. Thus, the mk+1th direct

descendant of the type Tik+1 of the individual α = (Ti,Ti1 ,m1, . . . ,Tik ,mk) will be de-

noted as α′ = (α,Tik+1 ,mk+1). Here and later on, for any two vectors α= (i1, . . . , ik) and

β = (j1, . . . ,jm), we will understand the ordered pair (α,β) as a (k+m)-dimensional

vector (i1, . . . , ik, j1, . . . ,jm).
If we use the above notation, the set �n ∈ E, where E is the space of all finite

subsets of

∞⋃
k=1

Nk1, Nk1 =Nk−1
1 ×N1, N1 =

{
Ti
}×{T1, . . . ,Tn

}×N, (3.1)

corresponds to the population of the nth generation. It is clear that �n can be de-

composed as �n = ∪ni=1�(i)
n , where �(i)

n is the population of the type Ti individuals

of the nth generation. Consequently, components of the process X(t) are found as

Xi(t)= card{�(i)
t }, t ∈N0, and for any τ and t such that τ < t, we have

X(t)=
n∑
i=1

∑
α∈�(i)τ

X(α)(t−τ), (3.2)

where X(α)(t) = (X(α)1 (t), . . . ,X(α)n (t)) is the n-type branching process generated by in-

dividual α.

Let 
i([θ],τ,t) be the set of individuals in �(i)
τ having at least one type of descen-

dants at time t more than the corresponding component θ(t−τ). It is not difficult to
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see that it can be described as follows:


i
(
[θ],τ,t

)= {α∈�(i)
τ : for at least one j ∃ more than θj(t−τ)

β-sets such that (α,β)∈�(i)
t
}
,

(3.3)

where α∈Nτ1 , β∈Nt−τ1 . Thus, the generalized reduced process is defined as X(τ,t)=
(Xi(τ,t), i= 1, . . . ,n) with Xi(τ,t)= card{
i([θ],τ,t)}.

In particular, if θ(t) = 0 for all t, then 
i([0],τ,t) contains all individuals of type

Ti only living in the τth generation and having descendants (at least of one type) in

generations τ+1, τ+2, . . . , t. Consequently, in this case, X(τ,t), 0< τ < t, is the n-type

usual reduced branching process.

4. Limit behavior of the reduced process. We denote by Piα, α= (α1, . . . ,αn)∈Nn0 ,

the offspring distribution of the process X(t), that is,

Piα = P
{
X(1)=α | X(0)= δi

}
(4.1)

is the probability that an individual of type Ti generates the total number α of new

individuals. Here, δi = (δij, j = 1, . . . ,n), δij = 0, if i≠ j and δii = 1. We also denote

Fi(S)=
∑
α∈Nn0

PiαS
α1
1 ···Sαnn , F(S)= (F1(S), . . . ,Fn(S)

)
,

Qi(t)= P{X(t)≠ 0 | X(0)= δi
}
, Q(t)= (Q1(t), . . . ,Qn(t)

)
.

(4.2)

Let for i,j,k= 1,2, . . . ,n,

aji =
∂Fj(S)
∂Si

∣∣∣∣
S=1
, bjik =

∂2Fj(S)
∂Si∂Sk

∣∣∣∣
S=1
, (4.3)

let A= ‖aji‖ be the matrix of expectations, let ρ be its Peron root, and let the right and

the left eigenvectors U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn) corresponding to the

Peron root be such that

AU = ρU, VA= ρV, (U,V)= 1, (U,1)= 1. (4.4)

If A is indecomposable, aperiodic, and ρ = 1, the process X(t) is called a critical

indecomposable multitype branching process. We assume that the generating function

F(S) satisfies the following representation:

x−
n∑
j=1

vj
(
1−Fj(1−Ux)

)= x1+αL(x), (4.5)

where 0<x ≤ 1, α∈ (0,1], and L(x) is a slowly varying function as x ↓ 0. Note that in

this case, ρ = 1, that is, the process is critical and the second moments of the offspring

distribution bjik, i,j,k= 1, . . . ,n, may not be finite. Under this assumption, the following

limit theorem for the process X(t) holds (see [13]).
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Proposition 4.1. If the offspring generating function F(S) satisfies representation

(4.5), then

(a) Qi(t)∼ujt−1/αL1(t) as t→∞, where L1(t) is a slowly varying function as t→∞;

(b) limt→∞P{X(t)q(t)≤x⊕V | X(t)≠0, X(0)=δi}=π(x), where q(t)=∑n
j=1vjQj(t)

and π(x)=π(x1,x2, . . . ,xn), a distribution having the Laplace transform

φ(λ)=
∫
Rn+
e−(x,λ)dπ(x)= 1−(1+ λ̄−α)−1/α, λ̄= (λ,1). (4.6)

Now, we are in a position to state our first result about X(τ,t). Let θ= (θ1, . . . ,θn)∈
Rn+, R+ = [0,∞), C= (C1, . . . ,Cn)∈Rn+ be some nonnegative vectors.

Theorem 4.2. If condition (4.5) is satisfied, θ(t)= θ⊕V/q(t), and t,τ →∞, t−τ →∞
such that Q(t−τ)/Q(τ)→ C, then

P
{
X(τ,t)= k | X(τ)≠ 0, X(0)= δi

}
�→ P∗k , (4.7)

where k= (k1, . . . ,kn)∈Nn0 and the probability distribution {P∗k , k∈Nn0 } has the gener-

ating function φ∗(S)=φ(a) with a = bC⊕U⊕V⊕(1−S), b = 1−π(θ), S= (S1, . . . ,Sn),
and φ(λ) is the Laplace transform defined in (4.6).

Remark 4.3. It is clear that vector C in the condition Q(t−τ)/Q(τ)→ C necessarily

has the form C= C1, where C ≥ 0 is some constant.

Example 4.4. Let F(S) satisfy condition (4.5) with α = 1. We note here that in this

case, the second moments of the offspring distribution may be still infinite. For this

kind of a process, the limit distributionπ(θ) is exponential and the generating function

φ∗(S) has the form φ∗(S)= (1+d)−1, where d= bC∑n
j=1ujvj(1−Sj), b = e−θ∗ , θ∗ =

min{θ1, . . . ,θn}. We represent it as follows:

φ∗(S)= 1
1+Ce−θ∗

(
1− Ce−θ∗

1+Ce−θ∗
n∑
i=1

uiviSi

)−1

. (4.8)

What is the distribution having the last probability generating function? To answer

this question we consider a sequence of independent random variables X1,X2, . . . such

that P{Xi = j} = pj , j = 0,1,2, . . . ,n,
∑n
j=0pj = 1, where p0 = (1+ Ce−θ∗)−1, pj =

Ce−θ∗ujvj/(1+Ce−θ∗), j = 1,2, . . . ,n. Let∆1 be the number of 1’s, let∆2 be the number

of 2’s, and so on, let ∆n be the number of n’s observed in the sequence X1,X2, . . . before

the first zero is obtained. Then it follows from the formula of the generating function

of generalized multivariate geometric distribution in [6, Chapter 36.9] that the vector

(∆1, . . . ,∆n) has the probability generating function given by (4.8), that is,

E
(
S∆1

1 S∆2
2 ···S∆nn

)=φ∗(S). (4.9)

Hence, we have the following result.
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Corollary 4.5. If the assumptions of Theorem 4.2 are satisfied with α= 1, then the

probability distribution {P∗k , k∈Nn0 } is a multivariate geometric distribution defined by

the generating function (4.8) such that

P∗k = P
{
∆i = ki, i= 1, . . . ,n

}
. (4.10)

It is clear that, if n= 1, the distribution is geometric, that is, P∗k = pqk, k= 0,1, . . . with

p = (1+Ce−θ1)−1, q = Ce−θ1(1+Ce−θ1)−1.

Example 4.6. Let the assumptions of Theorem 4.2 be satisfied and τ = [εt], 0< ε <
1. Using the asymptotic behavior of Q(t) and the uniform convergence theorem for the

slowly varying functions, we obtain that as t→∞,

Q(t−τ)
Q(τ)

�→
(

ε
1+ε

)1/α
1. (4.11)

Consequently, in this case, the limit distribution has the generating functionφ∗(S)with

C = (ε/(1+ε))1/α. In particular, we have the following result.

Corollary 4.7. If the assumptions of Theorem 4.2 are satisfied and τ = o(t), then

lim
t→∞

P
{
X(τ,t)= k | X(τ)≠ 0, X(0)= δi

}= 0 (4.12)

for all k∈Nn0 and k≠ 0.

It is known that in the critical case, the process X(t) goes to extinction with prob-

ability 1. Corollary 4.7 shows that, if τ = o(t), even conditioned process X(τ,t) given

X(τ)≠ 0 vanishes with a probability approaching 1.

Theorem 4.2 gives a limit distribution for X(τ,t)when the times of observation τ,t→
∞ such that Q(t−τ)/Q(τ) has a finite limit. Now, we consider the case when this limit

is not finite. Let Ti(τ,t)=Qi(t−τ)/Qi(τ) and T(τ,t)= (T1(τ,t), . . . ,Tn(τ,t)).

Theorem 4.8. If condition (4.5) holds, θ(t) = θ⊕V/q(t), and t,τ → ∞, t−τ → ∞,

such that Ti(τ,t)→∞, i= 1,2, . . . ,n, then

P
{

X(τ,t)
T(τ,t)

≤ x | X(τ)≠ 0, X(0)= δi
}
�→π

(
1
b

x
)
, (4.13)

where π(x), x∈Rn+, is the distribution from Proposition 4.1 and b = 1−π(θ).
Remark 4.9. It follows from the asymptotic behavior of Qi(t) that, if Ti(τ,t)→∞

for at least one i, then it holds for each i= 1,2, . . . ,n.

Example 4.10. If matrix A is indecomposable, aperiodic, ρ = 1, and bijk <∞, i,j,k=
1, . . . ,n, then (4.5) is satisfied with α = 1, L(x) → const, x → 0. In this case, Qi(t) ∼
2ui/σ 2t, i= 1, . . . ,n, as t→∞, where σ 2 =∑n

j,m,k=1vjb
j
mkumuk. Consequently,

q(t)=
n∑
j=1

Qj(t)vj ∼ 2
σ 2t

, t �→∞, (4.14)
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andθ(t)∼ σ 2tθ⊕V/2. On the other hand, b = e−θ∗ , θ∗ =min{θ1, . . . ,θn}, and Tj(τ,t)∼
τ/(t − τ), j = 1, . . . ,n. Thus, Tj(τ,t) → ∞ if, for example, τ ∼ t and we obtain the

following result from Theorem 4.8.

Corollary 4.11. If ρ = 1, 0<σ 2 <∞, and t,τ →∞, t−τ →∞, such that τ ∼ t, then

P
{
t−τ
τ

X(τ,t)≤ x | X(τ)≠ 0, X(0)= δi
}
�→ 1−exp

{
− x

∗

b∗

}
, (4.15)

where x∈Rn+, x∗ =min{x1, . . . ,xn}, and b∗ = exp{−min{θ1, . . . ,θn}}.
The above two theorems describe the asymptotic behavior of X(τ,t) when t−τ →∞.

Now we consider the case τ = t−∆, where ∆∈ (0,∞) is a constant.

Theorem 4.12. If condition (4.5) is satisfied, t,τ → ∞, such that t−τ = ∆ ∈ (0,∞)
and θ(t)= θ= (θ1, . . . ,θn)∈Rn+, then

P
{
X(τ,t)⊕Q(τ)≤ x | X(τ)≠ 0, X(0)= δi

}
�→π

(
x

R(∆)

)
, (4.16)

where x∈Rn+ and

R(∆)= (R1(∆), . . . ,Rn(∆)
)
, Ri(∆)= P




n⋃
j=1

{
Xj(∆) > θj

} | X(0)= δi

. (4.17)

Remark 4.13. It follows from Proposition 4.1 that

Qi(τ)
Qi(t)

∼
(

t
t−∆

)1/α L1(t−∆)
L1(t)

, (4.18)

which shows that Qi(τ) ∼Qi(t) as t,τ →∞, t−τ = ∆, for each i = 1, . . . ,n. Therefore,

the vector of normalizing functions Q(τ) in Theorem 4.12 can be replaced by Q(t).

5. Proofs of the theorems of Section 4

Proof of Theorem 4.2. It follows from the definition of X(τ,t) in Section 3 that

its ith component can be written as

Xi(τ,t)=
∑

α∈R(i)τ
χ


 n⋃
j=1

{
X(α)j (t−τ) > θj(t−τ)

}. (5.1)

Since card{R(i)τ } =Xi(τ), from here we can see that it can be presented in the form (1.1)

with νiτ =Xi(τ) and

ξij(τ,t)= χ

 n⋃
l=1

{
Xjil(t−τ) > θl(t−τ)

}, (5.2)
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where Xjil(t) is the number of individuals of type Tl at time t in the process initiated

by the jth individual of type Ti. Hence, Theorem 2.1 can be applied. It follows from

Proposition 4.1 that condition (2.1) is satisfied with Aτ =V/q(τ) and with

ϕ(λ)= Ee−(Y,λ) =φ(λ), (5.3)

where φ(λ) is defined in (4.6). Furthermore, it is not difficult to see that

Eξij(τ,t)= P

 n⋃
l=1

{
Xjil(t−τ) > θl(t−τ)

}

= P

 n⋃
l=1

{
Xjil(t−τ)q(t−τ) > θlvl

}
, X(t−τ)≠ 0, X(0)= δi


.

(5.4)

Hence, using the asymptotic behavior of Q(t) again, we obtain that when τ,t → ∞,

t−τ →∞,

Eξij(τ,t)
q(τ)/vi

∼ bviQ
i(t−τ)
q(τ)

. (5.5)

From here, taking into account the condition Q(t−τ)/Q(τ)→ C, we conclude that

Eξij(τ,t)
q(τ)/vi

�→ bCiuivi, (5.6)

which shows that condition (2.2) of Theorem 2.1 is also satisfied with a = bC⊕U⊕V.

Consequently, the assertion of Theorem 4.2 follows from Theorem 2.1. Theorem 4.2 is

proved.

Proof of Theorem 4.8. We again use Theorem 2.1. As it was shown in the proof

of Theorem 4.2, condition (2.1) of Theorem 2.1 is satisfied with Aτ =V/q(τ). Now, we

consider

Mi(τ,t)= Eξij(τ,t)q(τ)
vi, (5.7)

where ξij(τ,t) is the same as in (5.2). Appealing again to the asymptotic behavior of

Q(t), we obtain that

Mi(τ,t)∼ bviTi(τ,t)Q
i(τ)
q(τ)

(5.8)

as t,τ →∞, t−τ →∞. It follows from (5.8) that the condition Mi(τ,t)→∞ of Theorem

2.1 is also satisfied when Ti(τ,t)=Qi(t−τ)/Qi(τ)→∞. The assertion of Theorem 4.8

follows now from Theorem 2.1.
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Proof of Theorem 4.12. We use again Theorem 2.1. As in the proofs of the pre-

ceding theorems, condition (2.1) follows from Proposition 4.1. If t−τ ∈ (0,∞), we ob-

tain from (5.2) that

Mi(τ,t)= Ri(∆)q(τ)
vi. (5.9)

Thus, we have thatMi(τ,t)→∞ as t,τ →∞, t−τ ∈ (0,∞). We obtain from Theorem 2.1

that

E


 n∏
i=1

e−λiXi(τ,t)Q
i(τ) | X(τ)≠ 0


 �→ϕ(λ⊕R(∆)

)
. (5.10)

This yields the assertion of Theorem 4.12.

6. The number of productive ancestors. Now we consider a population containing,

at time t = 0, a random number νi(t), i = 1, . . . ,n, t ∈ N0, of individuals (ancestors)

of n different types T1, . . . ,Tn. Each of these individuals generates a discrete-time in-

decomposable n-type branching stochastic process. Let θ(t) = (θ1(t), . . . ,θn(t)) be a

vector of nonnegative functions. In how many processes generated by these ances-

tors the number of descendants at time t of at least one type will exceed the cor-

responding level given by θ(t)? To answer the question, we investigate the process

Y(t)= Y([θ],t)= (Y1(t), . . . ,Yn(t)), where Yi(t) is the number of initial individuals of

type Ti, whose number of descendants at time t of at least one type is greater than the

corresponding component of the vector θ(t). It is clear that Y(t) takes into account

only “relatively productive” ancestors regulated by the family of levels θ(t), t ∈N0.

Process Y(t) may be associated with the following scheme describing the growth of

n-type trees in a forest. Suppose at time zero we have νi(t), i = 1, . . . ,n, one-branch

trees of types Ti. Each of these trees will grow and give new branches of types T1, . . . ,Tn
according to independent, indecomposable n-type branching processes. Then process

Y(t) = (Y1(t), . . . ,Yn(t)) will count the number of “big trees”: the variable Yi(t) is the

number of big trees of type Ti having more than θj(t) new branches at time t for at

least one j, j = 1, . . . ,n.

It is not difficult to see that the components of the process Yi(t) can be presented as

Yi(t)=
νi(t)∑
j=1

ξij(t), (6.1)

where ξij(t)= χ(
⋃n
l=1{Xjil(t) > θl(t)}) andXjil(t) is as before, the number of individuals

of type Tl at time t in the process initiated by the jth ancestor of type Ti. Consequently,

theorems proved for random sum (1.1) may be applied to this process.

Let all the assumptions from Section 4 on n-type branching process X(t), t ∈ N0,

be satisfied and the generating function corresponding to probability distribution Piα,

α∈Nn0 , satisfy (4.5).
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Theorem 6.1. Let condition (4.5) be satisfied and θ(t) = θ⊕V/q(t), θ ∈ Rn+. If con-

dition (2.1) is satisfied and for the normalizing coefficients in (2.1)

AitQi(t) �→∞ (6.2)

as t→∞ for i= 1, . . . ,n, then

P
{
Yi(t)−νitai(t)√

νitai(t)
≤ xi, i= 1, . . . ,n | ν ≠ 0

}
�→ L(x), (6.3)

where x∈Rn, ai(t)= bQi(t), b = 1−π(θ), θ ∈Rn+, and L(x) is defined in (2.24).

Proof. We demonstrate that the conditions of Theorem 2.2 are satisfied. It is clear

that we just need to show that condition (C1) holds for the variables defined in (6.1).

As in the proof of Theorem 4.2, we easily obtain that

Eξij(t)= P
( n⋃
l=1

{
Xjil(t) > θl(t)

})

= P
( n⋃
l=1

{
Xjil(t)q(t) > θlvl

}
, X(t)≠ 0, X= δi

)
∼ bQi(t).

(6.4)

Consequently, if we take lit = 1/Qi(t), then for i= 1, . . . ,n as t→∞,

litEξij(t)
(
1−Eξij(t)

)
�→ b. (6.5)

On the other hand, Ait/lit → ∞, i = 1, . . . ,n, as t → ∞ due to condition (6.2). Hence,

condition (C1) of Theorem 2.2 is satisfied and the assertion of the theorem follows

from Theorem 2.2. Theorem 6.1 is proved.

In conclusion, we note that according to condition (6.2), the assertion of Theorem 6.1

holds when the initial population is large enough. One may obtain limit distributions

for Y(t) when this condition is not satisfied. To do it, one needs to apply Theorem 2.1.

Acknowledgments. This research project has been funded by King Fahd Univer-

sity of Petroleum and Minerals under Project no. MS/STOCHASTIC/254. The authors

thank the referee for his valuable comments which improved the presentation of the

paper.

References

[1] B. C. Arnold and J. A. Villaseñor, The tallest man in the world, Statistical Theory and Ap-
plications. Papers in Honor of Herbert A. David (H. N. Nagaraja, P. K. Sen, and D. F.
Morrison, eds.), Springer-Verlag, New York, 1996, pp. 81–88.

[2] K. Fleischmann and R. Siegmund-Schultze, The structure of reduced critical Galton-Watson
processes, Math. Nachr. 79 (1977), 233–241.

[3] B. V. Gnedenko, Theory of Probability, 6th ed., Gordon and Breach, New Jersey, 1997.
[4] B. V. Gnedenko and V. Yu. Korolev, Random Summation, CRC Press, Florida, 1996.
[5] T. E. Harris, The Theory of Branching Processes, Die Grundlehren der mathematischen

Wissenschaften, vol. 119, Springer-Verlag, Berlin, 1963.



990 I. RAHIMOV AND H. MUTTLAK

[6] N. L. Johnson, S. Kotz, and N. Balakrishnan, Discrete Multivariate Distributions, Wiley Series
in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons,
New York, 1997.

[7] I. Rahimov, A limit theorem for random sums of dependent indicators and its applications in
the theory of branching processes, Theory Probab. Appl. 32 (1987), no. 2, 290–298.

[8] , Asymptotic behavior of families of particles in branching random processes, Soviet
Math. Dokl. 39 (1989), no. 2, 322–325.

[9] , Random Sums and Branching Stochastic Processes, Lecture Notes in Statistics,
vol. 96, Springer-Verlag, New York, 1995.

[10] , Random sums of independent indicators and generalized reduced processes, Sto-
chastic Anal. Appl. 21 (2003), no. 1, 205–221.

[11] I. Rahimov and G. P. Yanev, On maximum family size in branching processes, J. Appl.
Probab. 36 (1999), no. 3, 632–643.

[12] S. M. Sagitov, Reduced critical Bellman-Harris branching processes with several types of
particles, Theory Probab. Appl. 30 (1986), 783–796.

[13] V. A. Vatutin, Limit theorems for critical Markov branching processes with several types of
particles and infinite second moments, Math. USSR-Sb. 32 (1977), 215–225.

[14] A. L. Yakymiv, Reduced branching processes, Theory Probab. Appl. 25 (1981), 584–588.
[15] , Asymptotic properties of subcritical and supercritical reduced branching processes,

Theory Probab. Appl. 30 (1986), 201–206.
[16] G. P. Yanev and C. P. Tsokos, Family size order statistics in branching processes with immi-

gration, Stochastic Anal. Appl. 18 (2000), no. 4, 655–670.
[17] A. M. Zubkov, Limiting distributions of the distance to the closest common ancestor, Theory

Probab. Appl. 20 (1975), 602–612.

I. Rahimov: Institute of Mathematics, Uzbek Academy of Sciences, 700143 Tashkent, Uzbek-
istan

Current address: Department of Mathematical Sciences, King Fahd University of Petroleum and
Minerals, P.O. Box 1339, Dhahran 31261, Saudi Arabia

E-mail address: rahimov@kfupm.edu.sa

H. Muttlak: Department of Mathematical Sciences, King Fahd University of Petroleum and Min-
erals, P.O. Box 1676, Dhahran 31261, Saudi Arabia

E-mail address: muttlak@kfupm.edu.sa

mailto:rahimov@kfupm.edu.sa
mailto:muttlak@kfupm.edu.sa

